Skip to main content

Transcription Factors: Their Role in the Regulation of Somatic Embryogenesis in Theobroma cacao L. and Other Species

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

Abstract

Transcription factors are proteins that help with the control and regulation in the transcription of the DNA to mRNA by binding to special DNA sequences. With the aim to understand more about gene transcription regulation in Theobroma cacao L., this review outlines the principal transcription factors that were reported in other plants especially Arabidopsis thaliana and attempts at looking for the homologies with transcription factors in T. cacao. The information cited in this work is about the initiation, development, and maturation of the cacao somatic embryos and other crops. It is important to underline that there are very few publications in T. cacao discussing transcription factors that control the somatic embryogenesis process, but there is some information about transcription factors in other crops that we have used as a guide to try to understand this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motamayor JC, Risterucci AM, Lopez PA et al (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386. https://doi.org/10.1038/sj.hdy.6800156

    Article  PubMed  CAS  Google Scholar 

  2. Pucciarelli D (2013) Cocoa and heart health: a historical review of the science. Nutrients 5:3854–3870. https://doi.org/10.3390/nu5103854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Franzen M, Borgerhoff MM (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16:3835–3849. https://doi.org/10.1007/s10531-007-9183-5

    Article  Google Scholar 

  4. Motamayor JC, Lachenaud P, da Silva e Mota JW et al (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One e3311:3. https://doi.org/10.1371/journal.pone.0003311

    Article  CAS  Google Scholar 

  5. Turnbull CJ, Hadley P (2017) International Cocoa Germplasm Database (ICGD). [Online Database]. CRA Ltd. ICE Futures Europe University of Reading, UK. httpwww.icgd.reading.ac.uk. Accessed 18 Jan 2017

  6. Sondahl MR, Laurel MT, Chen Z, et al. (1994) Somatic embryogenesis and plant regeneration of cacao. US5312801 A, 1–22

    Google Scholar 

  7. Lopez Baez O, Bollon H, Eskes A, Pétiard V (1993) Embryogenèse somatique du cacaoyer Theobroma cacao L., à partir des pièces florales. Comptes Rendus Académie Sci Sci Vie 316:579–584

    Google Scholar 

  8. Bajaj YPS (1995) Biotechnology in agriculture and forestry. Somatic embryogenesis and synthetic seed I. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  9. Maximova SN, Alemanno L, Young A et al (2002) Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Dev Biol-Plant 38:252–259. https://doi.org/10.1079/IVP2001257

    Article  Google Scholar 

  10. Tan C, Furtek D (2003) Development of an in vitro regeneration system for Theobroma cacao from mature tissues. Plant Sci 164:407–412. https://doi.org/10.1016/S0168-9452(02)00428-4

    Article  CAS  Google Scholar 

  11. Garcia C, Corrêa F, Findley S et al (2016) Optimization of somatic embryogenesis procedure for commercial clones of Theobroma cacao L. Afr J Biotechnol 15:1936–1951. https://doi.org/10.5897/AJB2016.15513

    Article  Google Scholar 

  12. Karami O, Aghavaisi B, Mahmoudi Pour A (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190. https://doi.org/10.1007/s12154-009-0028-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fehér A (2015) Somatic embryogenesis – stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005

    Article  PubMed  CAS  Google Scholar 

  14. Issali AE, Traoré A, Ngoran JAK et al (2009) Relationship between some phenological parameters and somatic embryogenesis in Theobroma cacao L. J Crop Sci Biotech 11:23–30

    Google Scholar 

  15. Estabrooks T, Dong Z (2004) Gene expression during indirect somatic embryogenesis of plants. Proc Nova Scotian Inst Sci 42:411–419. http://hdl.handle.net/10222/70938

    Google Scholar 

  16. Vasilenko A, McDaniel JK, Conger BV (2000) Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata. In Vitro Cell Dev Biol-Plant 36:51–56. https://doi.org/10.1007/s11627-000-0012-8

    Article  PubMed  CAS  Google Scholar 

  17. Fehér A (2005) Why somatic plant cells start to form embryos? In: Mujib A, Samaj J (eds) Somatic embryogenesis. Springer, Berlin, Heidelberg, pp 85–101. https://doi.org/10.1007/7089_019

    Chapter  Google Scholar 

  18. Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org 74:201–228. https://doi.org/10.1023/A:1024033216561

    Article  Google Scholar 

  19. Sharma M, Anand SK (2002) Swarming: a coordinated bacterial activity. Curr Sci 83:707–714

    CAS  Google Scholar 

  20. Hecht V, Vielle-Calzada J-P, Hartog MV et al (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816. https://doi.org/10.1104/pp.010324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pandey DK, Chaudhary B (2014) Role of plant somatic embryogenesis receptor kinases (serks) in cell-to-embryo transitional activity: key at novel assorted structural subunits. Am J Plant Sci 05:3177–3193. https://doi.org/10.4236/ajps.2014.521334

    Article  CAS  Google Scholar 

  22. Albrecht C, Russinova E, Kemmerling B et al (2008) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol 148:611–619. https://doi.org/10.1104/pp.108.123216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. de Oliveira Santos M, Romano E, Yotoko KSC et al (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729. https://doi.org/10.1016/j.plantsci.2004.10.004

    Article  CAS  Google Scholar 

  24. Lee C, Clark SE (2015) A WUSCHEL-independent stem cell specification pathway is repressed by PHB, PHV and CNA in Arabidopsis. PLoS One 10:e0126006. https://doi.org/10.1371/journal.pone.0126006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Florez SL, Erwin RL, Maximova SN et al (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121. https://doi.org/10.1186/s12870-015-0479-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. El Ouakfaoui S, Schnell J, Abdeen A et al (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326. https://doi.org/10.1007/s11103-010-9674-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pasternak TP (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819. https://doi.org/10.1104/pp.000810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Su YH, Zhao XY, Liu YB et al (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Křeček P, Skŭpa P, Libus J et al (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249. https://doi.org/10.1186/gb-2009-10-12-249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sasikumar AN, Perez WB, Kinzy TG (2012) The many roles of the eukaryotic elongation factor 1 complex: the many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA 3:543–555. https://doi.org/10.1002/wrna.1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Balestrazzi A, Bernacchia G, Pitto L et al (2001) Spatial expression of DNA topoisomerase I genes during cell proliferation in Daucus carota. Eur J Histochem 45:31–38. https://doi.org/10.4081/1611

    Article  PubMed  CAS  Google Scholar 

  32. Duncan DR, Kriz AL, Paiva R, Widholm JM (2003) Globulin-1 gene expression in regenerable Zea mays (maize) callus. Plant Cell Rep 21:684–689. https://doi.org/10.1007/s00299-002-0568-3

    Article  PubMed  CAS  Google Scholar 

  33. Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260. https://doi.org/10.1093/mp/sss154

    Article  PubMed  CAS  Google Scholar 

  34. Sato S, Toya T, Kawahara R et al (1995) Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. Plant Mol Biol 28:39–46. https://doi.org/10.1007/BF00042036

    Article  PubMed  CAS  Google Scholar 

  35. Mantiri FR, Kurdyukov S, Lohar DP et al (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636. https://doi.org/10.1104/pp.107.110379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nowak K, Wójcikowska B, Gaj MD (2015) ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 241:967–985. https://doi.org/10.1007/s00425-014-2225-9

    Article  PubMed  CAS  Google Scholar 

  37. Ledwoń A, Gaj MD (2011) LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis. Plant Growth Regul 65:157–167. https://doi.org/10.1007/s10725-011-9585-y

    Article  CAS  Google Scholar 

  38. Alemanno L, Devic M, Niemenak N et al (2008) Characterization of leafy cotyledon1-like during embryogenesis in Theobroma cacao L. Planta 227:853–866. https://doi.org/10.1007/s00425-007-0662-4

    Article  PubMed  CAS  Google Scholar 

  39. Lee H, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci U S A 100:2152–2156. https://doi.org/10.1073/pnas.0437909100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Maximova SN, Florez S, Shen X et al (2014) Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree. BMC Plant Biol 14:185. https://doi.org/10.1186/1471-2229-14-185

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Clemens A, Maximova SN, Guiltinan MJ (2014) The Theobroma cacao B3 domain transcription factor TcLEC2 plays a dual role in control of embryo development and maturation. BMC Plant Biol 14:106. https://doi.org/10.1186/1471-2229-14-106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ledwoń A, Gaj MD (2009) LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Rep 28:1677–1688. https://doi.org/10.1007/s00299-009-0767-2

    Article  PubMed  CAS  Google Scholar 

  43. Guo F, Liu C, Xia H et al (2013) Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants. PLoS One 8:e71714. https://doi.org/10.1371/journal.pone.0071714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garcia, C., Britto, D., Marelli, JP. (2018). Transcription Factors: Their Role in the Regulation of Somatic Embryogenesis in Theobroma cacao L. and Other Species. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics