Skip to main content
Log in

Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Phenotype definition is driven by epigenetic mechanisms as well as directly influenced by the cell microenvironment and by biophysical signals deriving from the extracellular matrix. The possibility to interact with the epigenetic signature of an adult mature cell, reversing its differentiated state and inducing a short transient high plasticity window, was previously demonstrated. In parallel, in vitro studies have shown that 3D culture systems, mimicking cell native tissue, exert significant effects on cell behavior and functions. Here we report the production of “PTFE micro-bioreactors” for long-term culture of epigenetically derived high plasticity cells. The system promotes 3D cell rearrangement, global DNA demethylation and elevated transcription of pluripotency markers, that is dependent on WW domain containing transcription regulator 1 (TAZ) nuclear accumulation and SMAD family member 2 (SMAD2) co-shuttling. Our findings demonstrate that the use of 3D culture strategies greatly improves the induction and maintenance of a high plasticity state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hemberger, M., Dean, W., & Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment: Digging Waddington's canal. Nature Reviews. Molecular Cell Biology, 10(8), 526–537.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Q., & Melton, D. A. (2008). Extreme makeover: Converting one cell into another. Cell Stem Cell, 3, 382–388.

    Article  CAS  PubMed  Google Scholar 

  3. Pennarossa, G., Maffei, S., Campagnol, M., Tarantini, L., Gandolfi, F., & Brevini, T. A. (2013). Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8948–8953.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pennarossa, G., Maffei, S., Campagnol, M., Rahman, M. M., Brevini, T. A., & Gandolfi, F. (2014). Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Reviews, 10(1), 31–43.

    Article  CAS  Google Scholar 

  5. Brevini, T. A., Pennarossa, G., Rahman, M. M., et al. (2014). Morphological and molecular changes of human granulosa cells exposed to 5-Azacytidine and addressed toward muscular differentiation. Stem Cell Reviews, 10(5), 633–642.

    Article  CAS  Google Scholar 

  6. Mirakhori, F., Zeynali, B., Kiani, S., & Baharvand, H. (2015). Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell Journal, 17(1), 153–158.

    PubMed  PubMed Central  Google Scholar 

  7. Tan, S. J., Fang, J. Y., Wu, Y., Yang, Z., Liang, G., & Han, B. (2015). Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation. Scientific Reports, 5, 16333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brevini, T. A., Pennarossa, G., Acocella, F., Brizzola, S., Zenobi, A., & Gandolfi, F. (2016). Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. The Veterinary Journal, 211, 52–56.

    Article  CAS  PubMed  Google Scholar 

  9. Chandrakanthan, V., Yeola, A., Kwan, J. C., Oliver, R. A., Qiao, Q., Kang, Y. C., Zarzour, P., Beck, D., Boelen, L., Unnikrishnan, A., Villanueva, J. E., Nunez, A. C., Knezevic, K., Palu, C., Nasrallah, R., Carnell, M., Macmillan, A., Whan, R., Yu, Y., Hardy, P., Grey, S. T., Gladbach, A., Delerue, F., Ittner, L., Mobbs, R., Walkley, C. R., Purton, L. E., Ward, R. L., Wong, J. W. H., Hesson, L. B., Walsh, W., & Pimanda, J. E. (2016). PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 113(16), E2306–E2315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manzoni, E. F., Pennarossa, G., deEguileor, M., Tettamanti, G., Gandolfi, F., & Brevini, T. A. (2016). 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Scientific Reports, 6, 37017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Constantinides, P. G., Jones, P. A., & Gevers, W. (1977). Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature, 267(5609), 364–366.

    Article  CAS  PubMed  Google Scholar 

  12. Taylor, S. M., & Jones, P. A. (1979). Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17(4), 771–779.

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, S. M., Constantinides, P. A., & Jones, P. A. (1984). 5-Azacytidine, DNA methylation, and differentiation. Current Topics in Microbiology and Immunology, 108, 115–127.

    CAS  PubMed  Google Scholar 

  14. Jones, P. A. (1985). Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacology & Therapeutics, 28(1), 17–27.

    Article  CAS  Google Scholar 

  15. Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.

    Article  CAS  PubMed  Google Scholar 

  16. Christman, J. K. (2002). 5-Azacytidine and 5-aza-2[prime]-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483–5495.

    Article  CAS  PubMed  Google Scholar 

  17. Stresemann, C., & Lyko, F. (2008). Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer, 123(1), 8–13.

    Article  CAS  PubMed  Google Scholar 

  18. Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: The ultimate regulator of breast epithelial function. Current Opinion in Cell Biology, 15(6), 753–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Streuli, C. H., Schmidhauser, C., Bailey, N., Yurchenco, P., Skubitz, A. P., Roskelley, C., & Bissell, M. J. (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. The Journal of Cell Biology, 129(3), 591–603.

    Article  CAS  PubMed  Google Scholar 

  20. Mizukami, A., de Abreu Neto, M. S., Moreira, F., Fernandes-Platzgummer, A., Huang, Y. F., Milligan, W., Cabral, J. M. S., da Silva, C. L., Covas, D. T., & Swiech, K. (2018). A fully-closed and automated hollow Fiber bioreactor for clinical-grade manufacturing of human mesenchymal stem/stromal cells. Stem Cell Reviews, 14(1), 141–143.

    Article  CAS  Google Scholar 

  21. Lengner, C. J., Camargo, F. D., Hochedlinger, K., Welstead, G. G., Zaidi, S., Gokhale, S., Scholer, H. R., Tomilin, A., & Jaenisch, R. (2007). Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1(4), 403–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pennarossa, G., Santoro, R., Manzoni, E., Pesce, M., Gandolfi, F., & Brevini, T. (2018). Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Reviews, 14(3), 398–411.

    Article  CAS  Google Scholar 

  23. Brevini, T. A., Pennarossa, G., Antonini, S., et al. (2009). Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Reviews, 5(4), 340–352.

    Article  Google Scholar 

  24. Sathananthan, H., Pera, M., & Trounson, A. (2002). The fine structure of human embryonic stem cells. Reproductive Biomedicine Online, 4(1), 56–61.

    Article  PubMed  Google Scholar 

  25. Ireland, R. G., & Simmons, C. A. (2015). Human pluripotent stem cell Mechanobiology: Manipulating the biophysical microenvironment for regenerative medicine and tissue engineering applications. Stem Cells, 33(11), 3187–3196.

    Article  PubMed  Google Scholar 

  26. Shao, Y., Sang, J., & Fu, J. (2015). On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials, 52, 26–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caiazzo, M., Okawa, Y., Ranga, A., Piersigilli, A., Tabata, Y., & Lutolf, M. P. (2016). Defined three-dimensional microenvironments boost induction of pluripotency. Nature Materials, 15(3), 344–352.

    Article  CAS  PubMed  Google Scholar 

  28. McKee, C., & Chaudhry, G. R. (2017). Advances and challenges in stem cell culture. Colloids and Surfaces. B, Biointerfaces, 159, 62–77.

    Article  CAS  PubMed  Google Scholar 

  29. Lai, D., Wang, Y., Sun, J., Chen, Y., Li, T., Wu, Y., Guo, L., & Wei, C. (2015). Derivation and characterization of human embryonic stem cells on human amnion epithelial cells. Scientific Reports, 5, 10014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Courtot, A. M., Magniez, A., Oudrhiri, N., Féraud, O., Bacci, J., Gobbo, E., Proust, S., Turhan, A. G., & Bennaceur-Griscelli, A. (2014). Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming. Biores Open Access, 3(5), 206–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sarvi, F., Arbatan, T., Chan, P. P. Y., & Shen, W. A. (2013). A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Advances, 3, 14501–14508.

    Article  CAS  Google Scholar 

  32. Vadivelu, R. K., Ooi, C. H., Yao, R. Q., Tello Velasquez, J., Pastrana, E., Diaz-Nido, J., Lim, F., Ekberg, J. A. K., Nguyen, N. T., & St John, J. A. (2015). Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Scientific Reports, 5, 15083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meshorer, E., Yellajoshula, D., George, E., Scambler, P. J., Brown, D. T., & Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Developmental Cell, 10(1), 105–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meshorer, E., & Misteli, T. (2006). Chromatin in pluripotent embryonic stem cells and differentiation. Nature Reviews. Molecular Cell Biology, 7(7), 540–546.

    Article  CAS  PubMed  Google Scholar 

  35. Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., Bazett-Jones, D. P., le Grice, S., McKay, R. D. G., Buetow, K. H., Gingeras, T. R., Misteli, T., & Meshorer, E. (2008). Global transcription in pluripotent embryonic stem cells. Cell Stem Cell, 2(5), 437–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang, G., & Zhang, Y. (2013). Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective. Cell Research, 23(1), 49–69.

    Article  CAS  PubMed  Google Scholar 

  37. Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B. E., Jaenisch, R., Lander, E. S., & Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hysolli, E., Tanaka, Y., Su, J., Kim, K. Y., Zhong, T., Janknecht, R., Zhou, X. L., Geng, L., Qiu, C., Pan, X., Jung, Y. W., Cheng, J., Lu, J., Zhong, M., Weissman, S. M., & Park, I. H. (2016). Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 family. Stem Cell Reports, 7(1), 43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ito, S., D/'Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133.

  41. Liang, G., He, J., & Zhang, Y. (2012). Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nature Cell Biology, 14(5), 457–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, X., Zhang, L., Mao, S. Q., Li, Z., Chen, J., Zhang, R. R., Wu, H. P., Gao, J., Guo, F., Liu, W., Xu, G. F., Dai, H. Q., Shi, Y. G., Li, X., Hu, B., Tang, F., Pei, D., & Xu, G. L. (2014). Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell, 14(4), 512–522.

    Article  CAS  PubMed  Google Scholar 

  43. Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., & Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5), 1047–1059.

    Article  CAS  PubMed  Google Scholar 

  44. Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B. M., Dembowy, J., Yaffe, M. B., Zandstra, P. W., & Wrana, J. L. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology, 10(7), 837–848.

    Article  CAS  PubMed  Google Scholar 

  45. Ohgushi, M., Minaguchi, M., & Sasai, Y. (2015). Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell, 17(4), 448–461.

    Article  CAS  PubMed  Google Scholar 

  46. Panciera, T., Azzolin, L., Fujimura, A., di Biagio, D., Frasson, C., Bresolin, S., Soligo, S., Basso, G., Bicciato, S., Rosato, A., Cordenonsi, M., & Piccolo, S. (2016). Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell, 19(6), 725–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by Carraresi Foundation. The Laboratory of Biomedical Embryology is member of the COST Action CA16119 In vitro 3-D total cell guidance and fitness (CellFit), and the COST Action CM1406 Epigenetic Chemical Biology (EPICHEM). We thank Prof. E. Somigliana for kindly providing human skin biopsies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana A. L. Brevini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennarossa, G., Manzoni, E.F.M., Ledda, S. et al. Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts. Stem Cell Rev and Rep 15, 82–92 (2019). https://doi.org/10.1007/s12015-018-9862-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9862-5

Keywords

Navigation