1 Introduction

Fractional calculus is one of the most important branches of applied mathematics. The main importance of this field can be observed in many published papers regarding different fractional differential equations and inclusions in recent years. In this direction, different generalizations of derivatives have been introduced by some researchers. For example, recently, Lazreg et al. [1] investigated the Cauchy problem of Caputo–Fabrizio impulsive fractional differential equations

$$\begin{aligned} \textstyle\begin{cases} ( {}^{\mathrm{CF}}\mathcal{D}_{a_{k}}^{r} \mathrm{v} ) ( \mathfrak{t} ) = f (\mathfrak{t}, \mathrm{v}(\mathfrak{t})), \quad \mathfrak{t} \in \mathbb{I}_{k}, k=0,1,\dots,\mathrm{m}, \\ \mathrm{v}(a_{k}^{+})= \mathrm{v}(a_{k}^{-}) + \varrho _{k} ( \mathrm{v} (a_{k}^{-})), \quad k=1,2,\dots,\mathrm{m}, \\ \mathrm{v}(0)= \mathrm{v}_{0}, \end{cases}\displaystyle \end{aligned}$$

where \(\mathbb{I}_{0}= [0, a_{1}]\), \(\mathbb{I}_{k}= (a_{k}, a_{k+1}]\), \(k=1,2, \dots, \mathrm{m}\), \(0 = a_{0}< a_{1}< a_{2}< \cdots < a_{\mathrm{m}}< a_{\mathrm{m}+1}= \tau \), \(\mathrm{v}_{0} \in \mathbb{R}\), \(f: \mathbb{I}_{k}\times \mathbb{R}\to \mathbb{R} \ (k=0, 1, \dots, \mathrm{m})\) and \(\varrho _{k}: \mathbb{R} \to \mathbb{R} \ (k=1, \dots, \mathrm{m})\) are given continuous functions, and \({}^{\mathrm{CF}}\mathcal{D}_{a_{k}}^{r}\) is the Caputo–Fabrizio derivative of order \(r \in (0,1)\). Also, Krim et al. [2] considered the class of terminal value problems of Katugampola implicit differential equations of noninteger orders

$$\begin{aligned} \textstyle\begin{cases} ({}^{K}\mathcal{D}_{0^{+}}^{r} + \mathrm{v} )( \mathfrak{t}) = f ( \mathfrak{t}, \mathrm{v}(\mathfrak{t}), ({}^{K}\mathcal{D}_{0^{+}}^{r} + \mathrm{v} )( \mathfrak{t}) ), \quad \mathbb{I}=[0,\tau _{0}], \\ \mathrm{v}(\tau _{0}) = \mathrm{v}_{0} \in \mathbb{R}, \quad \tau >0, \end{cases}\displaystyle \end{aligned}$$

where the function \(f: \mathbb{I}\times \mathbb{R}^{2}\to \mathbb{R}\) is continuous, and \({}^{K}\mathcal{D}_{0^{+}}^{r}\) is the Katugampola fractional derivative of order \(r\in (0,1]\). In 2020, Baitiche et al. [3] generalized the fractional settings and studied the existence of solutions of the following ψ-Caputo fractional differential equation:

$$\begin{aligned} \textstyle\begin{cases} {}^{C}\mathcal{D}_{a^{+}}^{q,\psi } \mathrm{v}(\mathfrak{t}) + f ( \mathfrak{t}, \mathrm{v}(\mathfrak{t}))=0, \quad \mathfrak{t}\in \mathbb{J}=[a,b], \\ \mathrm{v}(a) = \mathrm{v}'(a)=0,\qquad \mathrm{v}(b) = \sum_{i=1}^{m} \lambda _{i} \mathrm{v}(\eta _{i}), \quad \eta _{i} \in (a, b), \end{cases}\displaystyle \end{aligned}$$

where \({}^{C}\mathcal{D}_{a^{+}}^{q,\psi }\) is the ψ-Caputo fractional derivative of order \(q\in (2, 3]\), \(\mathrm{w}: \mathbb{J}\times \mathbb{R} \to \mathbb{R}\) is a given continuous function, and \(\lambda _{i}\) are real constants satisfying \(\Delta = \sum_{i=1}^{m} \lambda _{i} (\psi (\eta _{i}) - \psi (a) )^{2} - (\psi (b) - \psi (a))^{2} \neq 0\). Also, Wahash et al. [4] investigated the existence and interval of existence, uniqueness, estimates of solutions, and different types of Ulam stability results of solutions on a subinterval of \([0, b]\) for the nonlinear fractional differential equation involving generalized Caputo fractional derivatives with respect to the function ψ given by \({}^{C}\mathcal{D}_{a^{+}}^{q,\psi } \mathrm{v}(\mathfrak{t})= f( \mathfrak{t}, \mathrm{v}(\mathfrak{t})), \mathfrak{t} \in [0, b]\), with nonlocal condition \(\mathrm{v}(0) = \hslash (\mathrm{v}) = \mathrm{v}_{0}\), where \(q \in (0,1)\), \(\mathrm{v}_{0} \in \mathbb{R}\), \({}^{C}\mathcal{D}_{a^{+}}^{q,\psi }\) denotes the ψ-Caputo fractional derivative of order q, \(f: [0, b]\times \mathbb{R} \to \mathbb{R}\) and \(\hslash: C([0, b], \mathbb{R}) \to \mathbb{R}\) are nonlinear continuous functions, and \(\mathrm{v}\in C([0,b], \mathbb{R} )\) is such that the operator \({}^{C}\mathcal{D}_{a^{+}}^{q,\psi }\) exists and \({}^{C}\mathcal{D}_{a^{+}}^{q,\psi }\in C([0,b], \mathbb{R} )\).

In 2019, Pham et al. [5] introduced a chaotic integer-order system, called a snap system, which involves only one quadratic nonlinear term and takes the following mathematical form:

$$\begin{aligned} \textstyle\begin{cases} \frac{\mathrm{dv}_{1}}{\mathrm{d}\mathfrak{t}}=\mathrm{v}_{2}( \mathfrak{t}), \\ \frac{\mathrm{dv}_{2}}{\mathrm{d}\mathfrak{t}}=\mathrm{v}_{3}( \mathfrak{t}), \\ \frac{\mathrm{dv}_{3}}{\mathrm{d}\mathfrak{t}}=\mathrm{v}_{4}( \mathfrak{t}), \\ \frac{\mathrm{dv}_{4}}{\mathrm{d}\mathfrak{t}}=\mathcal{T}( \mathrm{v}_{1},\mathrm{v}_{2},\mathrm{v}_{3},\mathrm{v}_{4}), \end{cases}\displaystyle \end{aligned}$$
(1)

where \(\mathcal{T}(\mathrm{v}_{1}, \mathrm{v}_{2},\mathrm{v}_{3},\mathrm{v}_{4})=-a \mathrm{v}_{1}-\mathrm{v}_{2}-\mathrm{v}_{4}+b\mathrm{v}_{1} \mathrm{v}_{3}\). Equation (1) can be transformed into a fourth-order differential equation

$$\begin{aligned} \frac{\mathrm{d}^{4}\mathrm{v}_{1}}{\mathrm{d}\mathfrak{t}^{4}} = \mathcal{T} \biggl( \mathrm{v}_{1}, \frac{\mathrm{dv}_{1}}{ \mathrm{d}\mathfrak{t}}, \frac{\mathrm{d}^{2}\mathrm{v}_{1}}{ \mathrm{d} \mathfrak{t}^{2}}, \frac{\mathrm{d}^{3} \mathrm{v}_{1}}{\mathrm{d}\mathfrak{t}^{3}} \biggr). \end{aligned}$$
(2)

The new equation (2) contains a fourth-order derivative of the variable \(\mathrm{v}_{1}\), which in physics stands for a second derivative of acceleration in a mechanical system. Equation (2) is called a snap or jounce equation and describes a fourth-order dynamical model.

Many researchers have investigated sufficient conditions for the uniqueness, existence, stability, and attractivity of solutions for a wide domain of fractional nonlinear ordinary differential equations (ODEs) or mathematical models containing different fractional derivatives by using numerous types of methods including standard fixed point theory, T-degree theory, variational methods, monotone iterative approaches, MNC technique, and so on. For more detail, see [623]. However, to the best of our knowledge, limited results can be found on the existence and stability of solutions of fractional snap systems via the generalized \(\mathbb{G}\)-Caputo derivative.

The authors in [24] studied the fractional snap model

$$\begin{aligned} \textstyle\begin{cases} {}^{c}\mathcal{D}^{q}\mathrm{v}_{1}=\mathrm{v}_{2}(\mathfrak{t}), \\ {}^{c}\mathcal{D}^{q}\mathrm{v}_{2}=\mathrm{v}_{3}(\mathfrak{t}), \\ {}^{c}\mathcal{D}^{q}\mathrm{v}_{3}=\mathrm{v}_{4}(\mathfrak{t}), \\ {}^{c}\mathcal{D}^{q}\mathrm{v}_{4}=-a\mathrm{v}_{1}-\mathrm{v}_{2}- \mathrm{v}_{4}+b\mathrm{v}_{1}\mathrm{v}_{3}, \end{cases}\displaystyle \end{aligned}$$

where \(a=2\), \(b=1\), and the Caputo fractional order \(q=0.95\).

In view of the above facts, in this paper, we focus our attention on the problem of the existence and uniqueness along with the Hyers–Ulam stability of solutions for different forms of fractional nonlinear snap systems in the \(\mathbb{G}\)-Caputo sense with initial conditions. Namely, we study the following problem:

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}}\mathrm{v}(\mathfrak{t}) = \mathrm{u}( \mathfrak{t}),\quad \mathrm{v}(a) = \mathrm{v}_{0}, \\ {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \mathrm{u}(\mathfrak{t}) = \mathrm{w}(\mathfrak{t}), \quad \mathrm{u}(a)=\mathrm{v}_{1}, \\ {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G}}\mathrm{w}(\mathfrak{t})= \mathrm{x}(\mathfrak{t}), \quad \mathrm{w}(a) = \mathrm{v}_{2}, \\ {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G}} \mathrm{x}( \mathfrak{t}) = h( \mathfrak{t}, \mathrm{v},\mathrm{u},\mathrm{w,x}), \quad \mathrm{x}(a)= \mathrm{v}_{3}, \end{cases}\displaystyle \end{aligned}$$
(3)

where \({}^{c}\mathcal{D}_{a^{+}}^{ \eta;\mathbb{G}}\) are the \(\mathbb{G}\)-Caputo derivatives, η belong to \(\{q, p, r, k \}\) such that \(0< q, p, r, k \leq 1\), the increasing function \(\mathbb{G}\in C^{1}([a,b])\) is such that \(\mathbb{G}^{\prime }(\mathfrak{t})\neq 0\), \(\mathfrak{t}\in {}[ a,b]\), \(h\in C([a,b] \times \mathbb{R}^{4},\mathbb{R})\), and \(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\in \mathbb{R}\). It is obvious that this system can be rewritten as

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ) ) ) \\ \quad =h (\mathfrak{t},\mathrm{v}(\mathfrak{t}),{^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}}\mathrm{v}(\mathfrak{t}),{^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}}\mathrm{v}(\mathfrak{t}) ),{^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}(\mathfrak{t}) ) ) ), \\ \mathrm{v}(a) = \mathrm{v}_{0},\qquad {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}(\mathfrak{t})|_{\mathfrak{t}= a} = \mathrm{v}_{1}, \\ {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{ a^{+}}^{q; \mathbb{G}}\mathrm{v}( \mathfrak{t}) ) |_{\mathfrak{t}= a} =\mathrm{v}_{2},\qquad {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+} }^{q;\mathbb{G}}\mathrm{v}(\mathfrak{t}) ) ) |_{\mathfrak{t}= a}= \mathrm{v}_{3}. \end{cases}\displaystyle \end{aligned}$$
(4)

It is natural that if we set \(\mathbb{G}(\mathfrak{t})=\mathfrak{t}\), \(a=0\), and \(q =p =r=k =1\), then we obtain the standard 4th-order ODE (2) with initial conditions. Our method in this paper is based on fixed point approaches. Also, we can find more ideas on fractional calculus and its applications in [3, 2541].

The summary of our work in this research is as follows. In Sect. 2, we recall several assembled concepts of fractional calculus, useful lemmas, and some theorems about the fixed points. In Sect. 3, we give the proof of the fundamental theorems of this paper by utilizing fixed point approaches such as Banach’s principle and Schauder’s theorem. In Sect. 4, we discuss the stability in the context of the Ulam–Hyers stability, its generalized version along with Ulam–Hyers–Rassias stability, and its generalized version for solutions of the fractional \(\mathbb{G}\)-snap system (4). In Sect. 5, we utilize a special form of contractions to prove the existence results for an inclusion version of (4). Appropriate applications with numerical simulation are provided in Sect. 6 to illustrate and analyze the obtained results. Finally, in Sect. 7, we give the conclusion of our article.

2 Preliminaries

Here we recall some initial notions, definitions and notations.

Let \(\mathbb{G}:[a, b] \to \mathbb{R}\) be increasing via \(\mathbb{G}' (\mathfrak{t}) \neq 0\) for all \(\mathfrak{t}\). We start this part by defining the \(\mathbb{G}\)-Riemann–Liouville fractional (\(\mathbb{G}\)-FRL) integrals and derivatives. In this section, we set

$$\begin{aligned} A = \biggl( \frac{1}{\mathbb{G}' (\mathfrak{t})} \frac{ \mathrm{d}}{\mathrm{d}\mathfrak{t}} \biggr). \end{aligned}$$

Definition 2.1

([42, 43])

For \(\eta > 0\), the ηth \(\mathbb{G}\)-FRL integral of an integrable function \(\mathrm{v}: [a, b] \to \mathbb{R}\) with respect to \(\mathbb{G}\) is given as follows:

$$\begin{aligned} \mathcal{I}_{a^{+}}^{\eta;\mathbb{G} } \mathrm{v}( \mathfrak{t})= \frac{1}{\Gamma (\eta )} \int _{a}^{\mathfrak{t}}\bigl(\mathbb{G} ( \mathfrak{t})- \mathbb{G} (\xi )\bigr)^{\eta -1} \mathbb{G}'(\xi ) \mathrm{v}( \xi ) \,\mathrm{d}\xi, \end{aligned}$$
(5)

where \(\Gamma (\eta ) = \int _{0}^{+\infty } e^{-\mathfrak{t}} \mathfrak{t}^{ \eta -1} \,\mathrm{d}\mathfrak{t}, \eta >0\).

Let \(n\in \mathbb{N,}\) and let \(\mathbb{G}, \mathrm{v} \in C^{n}([a,b], \mathbb{R})\) be such that \(\mathbb{G}\) has the same properties mentioned above. The ηth \(\mathbb{G}\)-FRL derivative of v is defined by

$$\begin{aligned} \mathcal{D}_{a^{+}}^{\eta;\mathbb{G} } \mathrm{v}( \mathfrak{t}) &= A^{(n)} \mathcal{I}_{a^{+}}^{ n-\eta;\mathbb{G} } \mathrm{v}( \mathfrak{t}) \\ & = \frac{1}{ \Gamma (n-\eta )} A^{(n)} \int _{a}^{ \mathfrak{t}}\bigl( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(\xi )\bigr)^{n - \eta -1} \mathbb{G}'(\xi ) \mathrm{v}( \xi ) \,\mathrm{d}\xi, \end{aligned}$$

where \(n=[\eta ]+1\) [42, 43]. The ηth \(\mathbb{G}\)-fractional Caputo derivative of v is defined by \({}^{c}\mathcal{D}_{a^{+}}^{\eta;\mathbb{G}} \mathrm{v}( \mathfrak{t}) = \mathcal{I}_{a^{+}}^{ n - \eta; \mathbb{G}} A^{(n)} \mathrm{v}( \mathfrak{t})\), where \(n=[\eta ]+1\) for \(\eta \notin \mathbb{N}\) and \(n=\eta \) for \(\eta \in \mathbb{N}\) [44]. In other words,

$$\begin{aligned} {}^{c}\mathcal{D}_{a^{+}}^{\eta; \mathbb{G} } \mathrm{v}( \mathfrak{t}) = \textstyle\begin{cases} \int _{a}^{\mathfrak{t}} \frac{(\mathbb{G}(\mathfrak{t})-\mathbb{G}(\xi ))^{n-\eta -1}}{ \Gamma (n-\eta )} \mathbb{G}'(\xi ) A^{(n)}\mathrm{v}(\xi ) \,\mathrm{d} \xi, & \eta \notin \mathbb{N}, \\ A^{n}\mathrm{v}(\mathfrak{t}), & \eta = n \in \mathbb{N}. \end{cases}\displaystyle \end{aligned}$$
(6)

Extension (6) gives the Caputo derivative when \(\mathbb{G} (\mathfrak{t}) = \mathfrak{t}\). Also, in the case \(\mathbb{G} (\mathfrak{t})= \ln \mathfrak{t}\), it yields the Caputo–Hadamard derivative. If \(\mathrm{v} \in C^{n}([a,b], \mathbb{R})\), then the ηth \(\mathbb{G}\)-fractional Caputo derivative of v is specified as [44, Theorem 3]

$$\begin{aligned} {}^{c}\mathcal{D}_{a^{+}}^{\eta; \mathbb{G}} \mathrm{v}( \mathfrak{t}) = \mathcal{D}_{a^{+}}^{\eta; \mathbb{G}} \Biggl( \mathrm{v}( \mathfrak{t})-\sum_{j=0}^{n-1} \frac{A^{(j)} \mathrm{v}(a)}{j!}\bigl( \mathbb{G} (\mathfrak{t}) - \mathbb{G} (a) \bigr)^{j} \Biggr). \end{aligned}$$

The composition rules for the above \(\mathbb{G}\)-operators are recalled in the following lemma.

Lemma 2.2

([45])

Let \(n-1<\eta <n\) and \(\mathrm{v}\in C^{n} ([a,b],\mathbb{R})\). Then

$$\begin{aligned} \mathcal{I}_{a^{+}}^{\eta; \mathbb{G}} {}^{c}\mathcal{D}_{a^{+}}^{ \eta; \mathbb{G} } \mathrm{v}( \mathfrak{t}) = \mathrm{v}( \mathfrak{t}) - \sum _{j=0}^{n-1} \frac{A^{(j)} \mathrm{v}(a)}{j!} \bigl[ \mathbb{G}( \mathfrak{t})-\mathbb{G} (a) \bigr]^{j} \end{aligned}$$

for all \(\mathfrak{t}\in [a,b]\). Moreover, if \(m\in \mathbb{N}\) and \(\mathrm{v}\in C^{n+m}([a,b],\mathbb{R})\), then

$$\begin{aligned} A^{(m)} \bigl({}^{c}\mathcal{D}_{a^{+}}^{\eta; \mathbb{G} } \mathrm{v} \bigr) (\mathfrak{t}) = {}^{c}\mathcal{D}_{a^{+}}^{ \eta +m; \mathbb{G}} \mathrm{v}(\mathfrak{t}) + \sum_{j=0}^{m-1} \frac{[\mathbb{G} (\mathfrak{t})-\mathbb{G} (a)]^{j+n-\eta -m}}{\Gamma (j+n-\eta -m+1)}A^{(j+n)}\mathrm{v}(a). \end{aligned}$$
(7)

From equation (7) observe that if \(A^{(j)}\mathrm{v}(a) = 0\) for \(j=n,n+1,\dots,n+m-1\), then \(A^{(m)} ({}^{c}\mathcal{D}_{a^{+}}^{\eta;\mathbb{G} } \mathrm{v} )(\mathfrak{t}) = ^{c}\mathcal{D}_{a^{+}}^{\eta +m; \mathbb{G}} \mathrm{v}(\mathfrak{t})\), \(\mathfrak{t}\in [a,b]\).

Lemma 2.3

([45])

Let \(\eta, \nu >0\) and \(\mathrm{v}\in C( [a, b], \mathbb{R})\). Then for all \(\mathfrak{t} \in [a,b]\), denoting \(F_{a}(\mathfrak{t}) = \mathbb{G}( \mathfrak{t}) - \mathbb{G}(a)\), we have

  1. 1.

    \(\mathcal{I}_{a^{+}}^{\eta;\mathbb{G} } ( \mathcal{I}_{a^{+}}^{\nu; \mathbb{G} } \mathrm{v} )(\mathfrak{t}) = \mathcal{I}_{a^{+}}^{\eta + \nu;\mathbb{G} } \mathrm{v}(\mathfrak{t})\),

  2. 2.

    \({}^{c}\mathcal{D}_{a^{+}}^{\eta;\mathbb{G} } ( \mathcal{I}_{a^{+}}^{\eta; \mathbb{G} }\mathrm{v} ) (\mathfrak{t}) = \mathrm{v}(\mathfrak{t})\),

  3. 3.

    \(\mathcal{I}_{a^{+}}^{\eta; \mathbb{G} } ( F_{a}( \mathfrak{t}))^{\nu -1}= \frac{\Gamma (\nu )}{ \Gamma (\nu +\eta )}( F_{a} (\mathfrak{t}))^{\nu + \eta -1}\),

  4. 4.

    \({}^{c}\mathcal{D}_{a^{+}}^{\eta;\mathbb{G} }( F_{a}( \mathfrak{t}))^{\nu -1}=\frac{\Gamma (\nu )}{\Gamma (\nu -\eta )}( F_{a}( \mathfrak{t}))^{\nu -\eta -1}\),

  5. 5.

    \({}^{c}\mathcal{D}_{a^{+}}^{\eta;\mathbb{G} }( F_{a}( \mathfrak{t}))^{j} = 0, (j=0,1,\dots,n-1), n\in \mathbb{N},n-1\leq \eta \leq n\).

To end this part of the paper, we state the following fixed point theorems.

Theorem 2.4

(Banach contraction principle [46])

Let \((\mathbb{V}, \rho )\) be a nonempty complete metric space, and let \(\Psi: \mathbb{V}\to \mathbb{V}\) be a contraction, that is,

$$\begin{aligned} \rho \bigl(\Psi \mathrm{v}, \Psi \mathrm{v}^{*}\bigr) \leq \mu \rho \bigl(\mathrm{v}, \mathrm{v}^{*}\bigr)\quad \textit{for all } \mathrm{v}, \mathrm{v}^{*} \in \mathbb{V} \end{aligned}$$

and for some \(\mu \in (0, 1)\). Then Ψ admits a unique fixed point.

Theorem 2.5

(Leray–Schauder [46])

Let \(\mathbb{V}\) be a Banach space, let Σ be a bounded convex closed subset of \(\mathbb{V}\), and let \(\mathbb{U}\) be an open set contained in Σ with \(0\in \mathbb{U}\). Let \(\Psi: \overline{\mathbb{U}} \to \Sigma \) be a continuous and compact mapping. Then either (i) Ψ admits a fixed point belonging to \(\bar{\mathbb{U}}\), or (ii) there exist \(\mathrm{v}\in \partial \mathbb{U}\) and \(\mu \in (0,1)\) such that \(\mathrm{v} = \mu \Psi (\mathrm{v})\).

Consider normed space \((\mathcal{C}, \|\cdot \|)\). The collection of all closed, bounded, compact and convex subsets of \(\mathcal{C}\) are denoted by \({\mathcal{P}}_{\mathrm{CL}}(\mathcal{C})\), \({\mathcal{P}}_{\mathrm{BN}}( \mathcal{C})\), \({\mathcal{P}}_{\mathrm{CP}}( \mathcal{C})\), and \({\mathcal{P}}_{\mathrm{CV}}( \mathcal{C})\), respectively.

Definition 2.6

([47])

Consider \(\mathrm{v}: \mathbb{R} \to \mathbb{R}\) as a real-valued function and \(\mathfrak{H}\) as a multifunction. (i) \(\mathfrak{H}\) is u.s.c on \(\mathcal{C} \) if \(\mathfrak{H}(\mathrm{v}^{*})\in \mathcal{P}_{\mathrm{CL}}(\mathcal{C})\) for any \(\mathrm{v}^{*} \in \mathcal{C} \), and also there exists a neighborhood \(\mathfrak{N}_{0}^{*}\) of \(\mathrm{v}^{*}\) subject to \(\mathfrak{H}(\mathfrak{N}_{0}^{*}) \subseteq \mathbb{O}\) for \(\mathbb{O} \subseteq \mathcal{C}\), where \(\mathbb{O}\) is an arbitrary open set. (ii) A real-valued map \(\mathrm{v}: \mathbb{R} \to \mathbb{R}\) is upper semicontinuous such that \(\lim \sup_{n\to \infty } \mathrm{v}( r_{n})\leq \mathrm{v}(r)\) for each \(\{ r_{n} \}_{n\geq 1}\) with \(r_{n} \to r\).

A Pompeiu–Hausdorff metric \(\mathcal{H}_{\rho }: (\mathcal{P}(\mathcal{C}) )^{2} \to \mathbb{R} \cup \{\infty \}\) is defined as

$$\begin{aligned} \mathcal{H}_{\rho }\bigl( \mathcal{A}_{1}^{*}, \mathcal{A}_{2}^{*}\bigr) = \max \Bigl\{ \sup _{a_{1}^{*} \in \mathcal{A}_{1}^{*}} \rho \bigl(a_{1}^{*}, \mathcal{A}_{2}^{*}\bigr), \sup_{A_{2}^{*} \in \mathcal{A}_{2}^{*}} \rho \bigl( \mathcal{A}_{1}^{*}, a_{2}^{*} \bigr) \Bigr\} , \end{aligned}$$

where ρ is the metric of \(\mathcal{M,}\) and [47] \(\rho (\mathcal{A}_{1}^{*},a_{2}^{*}) = \inf_{a_{1}^{*}\in \mathcal{A}_{1}^{*}} \rho ( a_{1}^{*}, a_{2}^{*})\) and \(\rho ( a_{1}^{*},\mathcal{A}_{2}^{*}) = \inf_{A_{2}^{*}\in \mathcal{A}_{2}^{*}} \rho (a_{1}^{*},a_{2}^{*})\). Suppose for \(\mathfrak{H}: \mathcal{C} \to {\mathcal{P}}_{\mathrm{CL}} (\mathcal{C})\) and \(\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathcal{M}\), we have the inequality

$$\begin{aligned} \mathcal{H}_{\rho }\bigl(\mathfrak{H}(\mathrm{v}_{1}), \mathfrak{H}( \mathrm{v}_{2}) \bigr) \leq L \rho (\mathrm{v}_{1}, \mathrm{v}_{2}). \end{aligned}$$

Then \(\mathfrak{H}\) is said to be (H1) a Lipschitz map if \(L > 0\) and (H2) a contraction if \(0 < L < 1\) [47].

Definition 2.7

([47])

(i) \(\mathfrak{H}: [a, b]\times \mathbb{R} \to {\mathcal{P}}( \mathbb{R})\) is Carathéodory if \(\mathfrak{t} \mapsto \mathfrak{H}(\mathfrak{t},\mathrm{v})\) is measurable for any \(\mathrm{v} \in \mathbb{R}\) and \(\mathrm{v} \mapsto \mathfrak{H}(\mathfrak{t},\mathrm{v})\) is u.s.c for a.e. \(\mathfrak{t} \in [a, b]\). (ii) A Carathéodory multifunction \(\mathfrak{H}: [a, b]\times \mathbb{R} \to \mathcal{P}(\mathbb{R})\) is \(L^{1}\)-Carathéodory if for any \(\epsilon >0\), there exists \(\kappa _{\epsilon }\in L^{1} ([a, b], \mathbb{R}_{+})\) such that

$$\begin{aligned} \bigl\Vert \mathfrak{H}(\mathfrak{t},\mathrm{v}) \bigr\Vert = \sup _{ \mathfrak{t} \in [a,b]} \bigl\{ \vert \omega \vert : \omega \in \mathfrak{H}(\mathfrak{t},\mathrm{v}) \bigr\} \leq \kappa _{\epsilon }( \mathfrak{t}) \end{aligned}$$

for all \(| \upsilon |\leq \epsilon \) and almost all \(\mathfrak{t} \in [a, b]\).

Definition 2.8

([48])

Let \(\uppsi: \mathbb{R}_{\geq 0}\to \mathbb{R}_{\geq 0}\) be a nondecreasing map belonging to class Π such that for all \(\mathfrak{t}>0\), \(\sum_{j=1}^{\infty }\uppsi ^{j} (\mathfrak{t}) < \infty \) and \(\uppsi ( \mathfrak{t}) < \mathfrak{t}\). Let \(\Phi ^{*}: \mathcal{C}\to \mathcal{C}\) and \(\alpha: \mathcal{C}^{2} \to \mathbb{R}_{\geq 0}\). Then

  1. (i)

    \(\Phi ^{*}\) is α-ψ-contraction if for \(\mathrm{v}_{1}, \mathrm{v}_{2}\in \mathcal{C}\),

    $$\begin{aligned} \alpha (\mathrm{v}_{1}, \mathrm{v}_{2}) \rho \bigl( \Phi ^{*} \mathrm{v}_{1}, \Phi ^{*} \mathrm{v}_{2} \bigr) \leq \uppsi \bigl(\rho ( \mathrm{v}_{1}, \mathrm{v}_{2})\bigr). \end{aligned}$$
  2. (ii)

    \(\Phi ^{*}\) is α-admissible if \(\alpha (\mathrm{v}_{1}, \mathrm{v}_{2}) \geq 1\) gives \(\alpha (\Phi ^{*}\mathrm{v}_{1}, \Phi ^{*}\mathrm{v}_{2}) \geq 1\).

  3. (iii)

    \(\mathcal{C}\) has property (B) if for every sequence \(\{\mathrm{v}_{n}\}_{n\geq 1}\) of \(\mathcal{C}\) with \(\alpha ( \mathrm{v}_{n}, \mathrm{v}_{n+1})\geq 1\) and \(\mathrm{v}_{n}\to \mathrm{v}\), we have \(\alpha ( \mathrm{v}_{n}, \mathrm{v})\geq 1\) for all \(n \geq 1\).

Definition 2.9

([49])

Let \(\uppsi: \mathbb{R}_{\geq 0}\to \mathbb{R}_{\geq 0}\) be a nondecreasing map belonging to class Π such that for all \(\mathfrak{t}>0\), \(\sum_{j=1}^{\infty }\uppsi ^{j}(\mathfrak{t}) < \infty \) and \(\uppsi (\mathfrak{t}) < \mathfrak{t}\). Let \(\mathfrak{H}: \mathcal{C}\to \mathcal{P}( \mathcal{C})\) and \(\alpha: \mathcal{C}^{2} \to \mathbb{R}_{\geq 0}\). Then

  1. (i)

    \(\mathfrak{H}: \mathcal{C} \to \mathcal{P}_{\mathrm{CL},\mathrm{BN}} (\mathcal{C})\) is α-ψ-contraction if for all \(\mathrm{v}_{1}, \mathrm{v}_{2}\in \mathcal{C}\),

    $$\begin{aligned} \alpha (\mathrm{v}_{1}, \mathrm{v}_{2}) \mathcal{H}_{\rho } ( \mathfrak{H} \mathrm{v}_{1}, \mathfrak{H} \mathrm{v}_{2} ) \leq \uppsi \bigl(\rho ( \mathrm{v}_{1}, \mathrm{v}_{2})\bigr). \end{aligned}$$
  2. (ii)

    \(\mathfrak{H}\) is α-admissible if for all \(\mathrm{v}_{1}\in \mathcal{C}\) and \(\mathrm{v}_{2}\in \mathfrak{H}\mathrm{v}_{1}\), the inequality \(\alpha (\mathrm{v}_{1}, \mathrm{v}_{2}) \geq 1\) gives \(\alpha ( \mathrm{v}_{2}, \mathrm{v}_{3}) \geq 1\) for each \(\mathrm{v}_{3} \in \mathfrak{H} \mathrm{v}_{2}\).

  3. (iii)

    \(\mathcal{C}\) has property \((C_{\alpha })\) if for every sequence \(\{ \mathrm{v}_{n} \}_{n \geq 1} \) of \(\mathcal{C}\) with \(\mathrm{v}_{n} \to \mathrm{v}\) and \(\alpha (\mathrm{v}_{n}, \mathrm{v}_{n+1}) \geq 1\), there exists a subsequence \(\{ \mathrm{v}_{n_{k}} \}\) of \(\{ \mathrm{v}_{n} \}\) such that \(\alpha (\mathrm{v}_{n_{k}}, \mathrm{v})\geq 1\) for all \(k\in \mathbb{N}\).

Theorem 2.10

([48])

Let \((\mathcal{C},\rho )\) a complete metric space, and let \(\uppsi \in \Pi \), \(\alpha: \mathcal{C}^{2}\to \mathbb{R,}\) and \(\Phi ^{*}: \mathcal{C} \to \mathcal{C}\). Assume that: (i) \(\Phi ^{*}\) is α-admissible and α-ψ-contraction, (ii) \(\alpha (\mathrm{v}_{0}, \Phi ^{*}\mathrm{v}_{0} )\geq 1\) for some \(\mathrm{v}_{0} \in \mathcal{C}\), and (iii) \(\mathcal{C}\) has property (B). Then \(\Phi ^{*}\) has a fixed point.

Theorem 2.11

([50])

Let \(\mathcal{C}\) be a Banach space, and let \(\mathbb{A} \neq \emptyset \) belong to \(\mathcal{P}_{\mathrm{CL},\mathrm{BN},\mathrm{CV}}(\mathcal{C})\). Suppose that for \(\mathfrak{T}_{1}\) and \(\mathfrak{T}_{1}\) defined on \(\mathbb{A}\), (i) \(\mathfrak{T}_{1} \mathrm{v} + \mathfrak{T}_{2} \mathrm{v}' \in \mathbb{A}\) for \(\mathrm{v}, \mathrm{v}'\in \mathbb{A}\), (ii) \(\mathfrak{T}_{1}\) is compact-continuous, and (iii) \(\mathfrak{T}_{2}\) is a contraction. Then there exists \(\mathrm{v}_{*}\in \mathbb{A}\) such that \(\mathrm{v}_{*} = \mathfrak{T}_{1} \mathrm{v}_{*} + \mathfrak{T}_{2} \mathrm{v}_{*}\).

Theorem 2.12

([49])

Let \((\mathcal{C},\rho )\) be a complete metric space, and let \(\uppsi \in \Pi \), \(\alpha: \mathcal{C}^{2}\to \mathbb{R}_{\geq 0}\), and \(\mathfrak{H}: \mathcal{C} \to \mathcal{P}_{\mathrm{CL},\mathrm{BN}} (\mathcal{C})\). Assume that (i) \(\mathfrak{H}\) is an α-admissible α-ψ-contraction, (ii) \(\alpha (\mathrm{v}_{0}, \mathrm{v}_{1} )\geq 1\) for some \(\mathrm{v}_{0} \in \mathcal{C}\) and \(\mathrm{v}_{1} \in \mathfrak{H} \mathrm{v}_{0}\), and (iii) \(\mathcal{C}\) has property \((C_{\alpha })\). Then \(\mathfrak{H}\) has a fixed point.

Theorem 2.13

([47])

Let \((\mathcal{C}, \rho )\) be a complete metric space. Assume that (i) \(\uppsi \in \Pi \) is u.s.c such that \(\liminf_{ \mathfrak{t} \to \infty } ( \mathfrak{t} - \uppsi ( \mathfrak{t})) > 0\) for \(\mathfrak{t}>0\) and (ii) \(\mathfrak{H}: \mathcal{C} \to \mathcal{P}_{\mathrm{CL},\mathrm{BN}}(\mathcal{C})\) satisfies the property

$$\begin{aligned} \mathcal{H}_{\rho }( \mathfrak{H} \mathfrak{t}_{1}, \mathfrak{H} \mathfrak{t}_{2}) \leq \uppsi \bigl( \rho ( \mathfrak{t}_{1}, \mathfrak{t}_{2})\bigr),\quad \mathfrak{t}_{1}, \mathfrak{t}_{2} \in \mathcal{C}. \end{aligned}$$

Then \(\mathfrak{H}\) has a unique end-point iff \(\mathfrak{H}\) has the (AEP)-property.

3 Existence and uniqueness results

Here we analyze the existence properties of solutions and their uniqueness for the proposed fractional \(\mathbb{G}\)-snap problem (4). We need the following lemma, which specifies the corresponding integral equation.

Lemma 3.1

Let \(q,p,r,k \in (0,1]\) and \(\mathrm{v}_{0}, \mathrm{v}_{1},\mathrm{v}_{2},\mathrm{v}_{3}\in \mathbb{R}\). If \(g\in C([a,b], \mathbb{R})\), then the linear \(\mathbb{G}\)-snap FBVP

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( { ^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}(\mathfrak{t}) ) ) ) = g(\mathfrak{t}), \\ \mathrm{v}(a)=\mathrm{v}_{0},\qquad {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}}\mathrm{v}(a)=\mathrm{v}_{1}, \\ {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}(a) ) =\mathrm{v}_{2}, \qquad {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}(a) ) ) = \mathrm{v}_{3}\end{cases}\displaystyle \end{aligned}$$
(8)

has the solution

$$\begin{aligned} \mathrm{v}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{\mathrm{v}_{2}( \mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ &{} + \frac{\mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ &{} + \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} g(\xi ) \,\mathrm{d}\xi. \end{aligned}$$
(9)

Proof

Consider \(\mathrm{v}(\mathfrak{t})\) satisfying the linear fractional \(\mathbb{G}\)-snap problem (3.1). Applying the kth \(\mathbb{G}\)-integral operator \(\mathcal{I}_{a^{+}}^{k;\mathbb{G}}\) to both sides of equation (8), by the 4th boundary condition we obtain

$$\begin{aligned} {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) &= \mathrm{v}_{3}+ \mathcal{I}_{a^{+}}^{k;\mathbb{G}}{^{c} \mathcal{D}}_{a^{+}}^{k;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}(\mathfrak{t}) \bigr) \bigr) \bigr) \\ &= \mathrm{v}_{3}+\mathcal{I}_{a^{+}}^{k;\mathbb{G}}g( \mathfrak{t}). \end{aligned}$$

Similarly, by the 3rd boundary condition, applying the r-th \(\mathbb{G}\)-integral operator \(\mathcal{I}_{a^{+}}^{r;\mathbb{G}}\), we get

$$\begin{aligned} {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}}\mathrm{v}( \mathfrak{t}) \bigr) =\mathrm{v}_{2}+ \frac{\mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{r }}{\Gamma (r +1)}+ \mathcal{I}_{a^{+}}^{k +r;\mathbb{G}}g(\mathfrak{t}). \end{aligned}$$

By the 2nd boundary condition, applying the pth \(\mathbb{G}\)-integral operator \(\mathcal{I}_{a^{+}}^{p;\mathbb{G}}\), we get

$$\begin{aligned} {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}(\mathfrak{t})= \mathrm{v}_{1}+ \frac{\mathrm{v}_{2}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{p }}{\Gamma (p +1)}+ \frac{\mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{p +r }}{\Gamma (p +r +1)}+ \mathcal{I} _{a^{+}}^{k +r +p;\mathbb{G}}g(\mathfrak{t}), \end{aligned}$$
(10)

and finally, applying the qth \(\mathbb{G}\)-integral operator \(\mathcal{I}_{a^{+}}^{q;\mathbb{G}}\) to both sides of (10), by the 1st boundary condition, we get

$$\begin{aligned} \mathrm{v}(\mathfrak{t}) = {}&\mathrm{v}_{0}+ \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{\Gamma (q +1)}+ \frac{\mathrm{v}_{2}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q +p }}{\Gamma (q +p +1)} \\ &{} + \frac{ \mathrm{v}_{3}(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q + p +r } }{\Gamma (q +p +r +1)} + \mathcal{I}_{a^{+}}^{k +r +p +q;\mathbb{G}}g( \mathfrak{t}). \end{aligned}$$

We see that \(\mathrm{v}(\mathfrak{t})\) fulfills (9), and the proof is complete. □

At present, we aim to verify the existence of a unique solution of the fractional \(\mathbb{G}\)-snap system (4) by relying on Theorem 2.4. Note that \(C([a,b],\mathbb{R})\) is a Banach space with norm

$$\begin{aligned} \Vert \mathrm{v} \Vert = {}&\sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert \mathrm{v}( \mathfrak{t}) \bigr\vert +\sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert {}^{c}\mathcal{D}_{a^{+}}^{q;\mathbb{G}}\mathrm{v} ( \mathfrak{t}) \bigr\vert +\sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert {}^{c}\mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}( \mathfrak{t}) \bigr) \bigr\vert \\ &{} +\sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert {} {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}(\mathfrak{t}) \bigr) \bigr) \bigr\vert ,\quad \forall \mathrm{v}\in C\bigl([a,b],\mathbb{R}\bigr). \end{aligned}$$

Theorem 3.2

Let \(h\in C([a,b]\times \mathbb{R}^{4},\mathbb{R})\), and let

  1. (C1)

    \(\exists L >0\) such that \(\forall \mathfrak{t}\in {}[ a,b]\) and \(\mathrm{v}_{j},\mathrm{v}^{*}_{j}\in C([a,b],\mathbb{R})\), \(j=1,2,3\), 4,

    $$\begin{aligned} & \bigl\vert h\bigl( \mathfrak{t}, \mathrm{v}_{1}( \mathfrak{t}), \mathrm{v}_{2}( \mathfrak{t}), \mathrm{v}_{3}( \mathfrak{t}),\mathrm{v}_{4}( \mathfrak{t})\bigr) - h\bigl( \mathfrak{t},\mathrm{v}^{*}_{1}( \mathfrak{t}), \mathrm{v}^{*}_{2}(\mathfrak{t}), \mathrm{v}^{*}_{3}( \mathfrak{t}), \mathrm{v}^{*}_{4}(\mathfrak{t})\bigr) \bigr\vert \\ & \quad\leq L \sum_{j=1}^{4} \bigl\vert \mathrm{v}_{j}( \mathfrak{t})-\mathrm{v}^{*}_{j}( \mathfrak{t}) \bigr\vert . \end{aligned}$$
    (11)

Then the fractional \(\mathbb{G}\)-snap system (4) admits a unique solution on \([a,b]\) if \(L \mathcal{O} <1\), where

$$\begin{aligned} \mathcal{O}: = {}&\frac{(\mathbb{G}(b) -\mathbb{G}(a))^{q +p +r +k }}{\Gamma (q +p +r +k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ & {}+ \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{k }}{\Gamma (k +1)}. \end{aligned}$$
(12)

Proof

To prove the desired result, we first let

$$\begin{aligned} \Omega _{\ell } = \bigl\{ \mathrm{v}\in C\bigl([a,b], \mathbb{R}\bigr): \Vert \mathrm{v} \Vert \leq \ell \bigr\} \end{aligned}$$

for some constant \(\ell >0\) satisfying

$$\begin{aligned} \ell \geq \frac{\Lambda + h_{0}^{*} \mathcal{O}}{1 - L \mathcal{O}}, \end{aligned}$$
(13)

where \(h_{0}^{*} = \sup_{\mathfrak{t}\in [a,b]} \vert h(t, 0,0,0,0)\vert \), and

$$\begin{aligned} \Lambda :={}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}(b) - \mathbb{G}(a))^{q}}{\Gamma (q+1)} \biggr) \\ & {}+ \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q + p}}{\Gamma (q + p+1)} \biggr) \\ &{} + \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r}}{ \Gamma (r+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r + p}}{ \Gamma (r + p+1)} \\ & {}+ \frac{( \mathbb{G}(b) - \mathbb{G}(a))^{q+p+r}}{ \Gamma (q+p+r+1)} \biggr). \end{aligned}$$
(14)

To apply the Banach principle, we verify that \(\Psi:C([a,b],\mathbb{R})\rightarrow C([a,b],\mathbb{R})\) given as

$$\begin{aligned} (\Psi \mathrm{v}) (\mathfrak{t}) ={}& \mathcal{I}_{a^{+}}^{q +p +r+k; \mathbb{G}} \hat{h}_{\mathrm{v}}(\mathfrak{t}) + \mathrm{v}_{0} + \mathrm{v}_{1} \frac{(\mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{q }}{ \Gamma (q +1)} \\ &{} +\mathrm{v}_{2} \frac{(\mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{p +q }}{\Gamma (p +q +1) } +\mathrm{v}_{3} \frac{(\mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{r+p +q }}{\Gamma (r+p +q +1) }, \end{aligned}$$
(15)

where

$$\begin{aligned} \hat{h}_{\mathrm{v}}(\mathfrak{t}) = h \bigl( \mathfrak{t}, \mathrm{v}( \mathfrak{t}), {^{c}\mathcal{D}}_{ a^{+}}^{q; \mathbb{G} } \mathrm{v}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr), {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl({^{c} \mathcal{D}}_{a^{+}}^{ q; \mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr), \end{aligned}$$

admits a unique fixed point, which is the same solution of the fractional \(\mathbb{G}\)-snap BVP (4). First, we show \(\Psi \Omega _{\ell }\subset \Omega _{\ell }\), that is, Ψ maps \(\Omega _{\ell }\) into itself. For each \(\mathrm{v} \in \Omega _{r}\), we have

$$\begin{aligned} \bigl\vert (\Psi \mathrm{v}) (\mathfrak{t}) \bigr\vert \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{ (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q}}{ \Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{ p + q}}{\Gamma (p + q+1)} \\ & {}+ \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{ r+p + q}}{\Gamma (r+p + q+1)} + \mathcal{I}_{a^{+}}^{q +p +r+k; \mathbb{G}} \bigl\vert \hat{h}_{ \mathrm{v}}( \mathfrak{t}) \bigr\vert \\ \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{ (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q}}{\Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{ (\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{p + q}}{\Gamma (p + q +1)} \\ & {}+ \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{ r+p + q}}{\Gamma (r+p + q+1)} \\ &{} + \mathcal{I}_{a^{+}}^{ q +p +r+k;\mathbb{G} } \bigl( \bigl\vert \hat{h}_{\mathrm{v}}(\mathfrak{t}) - h(\mathfrak{t}, 0,0,0,0) \bigr\vert + \bigl\vert h(\mathfrak{t},0,0,0,0) \bigr\vert \bigr) \\ \leq {}&\vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q}}{ \Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{ (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{p + q}}{\Gamma (p + q +1)} \\ &{} + \vert \mathrm{v}_{3} \vert \frac{ (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p + q}}{\Gamma (r+p + q +1)} \\ &{} + \mathcal{I}_{a^{+}}^{q +p +r+k; \mathbb{G} } \bigl( L \bigl( \bigl\vert \mathrm{v}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G} } \mathrm{v}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G} }\mathrm{v}( \mathfrak{t} ) \bigr) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) + h_{0}^{*} \bigr) \\ \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{ (\mathbb{G}(b)-\mathbb{G}(a))^{q}}{\Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p + q}}{\Gamma (p + q +1)} \\ &{} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r+p + q}}{\Gamma (r+p + q +1)} \\ &{} + \bigl(L \Vert \mathrm{v} \Vert + h_{0}^{*}\bigr) \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{q + p + r+k }}{ \Gamma (q + p + r+k+ 1 )} \\ \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q}}{\Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p +q}}{\Gamma (p + q +1)} \\ &{} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r+p +q}}{\Gamma (r+p + q +1)} \\ &{} + \bigl(L \ell + h_{0}^{*}\bigr) \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{q + p+ r+k }}{\Gamma (q + p+ r+k+ 1 )}. \end{aligned}$$
(16)

Also,

$$\begin{aligned} &\bigl\vert {}^{c}\mathcal{D}^{q;\mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) ( \mathfrak{t}) \bigr\vert \\ &\quad \leq \vert \mathrm{v}_{1} \vert + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{p}}{\Gamma (p +1)} \\ &\qquad{} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p}}{\Gamma (r+p +1)} + \mathcal{I}_{a^{+}}^{p+r+k;\mathbb{G} } \bigl\vert \hat{h}_{ \mathrm{v}}( \mathfrak{t}) \bigr\vert \\ &\quad\leq \vert \mathrm{v}_{1} \vert + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{p }}{\Gamma (p +1)} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p}}{\Gamma (r+p +1)} \\ &\qquad{} + \mathcal{I}_{a^{+}}^{p +r+k;\mathbb{G} } \bigl( \bigl\vert \hat{h}_{\mathrm{v}}(\mathfrak{t})- h ( t, 0,0,0,0) \bigr\vert + \bigl\vert h(t,0,0,0,0) \bigr\vert \bigr) \\ &\quad\leq \vert \mathrm{v}_{1} \vert + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{p }}{\Gamma (p + 1)} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p}}{\Gamma (r+p +1)} \\ &\qquad {}+ \mathcal{I}_{a^{+}}^{p +r+k;\mathbb{G} } \bigl( L \bigl( \bigl\vert \mathrm{v}( \mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G} } \mathrm{v}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G} } \mathrm{v}( \mathfrak{t} ) \bigr) \bigr\vert \\ &\qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t} ) \bigr) \bigr) \bigr\vert \bigr) + h_{0}^{*} \bigr) \\ &q\leq \vert \mathrm{v}_{1} \vert + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p }}{\Gamma (p +1)} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p}}{\Gamma (r+p +1)} \\ &\phantom{q\leq}{} + \bigl(L \ell + h_{0}^{*}\bigr) \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{ p + r+k }}{\Gamma ( p + r+k+ 1 )}, \end{aligned}$$
(17)
$$\begin{aligned} & \bigl\vert {}^{c}\mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) \bigr) ( \mathfrak{t}) \bigr\vert \\ &\quad \leq \vert \mathrm{v}_{2} \vert + \vert \mathrm{v}_{3} \vert \frac{ (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a) )^{r}}{ \Gamma (r+1)} + \mathcal{I}_{a^{+}}^{r+k;\mathbb{G} } \bigl\vert \hat{h}_{ \mathrm{v}} ( \mathfrak{t}) \bigr\vert \\ &\quad\leq \vert \mathrm{v}_{2} \vert + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r}}{\Gamma (r+1)} \\ & \qquad{}+ \mathcal{I}_{a^{+}}^{r+k;\mathbb{G} } \bigl( L \bigl( \bigl\vert \mathrm{v}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G} } \mathrm{v}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G} } \mathrm{v}( \mathfrak{t} ) \bigr) \bigr\vert \\ &\qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c} \mathcal{D} }_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) + h_{0}^{*} \bigr) \\ &\quad\leq \vert \mathrm{v}_{2} \vert + \vert \mathrm{v}_{3} \vert \frac{ (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r}}{\Gamma (r+1)} + \bigl(L\ell + h_{0}^{*}\bigr) \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{ r+k }}{\Gamma ( r+k + 1 )}, \end{aligned}$$
(18)

and

$$\begin{aligned} &\bigl\vert {}^{c}\mathcal{D}^{r;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) \bigr) \bigr) (\mathfrak{t}) \bigr\vert \\ &\quad \leq \vert \mathrm{v}_{3} \vert + \mathcal{I}_{a^{+}}^{k; \mathbb{G} } \bigl\vert \hat{h}_{\mathrm{v}}(\mathfrak{t}) \bigr\vert \\ &\quad\leq \vert \mathrm{v}_{3} \vert + \mathcal{I}_{a^{+}}^{k;\mathbb{G} } \bigl( L \bigl( \bigl\vert \mathrm{v}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr\vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t} ) \bigr) \bigr\vert \\ &\qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) + h_{0}^{*} \bigr) \\ &\quad\leq \vert \mathrm{v}_{3} \vert + \bigl(L\ell + h_{0}^{*}\bigr) \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{ k }}{\Gamma ( k + 1 )}. \end{aligned}$$
(19)

From (16), (17), (18), (19), and (13) we get

$$\begin{aligned} \Vert \Psi \mathrm{v} \Vert ={}& \sup_{\mathfrak{t} \in [a,b]} \bigl( \bigl\vert ( \Psi \mathrm{x} ) (\mathfrak{t}) \bigr\vert + \bigl\vert {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} ( \Psi \mathrm{v} ) ( \mathfrak{t}) \bigr\vert + \bigl\vert {}^{c} \mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) \bigr) (\mathfrak{t}) \bigr\vert \\ & {}+ \bigl\vert {}^{c}\mathcal{D}^{r;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) \bigr) \bigr) (\mathfrak{t}) \bigr\vert \bigr) \\ \leq{}& \biggl[ \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q}}{\Gamma (q+1)} \biggr) \\ &{} + \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{p}}{\Gamma (p+1)} + \frac{ (\mathbb{G}(b) - \mathbb{G}(a))^{p + q}}{\Gamma (p+ q+1)} \biggr) \\ & {}+ \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r}}{ \Gamma (r+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r + p}}{ \Gamma (r + p+1)} \\ &{} + \frac{( \mathbb{G}(b) - \mathbb{G}(a))^{q+p+r}}{ \Gamma (q+p+r+1)} \biggr) \biggr] + \bigl(L \ell + h_{0}^{*} \bigr) \biggl[ \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{q+ p + r+k}}{\Gamma (q + p+ r+k+ 1)} \\ & {}+ \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{ p+ r+k}}{\Gamma ( p+ r+k+ 1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{ r+k}}{\Gamma ( r+k + 1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{ k}}{\Gamma ( k + 1)} \biggr] \\ ={}& \Lambda + \bigl(L\ell + h_{0}^{*}\bigr)\mathcal{O} < \ell, \end{aligned}$$

which implies that \(\Vert \Psi \mathrm{v}\Vert \leq \ell \) for \(\mathrm{v}\in \Omega _{\ell }\), and so \(\Psi \Omega _{\ell }\subset \Omega _{\ell }\). Next, we investigate the contractivity property of the operator Ψ. For \(\mathrm{v},\mathrm{w} \in C([a,b], \mathbb{R})\), we estimate

$$\begin{aligned} &\bigl\vert (\Psi \mathrm{v}) (\mathfrak{t}) - (\Psi \mathrm{w}) ( \mathfrak{t}) \bigr\vert \\ &\quad \leq \mathcal{I}_{a^{+}}^{q +p +r+k; \mathbb{G} } \bigl\vert \hat{h}_{\mathrm{v}}(\mathfrak{t}) - \hat{h}_{ \mathrm{W}}( \mathfrak{t}) \bigr\vert \\ &\quad\leq \mathcal{I}_{a^{+}}^{q +p +r+k;\mathbb{G} } L \bigl( \bigl\vert \mathrm{v}(\mathfrak{t})- \mathrm{w}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{w}( \mathfrak{t}) \bigr\vert \\ & \qquad{}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v} ( \mathfrak{t}) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{w}( \mathfrak{t}) \bigr) \bigr\vert \\ &\qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t} ) \bigr) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G} }\mathrm{w}( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \\ &\quad\leq L \frac{( \mathbb{G}(b) - \mathbb{G}(a))^{q + p + r+k} }{\Gamma (q + p + r+k + 1)} \Vert \mathrm{v}- \mathrm{w} \Vert , \end{aligned}$$
(20)
$$\begin{aligned} & \bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } (\Psi \mathrm{v}) (\mathfrak{t}) - {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } (\Psi \mathrm{w}) (\mathfrak{t}) \bigr\vert \\ &\quad\leq \mathcal{I}_{a^{+}}^{p+r+k;\mathbb{G} } \vert \hat{h}_{ \mathrm{v}} - \hat{h}_{\mathrm{w}} \vert \\ &\quad\leq \mathcal{I}_{a^{+}}^{p +r+k;\mathbb{G} } L \bigl( \bigl\vert \mathrm{v}(\mathfrak{t})- \mathrm{w}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{x}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{w}( \mathfrak{t}) \bigr\vert \\ & \qquad{}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{w}( \mathfrak{t} ) \bigr) \bigr\vert \\ & \qquad{}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ p;\mathbb{G} } \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) \bigr) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G} } \mathrm{w}( \mathfrak{t} ) \bigr) \bigr) \bigr\vert \bigr) \\ &\quad\leq L \frac{ (\mathbb{G}(b) - \mathbb{G}(a))^{p + r+k } }{\Gamma (p + r +k+ 1)} \Vert \mathrm{v}- \mathrm{w} \Vert , \end{aligned}$$
(21)
$$\begin{aligned} & \bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } (\Psi \mathrm{v}) \bigr) (\mathfrak{t}) - {}^{c} \mathcal{D}_{a^{+}}^{p; \mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } (\Psi \mathrm{w}) \bigr) (\mathfrak{t}) \bigr\vert \\ &\quad \leq \mathcal{I}_{a^{+}}^{r+k ;\mathbb{G} } \vert \hat{h}_{\mathrm{v}} - \hat{h}_{\mathrm{w}} \vert \\ &\quad\leq \mathcal{I}_{a^{+}}^{r+k;\mathbb{G} } L \bigl( \bigl\vert \mathrm{v}(\mathfrak{t})- \mathrm{w}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t} ) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{w}(\mathfrak{t}) \bigr\vert \\ &\qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{w}( \mathfrak{t}) \bigr) \bigr\vert \\ & \qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) \bigr) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{w}( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \\ &\quad\leq L \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{r+k } }{\Gamma ( r+k + 1)} \Vert \mathrm{v}- \mathrm{w} \Vert , \end{aligned}$$
(22)

and

$$\begin{aligned} &\bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{r;\mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } (\Psi \mathrm{v})\bigr) \bigr) ( \mathfrak{t}) - {}^{c} \mathcal{D}_{a^{+}}^{r;\mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q; \mathbb{G} } (\Psi \mathrm{w}) \bigr) \bigr) (\mathfrak{t}) \bigr\vert \\ &\quad\leq \mathcal{I}_{a^{+}}^{k;\mathbb{G} } \vert \hat{h}_{ \mathrm{v}} - \hat{h}_{\mathrm{w}} \vert \\ &\quad\leq \mathcal{I}_{a^{+}}^{k;\mathbb{G} } L \bigl( \bigl\vert \mathrm{v}( \mathfrak{t})- \mathrm{w}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t} ) - {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{w}(\mathfrak{t}) \bigr\vert \\ &\qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t} ) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{w}( \mathfrak{t} ) \bigr) \bigr\vert \\ &\qquad{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) \bigr) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{w}( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \\ &\quad\leq L \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{k } }{\Gamma ( k + 1)} \Vert \mathrm{v}- \mathrm{w} \Vert . \end{aligned}$$
(23)

From (20), (21), (22), and (23) we obtain

$$\begin{aligned} \Vert \Psi \mathrm{v} - \Psi \mathrm{w} \Vert \leq {}&L \biggl[ \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{q+p+r+k}}{\Gamma (q+p+r+k + 1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{ p + r+k}}{\Gamma ( p + r+k+ 1)} \\ & {}+ \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{ r+k}}{\Gamma ( r+k+ 1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{k}}{\Gamma ( k+ 1)} \biggr] \Vert \mathrm{v} - \mathrm{w} \Vert \\ ={}& L\mathcal{O} \Vert \mathrm{v} - \mathrm{w} \Vert . \end{aligned}$$

Thus \(\Vert \Psi \mathrm{v} - \Psi \mathrm{w} \Vert \leq L \mathcal{O} \Vert \mathrm{v} - \mathrm{w} \Vert \). Since \(L \mathcal{O} < 1\), Ψ is a contraction on \(C([a,b], \mathbb{R})\). This, together with Theorem 2.4, guarantees the existence of a unique fixed point for Ψ and accordingly the existence of a unique solution for the fractional \(\mathbb{G}\)-snap BVP (4). The proof is complete. □

The next existence property for possible solutions of the fractional \(\mathbb{G}\)-snap BVP (4) is checked based on the hypotheses of Theorem 2.5.

Theorem 3.3

Let \(h\in C([a,b]\times \mathbb{R}^{4}, \mathbb{R})\) and assume that:

  1. (C2)

    there exist \(\varrho \in L^{1}([a,b], \mathbb{R}^{+})\) and an increasing function \(f \in C([0,\infty ),(0,\infty ))\) such that for all \(\mathfrak{t}\in {}[ a,b]\) and \(\mathrm{v}_{j}\in C([a,b],\mathbb{R})\), \(j=1,2,3,4\),

    $$\begin{aligned} \bigl\vert h\bigl(\mathfrak{t}, \mathrm{v}_{1}( \mathfrak{t}), \mathrm{v}_{2} ( \mathfrak{t}), \mathrm{v}_{3} ( \mathfrak{t}), \mathrm{v}_{4} ( \mathfrak{t}) \bigr) \bigr\vert \leq \varrho (\mathfrak{t}) f \Biggl(\sum_{j=1}^{4} \bigl\vert \mathrm{v}_{j}(\mathfrak{t}) \bigr\vert \Biggr); \end{aligned}$$
  2. (C3)

    there exists \(B>0\) such that

    $$\begin{aligned} \frac{B}{\Lambda + \mathcal{O} \varrho _{0}^{\ast } f (B)} > 1, \end{aligned}$$
    (24)

    where \(\varrho _{0}^{\ast }= \sup_{ \mathfrak{t} \in {}[ a,b]}| \varrho (\mathfrak{t})|\), and \(\mathcal{O}\) and Λ are represented in (12) and (14).

Then the fractional \(\mathbb{G}\)-snap system (4) has at least one solution on \([a,b]\).

Proof

consider \(\Psi: C([a,b], \mathbb{R}) \rightarrow C([a,b],\mathbb{R})\) defined by (15) and the ball \(N_{\epsilon }= \{ \mathrm{v} \in C([a,b], \mathbb{R}): \Vert \mathrm{v}\Vert \leq \epsilon \}\) for some \(\epsilon >0\). The continuity of h yields that of the operator Ψ. Now by (C2) we have

$$\begin{aligned} \bigl\vert (\Psi \mathrm{v}) (\mathfrak{t}) \bigr\vert \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{( \mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q}}{\Gamma (q+1)} + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G} (\mathfrak{t}) - \mathbb{G}(a))^{p + q}}{\Gamma (p+ q+1)} \\ & {}+ \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p + q}}{\Gamma (r+p+ q+1)} + \mathcal{I}_{a^{+}}^{q +p +r +k;\mathbb{G} } \bigl\vert \hat{h}_{ \mathrm{v}}( \mathfrak{t}) \bigr\vert \\ \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{ (\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{q}}{\Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{p +q}}{\Gamma (p+ q+1)} \\ &{} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p + q}}{\Gamma (r+p+ q+1)} \\ &{} + \mathcal{I}_{a^{+}}^{q +p +r+k;\mathbb{G} } \varrho ( \mathfrak{t} ) f \bigl( \bigl\vert \mathrm{v}(\mathfrak{t}) \bigr\vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr\vert \\ & {}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr) \bigr\vert + \vert {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v} ( \mathfrak{t}) \bigr) \bigr) \bigr) \\ \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q}}{\Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p + q}}{\Gamma (p+ q +1)} \\ &{} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q +p + r }}{\Gamma (q + p + r+1)} \phi _{0}^{*} \varphi \bigl( \Vert \mathrm{v} \Vert \bigr) \\ \leq{}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{q}}{\Gamma (q +1)} + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p + q}}{\Gamma (p + q+1)} \\ & {}+ \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p + q}}{\Gamma (r+p+ q+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q + p + r+k}}{\Gamma (q + p + r+k +1)} \varrho _{0}^{*} f(\epsilon ) \end{aligned}$$
(25)

for \(\mathrm{v}\in N_{\epsilon }\). In a similar way, we get that

$$\begin{aligned} & \bigl\vert {}^{c}\mathcal{D}^{q;\mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) ( \mathfrak{t}) \bigr\vert \\ &\quad\leq \vert \mathrm{v}_{1} \vert + \vert \mathrm{v}_{2} \vert \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p}}{\Gamma (p +1)} \\ &\qquad{} + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r+p}}{\Gamma (r+p+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{ p+ r+k}}{\Gamma ( p+r+k + 1 )} \varrho _{0}^{*} f(\epsilon ), \end{aligned}$$
(26)
$$\begin{aligned} & \bigl\vert {}^{c}\mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) \bigr) ( \mathfrak{t}) \bigr\vert \\ &\quad \leq \vert \mathrm{v}_{2} \vert + \vert \mathrm{v}_{3} \vert \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{r}}{ \Gamma (r+1)} \\ &\qquad{} + \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{ r+k }}{\Gamma ( r+k + 1 )} \varrho _{0}^{*} f(\epsilon ), \end{aligned}$$
(27)

and

$$\begin{aligned} \bigl\vert {}^{c}\mathcal{D}^{r;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} (\Psi \mathrm{v}) \bigr) \bigr) (\mathfrak{t}) \bigr\vert &\leq \vert \mathrm{v}_{3} \vert + \frac{(\mathbb{G}(b)-\mathbb{G}(a))^{ k }}{\Gamma (k + 1 ) }\varrho _{0}^{*} f(\epsilon ). \end{aligned}$$
(28)

As a consequence, by (25), (26), (27), and (28) we obtain

$$\begin{aligned} \Vert \Psi \mathrm{v} \Vert \leq \Lambda + \mathcal{O} \varrho _{0}^{*} f (\epsilon ) < \infty, \end{aligned}$$
(29)

where \(\mathcal{O}\) and Λ are represented by (12) and (14). Hence Ψ is uniformly bounded on \(C([a,b], \mathbb{R})\). Now let us check the equicontinuity of Ψ. Choose arbitrary \(\mathfrak{t},\mathfrak{t}^{*} \in [a,b]\) with \(t< t^{*}\) and \(\mathrm{v}\in N_{\epsilon }\). We have

$$\begin{aligned} \bigl\vert (\Psi \mathrm{v}) \bigl(\mathfrak{t}^{*}\bigr) - (\Psi \mathrm{v}) ( \mathfrak{t}) \bigr\vert \leq{}& \vert \mathrm{v}_{1} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{q} - (\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q} \vert }{\Gamma (q + 1)} \\ &{} + \vert \mathrm{v}_{2} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p + q} - ( \mathbb{G} ( \mathfrak{t}) - \mathbb{G}(a))^{p + q} \vert }{\Gamma (p + q+ 1)} \\ &{} + \vert \mathrm{v}_{3} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p + q+r} - ( \mathbb{G} ( \mathfrak{t}) - \mathbb{G}(a))^{p + q+r} \vert }{\Gamma (p + q+r+ 1)} \\ & {}+ \bigl\vert \mathcal{I}_{a^{+}}^{q+ p + r +k; \mathbb{G}} \hat{h}_{\mathrm{v}}\bigl(\mathfrak{t}^{*}\bigr) - \mathcal{I}_{a^{+}}^{q + p+ r+k ; \mathbb{G}} \hat{h}_{\mathrm{v}}(\mathfrak{t}) \bigr\vert . \end{aligned}$$

By letting

$$\begin{aligned} \sup_{ ( \mathfrak{t}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}) \in [a,b]\times N_{\epsilon }^{4}} \bigl\vert h(\mathfrak{t}, \mathrm{v}, \mathrm{w},\mathrm{x}, \mathrm{y}) \bigr\vert = \tilde{H} < \infty, \end{aligned}$$

this becomes

$$\begin{aligned} &\bigl\vert (\Psi \mathrm{v}) \bigl(\mathfrak{t}^{*} \bigr) - (\Psi \mathrm{v}) ( \mathfrak{t}) \bigr\vert \\ &\quad \leq \vert \mathrm{v}_{1} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{q} - (\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q} \vert }{\Gamma (q + 1)} \\ &\qquad{} + \vert \mathrm{v}_{2} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p + q} - (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{p + q} \vert }{\Gamma (p + q + 1)} \\ &\qquad{} + \vert \mathrm{v}_{3} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p + q+r} - (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{p + q+r} \vert }{\Gamma (p + q +r+ 1)} \\ &\qquad{} + \frac{\tilde{H}}{ \Gamma (q + p+ r+k + 1)} \bigl[ \bigl\vert \bigl( \mathbb{G}\bigl( \mathfrak{t}^{*}\bigr)- \mathbb{G}(a) \bigr)^{q + p+ r+k} \\ &\qquad{} - \bigl(\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a)\bigr)^{q + p+ r+k} \bigr\vert + 2 \bigl(\mathbb{G}\bigl(\mathfrak{t}^{*}\bigr) - \mathbb{G}( \mathfrak{t})\bigr)^{q+ p+r+k} \bigr]. \end{aligned}$$
(30)

Obviously, the right-hand side of (30) does not depend on v and approaches 0 as \(\mathfrak{t}^{*}\) tends to \(\mathfrak{t}\). In the same way,

$$\begin{aligned} & \bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{q; \mathbb{G} } (\Psi \mathrm{v}) \bigl(\mathfrak{t}^{*}\bigr) - {}^{c} \mathcal{D}_{a^{+}}^{q; \mathbb{G} } (\Psi \mathrm{v}) ( \mathfrak{t}) \bigr\vert \\ &\quad \leq \vert \mathrm{v}_{2} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p} - (\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{p } \vert }{\Gamma (p + 1)} \\ & \qquad{}+ \vert \mathrm{v}_{3} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p+r} - (\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{p+r } \vert }{\Gamma (p +r+ 1)} \\ &\qquad{} + \bigl\vert \mathcal{I}_{a^{+}}^{ p + r+k; \mathbb{G}} h_{\mathrm{v}} \bigl(\mathfrak{t}^{*}\bigr) - \mathcal{I}_{a^{+}}^{ p+ r+k; \mathbb{G}} h_{\mathrm{v}}(\mathfrak{t}) \bigr\vert \\ &\quad\leq \vert \mathrm{v}_{2} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p} - (\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{p} \vert }{\Gamma (p+ 1)} \\ &\qquad{} + \vert \mathrm{v}_{3} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{p+r} - (\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{p+r } \vert }{\Gamma (p +r+ 1)} \\ &\qquad{} + \frac{\tilde{H}}{\Gamma ( p+ r+k+ 1)} \bigl[ \bigl\vert \bigl( \mathbb{G}\bigl( \mathfrak{t}^{*}\bigr)- \mathbb{G}(a) \bigr)^{ p +r+k} \\ &\qquad{} - \bigl(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a)\bigr)^{ p+ r+k} \bigr\vert + 2 \bigl(\mathbb{G}\bigl(\mathfrak{t}^{*}\bigr) - \mathbb{G}( \mathfrak{t})\bigr)^{ p +r+k} \bigr]. \end{aligned}$$
(31)

Again, the right-hand side of (31) goes to zero as \(\mathfrak{t}^{*} \to \mathfrak{t}\) independently of v. Finally,

$$\begin{aligned} & \bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{ p;\mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } ( \Psi \mathrm{v} ) \bigr) \bigl(\mathfrak{t}^{*}\bigr) - {}^{c} \mathcal{D}_{a^{+}}^{p ; \mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{ q;\mathbb{G} } (\Psi \mathrm{v} ) \bigr) (\mathfrak{t}) \bigr\vert \\ & \quad\leq \vert \mathrm{v}_{3} \vert \frac{ \vert (\mathbb{G}(\mathfrak{t}^{*}) - \mathbb{G}(a))^{r} - (\mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{r } \vert }{\Gamma (r+ 1)} \\ & \qquad{}+ \bigl\vert \mathcal{I}_{a^{+}}^{ r+k; \mathbb{G}} h_{\mathrm{v}} \bigl(\mathfrak{t}^{*}\bigr) - \mathcal{I}_{a^{+}}^{ r+k; \mathbb{G}} h_{\mathrm{v}}(\mathfrak{t}) \bigr\vert \\ &\quad\leq \frac{\tilde{H}}{\Gamma ( r+k+ 1)} \bigl[ \bigl\vert \bigl(\mathbb{G}\bigl( \mathfrak{t}^{*}\bigr)- \mathbb{G}(a) \bigr)^{ r+k} \\ & \qquad{}- \bigl(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(a)\bigr)^{ r+k} \bigr\vert + 2 \bigl(\mathbb{G}\bigl(\mathfrak{t}^{*}\bigr) - \mathbb{G}( \mathfrak{t})\bigr)^{ r+k} \bigr] \end{aligned}$$
(32)

and

$$\begin{aligned} &\bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{r; \mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{ p; \mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } (\Psi \mathrm{v}) \bigr) \bigr) \bigl(\mathfrak{t}^{*}\bigr) - {}^{c} \mathcal{D}_{a^{+}}^{r; \mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{ p; \mathbb{G}} \bigl( {}^{c} \mathcal{D}_{a^{+}}^{q;\mathbb{G} } (\Psi \mathrm{v}) \bigr) \bigr) (\mathfrak{t}) \bigr\vert \\ & \quad\leq \frac{\tilde{H}}{\Gamma ( k+ 1)} \bigl[ \bigl\vert \bigl(\mathbb{G}\bigl( \mathfrak{t}^{*}\bigr)- \mathbb{G}(a) \bigr)^{ k} - \bigl( \mathbb{G}(\mathfrak{t}) - \mathbb{G}(a)\bigr)^{ k} \bigr\vert \\ &\qquad{} + 2 \bigl(\mathbb{G}\bigl(\mathfrak{t}^{*}\bigr) - \mathbb{G}( \mathfrak{t})\bigr)^{ k} \bigr], \end{aligned}$$
(33)

which independent of v. The right-hand sides of (34) and (33) approach 0 as \(\mathfrak{t}^{*} \to \mathfrak{t}\). Therefore relations (30), (31), (32), and (34) imply that

$$\begin{aligned} \bigl\Vert (\Psi \mathrm{v}) \bigl(t^{*}\bigr) -(\Psi \mathrm{v}) ( \mathfrak{t}) \bigr\Vert \to 0 \end{aligned}$$

as \(\mathfrak{t}^{*} \to \mathfrak{t}\). Thus the equicontinuity of Ψ is confirmed. Hence Ψ is compact on \(N_{\epsilon }\) by the Arzelá–Ascoli theorem. Until now, we saw that the hypotheses of Theorem 2.5 are fulfilled for the operator Ψ. Thus one of two cases (i) or (ii) is valid. By (C3) we build

$$\begin{aligned} \mathbb{U}:= \bigl\{ \mathrm{v}\in C\bigl([a,b], \mathbb{R}\bigr): \Vert \mathrm{v} \Vert < B \bigr\} \end{aligned}$$

for \(B>0\) via \(\Lambda + \mathcal{O}\varrho _{0}^{*} f(B) < B\). With the help of (C2), by (29) we write

$$\begin{aligned} \Vert \Psi \mathrm{v} \Vert \leq \Lambda + \mathcal{O}\varrho _{0}^{*} f\bigl( \Vert \mathrm{v} \Vert \bigr). \end{aligned}$$
(34)

Now we assume the existence of \(\mathrm{v}\in \partial \mathbb{U}\) and \(\mu \in (0,1)\) subject to \(\mathrm{v} = \mu \Psi \mathrm{v}\). For such a selection of v and μ, we may write by (34) that

$$\begin{aligned} B = \Vert \mathrm{v} \Vert = \mu \Vert \Psi \mathrm{v} \Vert < \Lambda + \mathcal{O} \varrho _{0}^{*} f\bigl( \Vert \mathrm{v} \Vert \bigr) = \Lambda + \mathcal{O}\varrho _{0}^{*} f(B) < B, \end{aligned}$$

a contradiction. Therefore case (ii) does not hold, and by Theorem 2.5 Ψ admits a fixed point in \(\overline{\mathbb{U}}\), which is regarded as a solution of the fractional \(\mathbb{G}\)-snap system (4), and this concludes the proof. □

4 Stability criterion

In this part, we review the stability criterion in the context of the Ulam–Hyers stability, its generalized version along with Ulam–Hyers–Rassias stability, and its generalized version for solutions of the fractional \(\mathbb{G}\)-snap system (4).

Definition 4.1

The fractional \(\mathbb{G}\)-snap BVP (4) is Ulam–Hyers stable if there exists \(0< c_{h}^{*} \in \mathbb{R} \) such that for all \(\epsilon > 0\) and \(\mathrm{v}^{*}\in C([a,b],\mathbb{R}) \) satisfying

$$\begin{aligned} \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } & \bigl( {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}^{*}(\mathfrak{t}) \bigr) \bigr) \bigr) - \hat{h}_{ \mathrm{v}^{*}}(\mathfrak{t}) \bigr\vert < \epsilon, \end{aligned}$$
(35)

there exists \(\mathrm{v}\in C([a,b], \mathbb{R}) \) satisfying the fractional \(\mathbb{G}\)-snap BVP (4) with

$$\begin{aligned} \bigl\vert \mathrm{v}^{*}( \mathfrak{t}) - \mathrm{v}(\mathfrak{t}) \bigr\vert \leq \epsilon c_{h}^{*}\quad \forall \mathfrak{t} \in [a,b]. \end{aligned}$$

Definition 4.2

The fractional \(\mathbb{G}\)-snap BVP (4) is generalized Ulam–Hyers stable if there exists \(c_{h}^{*} \in C(\mathbb{R}^{+}, \mathbb{R}^{+})\) with \(c_{h}^{*}(0)=0\) such that for all \(\epsilon >0\) and \(\mathrm{v}^{*}\in C([a,b], \mathbb{R}) \) satisfying the inequality

$$\begin{aligned} \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } & \bigl( {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}^{*}( \mathfrak{t}) \bigr) \bigr) \bigr) - \hat{h}_{ \mathrm{v}^{*}}(\mathfrak{t}) \bigr\vert < \epsilon, \end{aligned}$$

there exists a solution \(\mathrm{v}\in C([a,b], \mathbb{R}) \) of the fractional \(\mathbb{G}\)-snap BVP (4) such that

$$\begin{aligned} \bigl\vert \mathrm{v}^{*}(\mathfrak{t}) - \mathrm{v}(\mathfrak{t}) \bigr\vert \leq c_{h}^{*}(\epsilon )\quad \forall \mathfrak{t} \in [a,b]. \end{aligned}$$

Definition 4.3

The fractional \(\mathbb{G}\)-snap BVP (4) is Ulam–Hyers–Rassias stable with respect to Φ if there exists \(0 < c_{h,\Phi }^{*} \in \mathbb{R} \) such that for all \(\epsilon >0\) and \(\mathrm{v}^{*}\in C([a,b], \mathbb{R})\) satisfying

$$\begin{aligned} \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } & \bigl( {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}^{*}(\mathfrak{t}) \bigr) \bigr) \bigr) - \hat{h}_{ \mathrm{v}^{*}}(\mathfrak{t}) \bigr\vert < \epsilon \Phi (t), \end{aligned}$$
(36)

there exists a solution \(\mathrm{v} \in C([a,b],\mathbb{R})\) of the fractional \(\mathbb{G}\)-snap BVP (4) such that

$$\begin{aligned} \bigl\vert \mathrm{v}^{*}(\mathfrak{t}) - \mathrm{v}(\mathfrak{t}) \bigr\vert \leq \epsilon c_{h,\Phi }^{*}\Phi (t)\quad \forall \mathfrak{t} \in [a,b]. \end{aligned}$$

Definition 4.4

The fractional \(\mathbb{G}\)-snap BVP (4) is generalized Ulam–Hyers–Rassias stable with respect to Φ if there exists \(0< c_{h,\Phi }^{*} \in \mathbb{R}\) such that for all \(\mathrm{v}^{*}\in C([a,b], \mathbb{R})\) satisfying

$$\begin{aligned} \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } & \bigl( {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G} } \bigl({^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} } \mathrm{v}^{*}(t) \bigr) \bigr) \bigr) - \hat{h}_{\mathrm{v}^{*}}( \mathfrak{t}) \bigr\vert < \Phi (t), \end{aligned}$$

there exists a solution \(\mathrm{v}\in C([a,b], \mathbb{R})\) of the fractional \(\mathbb{G}\)-snap BVP (4) such that

$$\begin{aligned} \bigl\vert \mathrm{v}^{*}(\mathfrak{t}) - \mathrm{v}(\mathfrak{t}) \bigr\vert \leq c_{h,\Phi }^{*}\Phi (t) \quad\forall \mathfrak{t}\in [a,b]. \end{aligned}$$

Remark 4.1

\((a_{1})\) Def. 4.1 ⇒ Def. 4.2; \((a_{2})\) Def. 4.3 ⇒ Def. 4.4; and \((a_{3})\) for \(\Phi (\mathfrak{t}) = 1\), Def. 4.3 ⇒ Def. 4.1.

Remark 4.2

Note that \(\mathrm{v}^{*}\in C([a,b], \mathbb{R}) \) is called a solution ofinequality (35) iff there exists \(g\in C([a,b],\mathbb{R})\) depending on \(\mathrm{v}^{*}\) such that for all \(\mathfrak{t} \in [a,b]\), (i) \(\vert g(\mathfrak{t}) \vert < \epsilon \); and (ii)

$$\begin{aligned} {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } & \bigl( {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}^{*}(t) \bigr) \bigr) \bigr) = \hat{h}_{\mathrm{v}^{*}}(\mathfrak{t}) + g( \mathfrak{t}). \end{aligned}$$

Remark 4.3

Note that \(\mathrm{v}^{*}\in C([a,b], \mathbb{R}) \) is called a solution off inequality (36) iff there exists \(g\in C([a,b],\mathbb{R})\) depending on \(\mathrm{v}^{*}\) such that for all \(\mathfrak{t}\in [a,b]\), (i) \(\vert g(\mathfrak{t})\vert < \epsilon \Phi (\mathfrak{t})\); and (ii)

$$\begin{aligned} {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } & \bigl( {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}^{*}( \mathfrak{t}) \bigr) \bigr) \bigr) =\hat{h}_{\mathrm{v}^{*}}( \mathfrak{t}) +g( \mathfrak{t}). \end{aligned}$$

Here we discuss the Ulam–Hyers stability of the fractional \(\mathbb{G}\)-snap BVP (4).

Theorem 4.5

If all assumptions (C1) are fulfilled, then the fractional \(\mathbb{G}\)-snap BVP (4) is Ulam–Hyers stable on \([a,b]\) and is generalized Ulam–Hyers stable if \(L\mathcal{O} <1\).

Proof

For every \(\epsilon >0\) and all \(\mathrm{v}^{*}\in C([a,b], \mathbb{R})\) satisfying

$$\begin{aligned} \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } \bigl( {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr) - \hat{h}_{ \mathrm{v}}(\mathfrak{t}) \bigr\vert < \epsilon, \end{aligned}$$

we can find a function \(g(\mathfrak{t})\) satisfying

$$\begin{aligned} {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } & \bigl( {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G} } \bigl({^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr) = \hat{h}_{\mathrm{v}}(\mathfrak{t}) + g( \mathfrak{t}) \end{aligned}$$

with \(\vert g(\mathfrak{t}) \vert \leq \epsilon \). It follows that

$$\begin{aligned} \mathrm{v}^{*}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G} (\mathfrak{t}) -\mathbb{G} (a))^{q }}{\Gamma (q +1)}+ \frac{ \mathrm{v}_{2}(\mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{p + q }}{\Gamma (p +q +1 )} \\ &{} + \frac{ \mathrm{v}_{3}(\mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{r+p + q }}{\Gamma (r+p +q +1 )} + \mathcal{I}_{a^{+}}^{q +p +r+k;\mathbb{G}} g( \mathfrak{t}) + \mathcal{I}_{a^{+}}^{q +p +r+k;\mathbb{G}} \hat{h}_{\mathrm{v}}( \mathfrak{t}). \end{aligned}$$

Let \(\mathrm{v}\in C([a,b], \mathbb{R}) \) be the unique solution of the fractional \(\mathbb{G}\)-snap BVP (4). Then it is given by

$$\begin{aligned} \mathrm{v}(\mathfrak{t}) ={}&\mathrm{v}_{0}+ \frac{\mathrm{v}_{1}(\mathbb{G} (\mathfrak{t}) -\mathbb{G} (a))^{q}}{\Gamma (q +1)}+ \frac{ \mathrm{v}_{2}(\mathbb{G} (\mathfrak{t}) -\mathbb{G} (a))^{p +q }}{\Gamma (p +q +1)} \\ &{} + \frac{ \mathrm{v}_{3}(\mathbb{G} (\mathfrak{t}) -\mathbb{G} (a))^{r+p +q }}{\Gamma (r+p +q +1) } +\mathcal{I}_{a^{+}}^{q +p+r+k;\mathbb{G}} \hat{h}_{\mathrm{v}}( \mathfrak{t}) \end{aligned}$$

and

$$\begin{aligned} \bigl\vert \mathrm{v}^{*}(\mathfrak{t}) - \mathrm{v}(\mathfrak{t}) \bigr\vert &\leq \mathcal{I}_{a^{+}}^{q+p +r+k;\mathbb{G}} \bigl\vert g( \mathfrak{t}) \bigr\vert + \mathcal{I}_{a^{+}}^{q +p +r+k;\mathbb{G}} \bigl\vert \hat{h}_{\mathrm{v}^{*}}(\mathfrak{t}) - \hat{h}_{ \mathrm{v}}( \mathfrak{t}) \bigr\vert \\ & \leq \frac{\epsilon (\mathbb{G}(b) - \mathbb{G}(a))^{q+p+r+k}}{\Gamma (q+p+r+k+1) } + \frac{L( \mathbb{G}(b) - \mathbb{G}(a))^{q+p+r+k}}{\Gamma (q+p+r+k+1)} \bigl\Vert \mathrm{v}^{*}-\mathrm{v} \bigr\Vert . \end{aligned}$$
(37)

Also,

$$\begin{aligned} & \bigl\vert \bigl( {}^{c}\mathcal{D}^{ q;\mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) (\mathfrak{t}) - \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v} \bigr) (\mathfrak{t}) \bigr\vert \\ &\quad \leq \mathcal{I}_{a^{+}}^{ p + r+k;\mathbb{G}} \bigl\vert g( \mathfrak{t}) \bigr\vert +\mathcal{I}_{a^{+}}^{p + r+k; \mathbb{G}} \bigl\vert \hat{h}_{\mathrm{v}^{*}}(\mathfrak{t}) - \hat{h}_{ \mathrm{v}}(\mathfrak{t}) \bigr\vert \\ &\quad \leq \frac{\epsilon (\mathbb{G}(b) - \mathbb{G}(a))^{p + r+k}}{ \Gamma (p + r+k+1)} + \frac{ L(\mathbb{G}(b) - \mathbb{G}(a))^{p + r+k}}{ \Gamma ( p + r+k+1)} \bigl\Vert \mathrm{v}^{*}-\mathrm{v} \bigr\Vert , \end{aligned}$$
(38)
$$\begin{aligned} & \bigl\vert {}^{c}\mathcal{D}^{ p;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) ( \mathfrak{t}) - {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl({}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}}\mathrm{v} \bigr) (\mathfrak{t}) \bigr\vert \\ & \quad\leq \mathcal{I}_{a^{+}}^{r+k;\mathbb{G}} \bigl\vert g(\mathfrak{t}) \bigr\vert + \mathcal{I}_{a^{+}}^{r+k;\mathbb{G}} \bigl\vert \hat{h}_{ \mathrm{v}^{*}}(\mathfrak{t}) - \hat{h}_{\mathrm{v}}(\mathfrak{t}) \bigr\vert \\ & \quad\leq \frac{\epsilon (\mathbb{G}(b) - \mathbb{G}(a))^{r+k}}{\Gamma (r+k+1)} + \frac{L (\mathbb{G}(b)-\mathbb{G}(a))^{r+k} }{ \Gamma (r+k + 1)} \bigl\Vert \mathrm{v}^{*} -\mathrm{v} \bigr\Vert , \end{aligned}$$
(39)

and

$$\begin{aligned} & \bigl\vert {}^{c}\mathcal{D}^{ r;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{ p; \mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}}\mathrm{v}^{*} \bigr) (\mathfrak{t}) \bigr) - {}^{c} \mathcal{D}^{ r;\mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl({}^{c}\mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v} \bigr) \bigr) (\mathfrak{t}) \bigr\vert \\ &\quad \leq \mathcal{I}_{a^{+}}^{k;\mathbb{G}} \bigl\vert g(\mathfrak{t}) \bigr\vert + \mathcal{I}_{a^{+}}^{k;\mathbb{G}} \bigl\vert \hat{h}_{ \mathrm{v}^{*}}( \mathfrak{t}) - \hat{h}_{ \mathrm{v}}( \mathfrak{t}) \bigr\vert \\ & \quad\leq \frac{\epsilon (\mathbb{G}(b) - \mathbb{G}(a))^{k}}{\Gamma (k+1)} + \frac{L (\mathbb{G}(b) - \mathbb{G}(a))^{k} }{ \Gamma (k + 1)} \bigl\Vert \mathrm{v}^{*} -\mathrm{v} \bigr\Vert . \end{aligned}$$
(40)

From (37), (38), (39), and (40) we get

$$\begin{aligned} \bigl\Vert \mathrm{v}^{*} -\mathrm{v} \bigr\Vert = {}&\sup _{\mathfrak{t}\in [a,b]} \bigl( \bigl\vert \mathrm{v}^{*}( \mathfrak{t}) - \mathrm{v}( \mathfrak{t}) \bigr\vert + \bigl\vert \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) (\mathfrak{t}) - \bigl({}^{c} \mathcal{D}^{q; \mathbb{G}}_{a^{+}} \mathrm{v} \bigr) (\mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {}^{c}\mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) (\mathfrak{t}) - {}^{c} \mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q; \mathbb{G}}_{a^{+}} \mathrm{v} \bigr) ( \mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {}^{c}\mathcal{D}^{r; \mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q; \mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) \bigr) ( \mathfrak{t}) - {}^{c} \mathcal{D}^{r; \mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q; \mathbb{G}}_{a^{+}} \mathrm{v} \bigr) \bigr) (\mathfrak{t}) \bigr\vert \bigr) \\ \leq{}& \mathcal{O}\epsilon + L\mathcal{O} \bigl\Vert \mathrm{v}^{*}- \mathrm{v} \bigr\Vert , \end{aligned}$$

where \(\mathcal{O}\) is defined in (12). As a consequence, it follows that

$$\begin{aligned} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert & \leq \frac{\mathcal{O}\epsilon }{1-L\mathcal{O}}. \end{aligned}$$

If we let \(c_{h}^{*}=\frac{\mathcal{O}}{1-L\mathcal{O}} \), then the Ulam–Hyers stability is fulfilled. Next, for

$$\begin{aligned} c_{h}^{*}(\epsilon ) = \frac{\mathcal{O}}{ 1 - L\mathcal{O}} \epsilon \end{aligned}$$

with \(c_{h}^{*}(0)=0 \), the generalized Ulam–Hyers stability is fulfilled. □

The Ulam–Hyers–Rassias stability for the fractional \(\mathbb{G}\)-snap BVP (4) is checked in the following:

Theorem 4.6

Let conditions (C1) be satisfied, and assume that

  1. (C4)

    there exist an increasing map \(\Phi \in C([a,b],\mathbb{R}^{+}) \) and \(\lambda _{\Phi }>0\) such that for all \(\mathfrak{t}\in [a,b]\),

    $$\begin{aligned} \mathcal{I}_{a^{+}}^{q +p+r+k;\mathbb{G}} \Phi ( \mathfrak{t}) + \mathcal{I}_{a^{+}}^{p +r+k;\mathbb{G}} \Phi ( \mathfrak{t})+ \mathcal{I}_{a^{+}}^{r+k +;\mathbb{G}} \Phi (\mathfrak{t}) + \mathcal{I}_{a^{+}}^{ k;\mathbb{G}} \Phi (\mathfrak{t})< \lambda _{\Phi }\Phi (\mathfrak{t}). \end{aligned}$$
    (41)

Then the fractional \(\mathbb{G}\)-snap BVP (4) is Ulam–Hyers–Rassias stable and is generalized Ulam–Hyers–Rassias stable.

Proof

For every \(\epsilon >0\) and all \(\mathrm{v}^{*}\in C([a,b],\mathbb{R}) \) satisfying

$$\begin{aligned} \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ r;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G} } \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr) - \hat{h}_{ \mathrm{v}}(\mathfrak{t}) \bigr\vert < \epsilon \Phi (\mathfrak{t}), \end{aligned}$$

we can find a function \(g(\mathfrak{t})\) satisfying

$$\begin{aligned} {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G} } \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G} } \bigl({^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G} }\mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr) = \hat{h}_{\mathrm{v}}( \mathfrak{t}) + g( \mathfrak{t}) \end{aligned}$$

with \(\vert g(\mathfrak{t}) \vert \leq \epsilon \Phi (\mathfrak{t})\). It follows that

$$\begin{aligned} \mathrm{v}^{*}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{ \mathrm{v}_{1}( \mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{q}}{\Gamma (q+1)} + \frac{ \mathrm{v}_{2}( \mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{p +q }}{\Gamma (p +q +1 ) } \\ &{} + \frac{ \mathrm{v}_{3}( \mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{p +q+r }}{\Gamma (p +q+r +1 ) } + \mathcal{I}_{a^{+}}^{q +p +r+k; \mathbb{G}} g( \mathfrak{t}) + \mathcal{I}_{a^{+}}^{q +p +r+k;\mathbb{G}}\hat{h}_{\mathrm{v}^{*}}( \mathfrak{t}). \end{aligned}$$

If \(\mathrm{v}\in C([a,b],\mathbb{R}) \) is a unique solution of (4), then we have

$$\begin{aligned} \mathrm{v} (\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G} (\mathfrak{t})-\mathbb{G} (a))^{q }}{\Gamma (q +1)} + \frac{\mathrm{v}_{2}(\mathbb{G} (\mathfrak{t})-\mathbb{G} (a))^{p +q }}{ \Gamma (p +q +1)} \\ & {}+ \frac{\mathrm{v}_{3}( \mathbb{G} (\mathfrak{t}) - \mathbb{G} (a))^{p +q+r }}{ \Gamma (p +q+r +1)} + \mathcal{I}_{a^{+}}^{p +q+r+k;\mathbb{G}} \hat{h}_{\mathrm{v}} ( \mathfrak{t}). \end{aligned}$$

Then

$$\begin{aligned} \bigl\vert \mathrm{v}^{*}( \mathfrak{t}) - \mathrm{v}(\mathfrak{t}) \bigr\vert & \leq \mathcal{I}_{a^{+}}^{q+p+r+k;\mathbb{G}} \bigl\vert g( \mathfrak{t}) \bigr\vert + \mathcal{I}_{a^{+}}^{q+p+r+k; \mathbb{G}} \bigl\vert \hat{h}_{ \mathrm{v}^{*}}( \mathfrak{t}) - \hat{h}_{ \mathrm{v}}( \mathfrak{t}) \bigr\vert \\ & \leq \epsilon \mathcal{I}_{a^{+}}^{q+p +r+k;\mathbb{G}} \Phi ( \mathfrak{t})+ \frac{L (\mathbb{G}(b) - \mathbb{G}(a))^{q+p +r+k}}{\Gamma (q+p +r+k+1)} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert . \end{aligned}$$
(42)

Also,

$$\begin{aligned} &\bigl\vert \bigl({}^{c}\mathcal{D}^{ q; \mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) ( \mathfrak{t} ) - \bigl( {}^{c} \mathcal{D}^{q; \mathbb{G}}_{a^{+}}\mathrm{v} \bigr) ( \mathfrak{t} ) \bigr\vert \\ &\quad \leq \mathcal{I}_{a^{+}}^{p+r+k; \mathbb{G}} \bigl\vert g( \mathfrak{t}) \bigr\vert + \mathcal{I}_{a^{+}}^{p +r+k; \mathbb{G}} \bigl\vert \hat{h}_{\mathrm{v}^{*}}(\mathfrak{t}) - \hat{h}_{ \mathrm{v}}(\mathfrak{t}) \bigr\vert \\ & \quad\leq \epsilon \mathcal{I}_{a^{+}}^{p+r+k;\mathbb{G}} \Phi ( \mathfrak{t})+ \frac{L (\mathbb{G}(b) - \mathbb{G}(a))^{p+r+k }}{\Gamma (p+r+k +1)} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert , \end{aligned}$$
(43)
$$\begin{aligned} &\bigl\vert {}^{c}\mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) ( \mathfrak{t}) - {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v} \bigr) ( \mathfrak{t}) \bigr\vert \\ & \quad\leq \mathcal{I}_{a^{+}}^{r+k; \mathbb{G}} \bigl\vert g( \mathfrak{t}) \bigr\vert + \mathcal{I}_{a^{+}}^{r+k; \mathbb{G}} \bigl\vert \hat{h}_{ \mathrm{v}^{*}}( \mathfrak{t}) - \hat{h}_{ \mathrm{v}}( \mathfrak{t}) \bigr\vert \\ & \quad\leq \epsilon \mathcal{I}_{a^{+}}^{r+k;\mathbb{G}} \Phi ( \mathfrak{t}) + \frac{L (\mathbb{G}(b) - \mathbb{G}(a))^{ r+k}}{ \Gamma (r+k+1)} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert , \end{aligned}$$
(44)

and

$$\begin{aligned} &\bigl\vert {}^{c}\mathcal{D}^{r;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}}\mathrm{v}^{*} \bigr) \bigr) (\mathfrak{t}) - {}^{c} \mathcal{D}^{r;\mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v} \bigr) \bigr) ( \mathfrak{t}) \bigr\vert \\ & \quad\leq \mathcal{I}_{a^{+}}^{k; \mathbb{G}} \bigl\vert g( \mathfrak{t}) \bigr\vert + \mathcal{I}_{a^{+}}^{k; \mathbb{G}} \bigl\vert \hat{h}_{ \mathrm{v}^{*}}( \mathfrak{t}) - \hat{h}_{\mathrm{v}}( \mathfrak{t}) \bigr\vert \\ & \quad\leq \epsilon \mathcal{I}_{a^{+}}^{k;\mathbb{G}} \Phi ( \mathfrak{t}) + \frac{L (\mathbb{G}(b) - \mathbb{G}(a))^{ r+k}}{ \Gamma (k+1)} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert . \end{aligned}$$
(45)

From (42), (43), (44), and (45) we get

$$\begin{aligned} \bigl\Vert \mathrm{v}^{*} -\mathrm{v} \bigr\Vert = {}&\sup _{\mathfrak{t}\in [a,b]} \bigl( \bigl\vert \mathrm{v}^{*}( \mathfrak{t}) - \mathrm{v}( \mathfrak{t}) \bigr\vert + \bigl\vert \bigl( {}^{c}\mathcal{D}^{ q;\mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) (t) - \bigl( {}^{c} \mathcal{D}^{ q;\mathbb{G}}_{a^{+}} \mathrm{v} \bigr) (\mathfrak{t}) \bigr\vert \\ & {}+ \bigl\vert {}^{c}\mathcal{D}^{p;\mathbb{G}}_{ a^{+}} \bigl( {}^{c}\mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) (\mathfrak{t})- {}^{c} \mathcal{D}^{ p;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v} \bigr) ( \mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {}^{c}\mathcal{D}^{r;\mathbb{G}}_{ a^{+}} \bigl( {}^{c}\mathcal{D}^{p;\mathbb{G}}_{ a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \mathrm{v}^{*} \bigr) \bigr) ( \mathfrak{t}) - {}^{c} \mathcal{D}^{r;\mathbb{G}}_{ a^{+}} \bigl( {}^{c} \mathcal{D}^{ p;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q; \mathbb{G}}_{a^{+}} \mathrm{v} \bigr) \bigr) (\mathfrak{t}) \bigr\vert \bigr) \\ \leq {}&\epsilon \bigl[\mathcal{I}_{a^{+}}^{q +p+r+k;\mathbb{G}} \Phi ( \mathfrak{t}) +\mathcal{I}_{a^{+}}^{p+r+k;\mathbb{G}} \Phi ( \mathfrak{t}) + \mathcal{I}_{a^{+}}^{r+k;\mathbb{G}} \Phi ( \mathfrak{t}) \\ & {}+ \mathcal{I}_{a^{+}}^{k;\mathbb{G}} \Phi (\mathfrak{t}) \bigr] + L \mathcal{O} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert \\ \leq {}&\epsilon \lambda _{\Phi }\Phi (\mathfrak{t}) + L\mathcal{O} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert , \end{aligned}$$

where \(\mathcal{O}\) is defined in (12). Accordingly, it gives

$$\begin{aligned} \bigl\Vert \mathrm{v}^{*} - \mathrm{v} \bigr\Vert \leq \frac{ \epsilon \lambda _{\Phi }\Phi (\mathfrak{t})}{ 1 - L\mathcal{O}}. \end{aligned}$$

If we let \(c_{h,\Phi }^{*} = \frac{\lambda _{\Phi }}{1-L\mathcal{O}}\), then the fractional \(\mathbb{G}\)-snap BVP (4) is stable in the Ulam–Hyers–Rassias sense. Along with this, setting \(\epsilon =1\), the fractional \(\mathbb{G}\)-snap BVP (4) is generalized Ulam–Hyers–Rassias stable. □

5 Inclusion version of (4)

Here we will derive the existence of solutions to the inclusion version of fractional nonlinear snap system of the \(\mathbb{G}\)-Caputo sense with initial conditions (4), which takes the form

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{a^{+}}^{k;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{r ;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}(\mathfrak{t}) ) ) ) \\ \quad \in \mathfrak{H} ( \mathfrak{t},\mathrm{v}(\mathfrak{t}),{^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ), {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ), \\ \mathrm{v}(a)=\mathrm{v}_{0}, \qquad {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}(a)=\mathrm{v}_{1}, \\ {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}(a) ) =\mathrm{v}_{2},\qquad {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}}\mathrm{v}(a) ) ) = \mathrm{v}_{3}, \end{cases}\displaystyle \end{aligned}$$
(46)

where \(\mathfrak{H}\) ia a multifunction on the product space \([a, b]\times \mathbb{R}^{4}\). The function \(\mathrm{v} \in \mathcal{C}:= C([a, b], \mathbb{R})\) is called a solution of system (46) if it satisfies the boundary conditions and there is \(\wp \in L^{1}([a,b])\) such that \(\wp (\mathfrak{t}) \in \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{t})\) for almost all \(\mathfrak{t}\in [a,b]\), where

$$\begin{aligned} \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{t}) = \mathfrak{H} \bigl( \mathfrak{t}, \mathrm{v}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr), {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr), \end{aligned}$$

and

$$\begin{aligned} \mathrm{v}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{\mathrm{v}_{2}( \mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ & {}+ \frac{\mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ &{} + \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp (\xi ) \,\mathrm{d}\xi \end{aligned}$$
(47)

for all \(\mathfrak{t}\in [a,b]\). For each \(\mathrm{v} \in \mathcal{C}\), we define the set of selections of the operator \(\mathfrak{H}\) as

$$\begin{aligned} \mathfrak{S}_{\mathfrak{H}, \mathrm{v}} & = \bigl\{ \wp \in L^{1}\bigl([a,b] \bigr) : \wp (\mathfrak{t}) \in \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{t}), \forall \mathfrak{t}\in [a,b] \bigr\} \end{aligned}$$

and define the operator \(\mathfrak{U}: \mathcal{C} \to \mathcal{P}(\mathcal{C})\) by

$$\begin{aligned} \mathfrak{U}( \mathrm{v}) = \bigl\{ \mathfrak{p} \in \mathcal{C}: \text{there exists} \wp \in \mathfrak{S}_{\mathfrak{H}, \mathrm{v}} \text{such that} \mathfrak{p}(\mathfrak{t}) = \Upsilon (\mathfrak{t}) \ \forall \mathfrak{t}\in [a,b] \bigr\} , \end{aligned}$$
(48)

where

$$\begin{aligned} \Upsilon (\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{\mathrm{v}_{2}( \mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ &{} + \frac{\mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ &{} + \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp (\xi ) \,\mathrm{d}\xi. \end{aligned}$$
(49)

Theorem 5.1

Let \(\mathfrak{H}: [a,b] \times \mathcal{C}^{4} \to \mathcal{P}_{\mathrm{CP}}( \mathcal{C})\) be a multifunction. Suppose that the following conditions are satisfied:

  1. (C5)

    The multifunction \(\mathfrak{H}\) is integrable and bounded, and

    $$\begin{aligned} \mathfrak{H}( \cdot, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}): [a,b] \to \mathcal{P}_{\mathrm{CP}}(\mathcal{C}) \end{aligned}$$

    is measurable for \(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4} \in \mathcal{C}\);

  2. (C6)

    There exist \(\upphi \in C([a, b], [0, \infty ))\) and a nondecreasing function \(\uppsi \in \Pi \) such that

    $$\begin{aligned} \mathcal{H}_{d} \bigl( \mathfrak{H}( \mathfrak{t}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}), \mathfrak{H}( \mathfrak{t}, \acute{ \mathrm{v}_{1}},\acute{\mathrm{v}_{2}}, \acute{ \mathrm{v}_{3}}, \acute{\mathrm{v}_{4}} ) \bigr) \leq \frac{\upphi (\mathfrak{t}) \lambda ^{*}}{ \Vert \upphi \Vert } \uppsi \Biggl( \sum_{k=1}^{4} \vert \mathrm{v}_{k} - \acute{\mathrm{v}_{k}} \vert \Biggr) \end{aligned}$$

    for all \(\mathfrak{t} \in [a,b]\) and \(\mathrm{v}_{1}\), \(\mathrm{v}_{2}\), \(\mathrm{v}_{3}\), \(\mathrm{v}_{4}\), \(\acute{\mathrm{v}_{1}}\), \(\acute{\mathrm{v}_{2}}\), \(\acute{\mathrm{v}_{3}}\), \(\acute{\mathrm{v}_{4}} \in \mathcal{C}\), where \(\mathcal{O}^{*} = \mathcal{O}^{-1}\);

  3. (C7)

    There is \(\chi ^{*}:\mathbb{R}^{4} \times \mathbb{R}^{4}\to \mathbb{R}\) such that

    $$\begin{aligned} \chi ^{*} \bigl( (\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}), (\acute{ \mathrm{v}_{1}}, \acute{\mathrm{v}_{2}}, \acute{ \mathrm{v}_{3}}, \acute{\mathrm{v}_{4}}) \bigr) \geq 0 \end{aligned}$$

    for all \(\mathrm{v}_{k}, \acute{\mathrm{v}_{k}} \in \mathcal{C}\ (k=1,2,3,4)\);

  4. (C8)

    If \(\{\mathrm{v}_{n}\}\) is a sequence in \(\mathcal{C}\) with \(\mathrm{v}_{n} \to \mathrm{v}\) and

    $$\begin{aligned} &\chi ^{*} \bigl( \bigl(\mathrm{v}_{n}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{n} ( \mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{n}(\mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{n}( \mathfrak{t}) \bigr) \bigr) \bigr), \\ &\quad \bigl( \mathrm{v}_{n+1}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{n+1}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{n+1}( \mathfrak{t}) \bigr), \\ &\quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{n+1}( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0 \end{aligned}$$

    for all \(\mathfrak{t}\in [a,b]\) and natural numbers n, then there exists a subsequence \(\{ \mathrm{v}_{n_{j}} \}\) of \(\{\mathrm{v}_{n}\}\) such that

    $$\begin{aligned} &\chi ^{*} \bigl( \bigl(\mathrm{v}_{n_{j}}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{n_{j}} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{n_{j}} (\mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{n_{j}} (\mathfrak{t}) \bigr) \bigr) \bigr), \\ &\quad \bigl( \mathrm{v}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0 \end{aligned}$$

    for all \(\mathfrak{t}\in [a,b]\) and \(j\geq 1\);

  5. (C9)

    There exist \(\mathrm{v}_{0} \in \mathcal{C}\) and \(\mathfrak{p}\in \mathfrak{U}(\mathrm{v}_{0})\) such that

    $$\begin{aligned} &\chi ^{*} \bigl( \bigl(\mathrm{v}_{0}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{0} ( \mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{0} (\mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{0} (\mathfrak{t}) \bigr) \bigr) \bigr), \\ & \quad\bigl( \mathfrak{p}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathfrak{p}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathfrak{p}( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \mathfrak{p}( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0 \end{aligned}$$

    for \(\mathfrak{t}\in [a,b]\), where \(\mathfrak{U}: \mathcal{C} \rightarrow P(\mathcal{C})\) is defined by (48);

  6. (C10)

    For any \(\mathrm{v}\in \mathcal{C}\) and \(\mathfrak{p}\in \mathfrak{U}(\mathrm{v})\) with

    $$\begin{aligned} &\chi ^{*} \bigl( \bigl(\mathrm{v}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ q; \mathbb{G}} \mathrm{v} (\mathfrak{t}) \bigr), \\ &\quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v} ( \mathfrak{t}) \bigr) \bigr) \bigr), \\ & \quad\bigl( \mathfrak{p}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathfrak{p}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathfrak{p}( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \mathfrak{p}( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0, \end{aligned}$$

    there exists \(\mathfrak{p}^{*}\in \mathfrak{U}(\mathrm{v})\) such that

    $$\begin{aligned} &\chi ^{*} \bigl( \bigl( \mathfrak{p}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathfrak{p}( \mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathfrak{p}( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \mathfrak{p}( \mathfrak{t}) \bigr) \bigr) \bigr), \\ & \quad\bigl(\mathrm{v}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathfrak{p}^{*} ( \mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ q; \mathbb{G}} \mathfrak{p}^{*} ( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathfrak{p}^{*} (\mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0 \end{aligned}$$

    for all \(\mathfrak{t}\in [ a, b]\).

Then the inclusion problem (46) has at least one solution.

Proof

Obviously, the fixed point of \(\mathfrak{U}: \mathcal{C} \rightarrow \mathcal{P}(\mathcal{C})\) is a solution of BVP (46). Since the multivalued map \(\mathfrak{t} \rightarrow \widehat{\mathfrak{H}}_{ \mathrm{v}}( \mathfrak{t})\) is closed-valued and measurable for all \(\mathrm{v} \in \mathcal{C}\), \(\mathfrak{H}\) has measurable selection, and \(\mathfrak{S}_{ \mathfrak{H},\mathrm{v}}\) is nonempty. We have to prove that \(\mathfrak{U}(\mathrm{v})\) is closed in \(\mathcal{C}\) for \(\mathrm{v} \in \mathcal{C}\). Take \(\{\mathrm{v}_{n}\}\) in \(\mathfrak{U}(\mathrm{v})\) such that \(\mathrm{v}_{n} \to \mathrm{v}\). For each n, \(\wp _{n} \in \mathfrak{S}_{\mathfrak{H}, \mathrm{v}}\) is chosen such that

$$\begin{aligned} \mathrm{v}_{n} (\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{ \mathrm{v}_{2}( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ &{} + \frac{\mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ &{} + \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp _{n}(\xi ) \,\mathrm{d}\xi \end{aligned}$$
(50)

for all \(\mathfrak{t} \in [a, b ]\). Since \(\mathfrak{H}\) has compact values, we define a subsequence of \(\{\wp _{n}\}\) (again by the same notation) that converges to \(\wp \in L^{1}([0,1])\). Hence \(\wp \in \mathfrak{S}_{\mathfrak{H},\mathrm{v}}\) and

$$\begin{aligned} \mathrm{v}_{n} (\mathfrak{t}) \to \mathrm{v}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{ \mathrm{v}_{2}( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ & {}+ \frac{ \mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ & {}+ \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp (\xi ) \,\mathrm{d}\xi \end{aligned}$$
(51)

for all \(\mathfrak{t} \in [a, b ]\), which gives that \(\mathrm{v} \in \mathfrak{U}(\mathrm{v})\) and \(\mathfrak{U}\) is closed valued. As \(\mathfrak{H}\) is compact-valued, it is a simple task to affirm the boundedness of \(\mathfrak{U}(\mathrm{v})\) for arbitrary \(\mathrm{v}\in \mathcal{C}\). We have to prove that \(\mathfrak{U}\) is an α-ψ-contraction. For such a goal, we define \(\alpha ( \mathrm{v}, \acute{\mathrm{v}} )=1\) whenever

$$\begin{aligned} &\chi ^{*} \bigl( \bigl(\mathrm{v}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{ a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr), \\ &\quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr), \\ &\quad \bigl( \acute{\mathrm{v}}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \acute{\mathrm{v}}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{ \mathrm{v}} (\mathfrak{t}) \bigr), \\ &\quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \acute{\mathrm{v}} ( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0, \end{aligned}$$

otherwise \(\alpha ( \mathrm{v}, \acute{\mathrm{v}} )=0\) for all \(\mathrm{v}, \acute{\mathrm{v}} \in \mathcal{C}\). Let \(\mathrm{v}, \acute{\mathrm{v}} \in \mathcal{C}\) and \(\hslash _{1}^{*} \in \mathfrak{U}(\acute{\mathrm{v}})\) and choose \(\wp _{1}\in \mathfrak{S}_{\mathfrak{H}, \acute{\mathrm{v}}}\) such that

$$\begin{aligned} \hslash _{1}^{*}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{ \mathrm{v}_{2}( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ &{} + \frac{ \mathrm{v}_{3}( \mathbb{G}( \mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ & {}+ \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp _{1} (\xi ) \,\mathrm{d}\xi \end{aligned}$$

for all \(\mathfrak{t}\in [a, b]\). We estimate

$$\begin{aligned} & \mathcal{H}_{d} \bigl(\widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{t}), \widehat{\mathfrak{H}}_{\acute{\mathrm{v}}}( \mathfrak{t}) \bigr)\\ &\quad \leq \frac{\upphi (\mathfrak{t}) \mathcal{O}^{*}}{ \Vert \upphi \Vert } \uppsi \bigl( \vert \mathrm{v} - \acute{\mathrm{v}} \vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}) - {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}}( \mathfrak{t}) \bigr\vert \\ & \qquad{}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{ \mathrm{v}}(\mathfrak{t}) \bigr) \bigr\vert \\ & \qquad{}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}}( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \end{aligned}$$

for all \(\mathrm{v},\acute{\mathrm{v}} \in \mathcal{C}\) with

$$\begin{aligned} &\chi ^{*} \bigl( \bigl(\mathrm{v}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{ a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr), \\ &\quad \bigl( \acute{\mathrm{v}}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \acute{\mathrm{v}}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{ \mathrm{v}} (\mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \acute{\mathrm{v}} ( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0 \end{aligned}$$

for almost all \(\mathfrak{t}\in [a, b]\). Thus there exists \(\Upsilon \in \widehat{ \mathfrak{H}}_{\mathrm{v}}\) such that

$$\begin{aligned} \bigl\vert \wp _{1}(\mathfrak{t}) - \Upsilon \bigr\vert \leq{}& \frac{\upphi (\mathfrak{t}) \mathcal{O}^{*}}{ \Vert \upphi \Vert } \uppsi \bigl( \vert \mathrm{v}_{1} - \acute{ \mathrm{v}_{1}} \vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{1}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{1}(\mathfrak{t}) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) \bigr) \bigr\vert \\ & {}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{1}( \mathfrak{t}) \bigr) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{ \mathrm{v}_{1}}(\mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr). \end{aligned}$$

Now let \(\mathfrak{N}^{*}:[0,1] \to \mathcal{P}(\mathcal{C})\) be a multivalued map defined as

$$\begin{aligned} \mathfrak{N}^{*}(\mathfrak{t}) = \left \{ \textstyle\begin{array}{l} \Upsilon \in \mathcal{C}: \vert \wp _{1}(\mathfrak{t}) - \Upsilon \vert \\ \quad \leq\frac{\upphi (\mathfrak{t}) \mathcal{O}^{*}}{ \Vert \upphi \Vert } \uppsi ( \vert \mathrm{v}_{1} - \acute{\mathrm{v}_{1}} \vert + \vert {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{1}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) \vert \\ \qquad{} + \vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{1}(\mathfrak{t}) ) - {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) ) \vert \\ \qquad{} + \vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{1}(\mathfrak{t}) ) ) \\ \qquad{} - {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \acute{\mathrm{v}_{1}}(\mathfrak{t}) ) ) \vert ) \end{array}\displaystyle \right \} \end{aligned}$$

for all \(\mathfrak{t}\in [a, b]\). As \(\wp _{1}\) and

$$\begin{aligned} \zeta = {}&\frac{\upphi (\mathfrak{t}) \mathcal{O}^{*}}{ \Vert \upphi \Vert } \uppsi \bigl( \vert \mathrm{v}_{1} - \acute{\mathrm{v}_{1}} \vert + \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{1}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{1}(\mathfrak{t}) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) \bigr) \bigr\vert \\ & {}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{1}( \mathfrak{t}) \bigr) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{ \mathrm{v}_{1}}(\mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \end{aligned}$$

are measurable, so is the multivalued function \(\mathfrak{N}^{*}(\cdot ) \cap \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{\cdot })\). Now let \(\wp _{2} \in \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{t})\) be such that

$$\begin{aligned} \bigl\vert \wp _{1}(\mathfrak{t}) -\wp _{2}( \mathfrak{t}) \bigr\vert \leq{}& \frac{\upphi (\mathfrak{t}) \mathcal{O}^{*}}{ \Vert \upphi \Vert } \uppsi \bigl( \vert \mathrm{v}_{1} - \acute{\mathrm{v}_{1}} \vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{1}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{1}(\mathfrak{t}) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{\mathrm{v}_{1}}( \mathfrak{t}) \bigr) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{1}( \mathfrak{t}) \bigr) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{ \mathrm{v}_{1}}(\mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \end{aligned}$$

for all \(\mathfrak{t}\in [a, b]\). Let us define \(\hslash _{2}^{*}\in \mathfrak{U}(\mathfrak{t})\) by

$$\begin{aligned} \hslash _{2}^{*}(\mathfrak{t}) = {}&\mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{ \mathrm{v}_{2}( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ & {}+ \frac{ \mathrm{v}_{3}( \mathbb{G}( \mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ &{} + \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp _{1} (\xi ) \,\mathrm{d}\xi \end{aligned}$$

for all \(\mathfrak{t}\in [ a, b]\). Let \(\sup_{\mathfrak{t} \in [a, b]} |\upphi (\mathfrak{t})| = \|\upphi \|\). Then

$$\begin{aligned} \bigl\vert \hslash _{1}^{*}(\mathfrak{t}) - \hslash _{2}^{*} (\mathfrak{t}) \bigr\vert & \leq \mathcal{I}_{a^{+}}^{q+p+r+k; \mathbb{G}} \bigl\vert \widehat{ \mathfrak{H}}_{\hslash _{1}^{*}}( \mathfrak{t}) - \widehat{\mathfrak{H}}_{\hslash _{2}^{*}}( \mathfrak{t}) \bigr\vert \\ & \leq \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{q +p +r +k }}{\Gamma (q +p +r +k +1)} \bigl\Vert \upphi (\mathfrak{t}) \bigr\Vert \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \frac{ \mathcal{O}^{*}}{ \Vert \upphi (\mathfrak{t}) \Vert } \\ & = \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{q +p +r +k }}{\Gamma (q +p +r +k +1)} \mathcal{O}^{*} \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr). \end{aligned}$$
(52)

Also,

$$\begin{aligned} &\bigl\vert \bigl({}^{c}\mathcal{D}^{ q; \mathbb{G}}_{a^{+}} \hslash _{1}^{*} \bigr) ( \mathfrak{t} ) - \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} \hslash _{2}^{*} \bigr) ( \mathfrak{t} ) \bigr\vert \\ &\quad\leq \mathcal{I}_{a^{+}}^{p +r+k; \mathbb{G}} \bigl\vert \widehat{ \mathfrak{H}}_{\hslash _{1}^{*}}( \mathfrak{t}) - \widehat{\mathfrak{H}}_{\hslash _{2}^{*}}( \mathfrak{t}) \bigr\vert \\ &\quad \leq \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \bigl\Vert \upphi (\mathfrak{t}) \bigr\Vert \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \frac{ \mathcal{O}^{*}}{ \Vert \upphi (\mathfrak{t}) \Vert } \\ &\quad = \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \mathcal{O}^{*} \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr), \end{aligned}$$
(53)
$$\begin{aligned} & \bigl\vert {}^{c}\mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \hslash _{1}^{*} \bigr) ( \mathfrak{t}) - {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \hslash _{2}^{*} \bigr) ( \mathfrak{t}) \bigr\vert \\ & \quad\leq \mathcal{I}_{a^{+}}^{r+k; \mathbb{G}} \bigl\vert \widehat{ \mathfrak{H}}_{\hslash _{1}^{*}}( \mathfrak{t}) - \widehat{\mathfrak{H}}_{\hslash _{2}^{*}}( \mathfrak{t}) \bigr\vert \\ & \quad\leq \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{r +k }}{\Gamma (r +k +1)} \bigl\Vert \upphi (\mathfrak{t}) \bigr\Vert \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \frac{ \mathcal{O}^{*}}{ \Vert \upphi (\mathfrak{t}) \Vert } \\ & \quad= \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{r +k }}{\Gamma (r +k +1)} \mathcal{O}^{*} \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr), \end{aligned}$$
(54)

and

$$\begin{aligned} & \bigl\vert {}^{c}\mathcal{D}^{r;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{p;\mathbb{G}}_{a^{+}} \bigl( {}^{c}\mathcal{D}^{q; \mathbb{G}}_{a^{+}} \hslash _{1}^{*} \bigr) \bigr) (\mathfrak{t}) - {}^{c} \mathcal{D}^{r;\mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{p; \mathbb{G}}_{a^{+}} \bigl( {}^{c} \mathcal{D}^{q;\mathbb{G}}_{a^{+}} \hslash _{2}^{*} \bigr) \bigr) ( \mathfrak{t}) \bigr\vert \\ & \quad\leq \mathcal{I}_{a^{+}}^{k; \mathbb{G}} \bigl\vert \widehat{ \mathfrak{H}}_{\hslash _{1}^{*}}( \mathfrak{t}) - \widehat{\mathfrak{H}}_{\hslash _{2}^{*}}( \mathfrak{t}) \bigr\vert \\ & \quad\leq \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{k }}{\Gamma (k +1)} \bigl\Vert \upphi (\mathfrak{t}) \bigr\Vert \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \frac{ \mathcal{O}^{*}}{ \Vert \upphi (\mathfrak{t}) \Vert } \\ & \quad=\frac{(\mathbb{G}(b) -\mathbb{G}(a))^{k }}{ \Gamma (k +1)} \mathcal{O}^{*} \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \end{aligned}$$
(55)

for all \(\mathfrak{t} \in [a, b]\). Hence

$$\begin{aligned} \bigl\Vert \hslash _{1}^{*} - \hslash _{2}^{*} \bigr\Vert ={}& \sup_{ \mathfrak{t}\in {}[ a,b]} \bigl\vert \hslash _{1}^{*}(\mathfrak{t}) - \hslash _{2}^{*}(\mathfrak{t}) \bigr\vert + \sup _{\mathfrak{t} \in {}[ a,b]} \bigl\vert {}^{c}\mathcal{D}_{a^{+}}^{q; \mathbb{G}} \hslash _{1}^{*} (\mathfrak{t}) - \hslash _{2}^{*} (\mathfrak{t}) \bigr\vert \\ &{} + \sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl({}^{c} \mathcal{D}_{a^{+}}^{q ; \mathbb{G}} \hslash _{1}^{*}( \mathfrak{t}) \bigr) - {}^{c} \mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl({}^{c}\mathcal{D}_{a^{+}}^{q ; \mathbb{G}} \hslash _{2}^{*}(\mathfrak{t}) \bigr) \bigr\vert \\ & {}+\sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert {} {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \hslash _{1}^{*} (\mathfrak{t}) \bigr) \bigr) \\ & {} - {} {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \hslash _{2}^{*} (\mathfrak{t}) \bigr) \bigr) \bigr\vert \\ \leq {}&\biggl[ \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q +p +r +k }}{\Gamma (q +p +r +k +1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ & {}+ \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{r +k }}{\Gamma (r +k +1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{k }}{ \Gamma (k +1)} \biggr] \mathcal{O}^{*} \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \\ ={}&\uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr), \end{aligned}$$

and thus

$$\begin{aligned} \alpha (\mathrm{v},\acute{\mathrm{v}}) \mathcal{H}_{d}\bigl( \mathfrak{U}( \mathrm{v}), \mathfrak{U}(\acute{\mathrm{v}})\bigr) \leq \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \end{aligned}$$

for all \(\mathrm{v}, \acute{\mathrm{v}} \in \mathcal{C,}\) which implies that \(\mathfrak{U}\) is an α-ψ-contraction. Now, let \(\mathrm{v}\in \mathcal{C}\) and \(\acute{\mathrm{v}} \in \mathfrak{U} ( \mathrm{v})\) be two functions such that \(\alpha (\mathrm{v}, \acute{\mathrm{v}}) \geq 1\). In this case,

$$\begin{aligned} &\chi ^{*} \bigl( \bigl( \mathrm{v}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr), {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr), \\ & \quad\bigl(\acute{\mathrm{v}}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ; \mathbb{G}} \acute{\mathrm{v}} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{ q; \mathbb{G}} \acute{ \mathrm{v}} (\mathfrak{t}) \bigr), {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}} ( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0, \end{aligned}$$

so there exists \(\Upsilon \in \mathfrak{U}(\acute{\mathrm{v}})\) such that

$$\begin{aligned} &\chi ^{*} \bigl( \bigl( \acute{\mathrm{v}}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \acute{\mathrm{v}}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \acute{\mathrm{v}}( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \acute{\mathrm{v}}( \mathfrak{t}) \bigr) \bigr) \bigr), \\ & \quad\bigl(\Upsilon (\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{ q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr), \\ &\quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0. \end{aligned}$$

From this it follows that \(\alpha (\acute{\mathrm{v}}, \Upsilon ) \geq 1\), which means that the operator \(\mathfrak{U}\) is an α-admissible. Now suppose that \(\mathrm{v}_{0}\in \mathcal{C}\) and \(\acute{\mathrm{v}} \in \mathfrak{U}(\mathrm{v}_{0})\) are such that

$$\begin{aligned} &\chi ^{*} \bigl( \bigl( \mathrm{v}_{0}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{0}( \mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{0}(\mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \mathrm{v}_{0}(\mathfrak{t}) \bigr) \bigr) \bigr), \\ &\quad \bigl(\acute{\mathrm{v}}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q ; \mathbb{G}} \acute{\mathrm{v}} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{ q; \mathbb{G}} \acute{ \mathrm{v}} (\mathfrak{t}) \bigr), \\ &\quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \acute{\mathrm{v}} ( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0 \end{aligned}$$

for all \(\mathfrak{t} \in [a, b]\). Subsequently, we have \(\alpha ( \mathrm{v}_{0}, \acute{\mathrm{v}}) \geq 1\). Consider \(\{\mathrm{v}_{n}\} \subseteq \mathcal{C}\) such that \(\mathrm{v}_{n} \to \mathrm{v}\) and \(\alpha (\mathrm{v}_{n}, \mathrm{v}_{n+1}) \geq 1\). Then we get

$$\begin{aligned} &\chi ^{*} \bigl( \bigl( \mathrm{v}_{n}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{n}( \mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{n}(\mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \mathrm{v}_{n}(\mathfrak{t}) \bigr) \bigr) \bigr), \\ & \quad\bigl(\mathrm{v}_{n+1}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q ; \mathbb{G}} \mathrm{v}_{n+1} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p ; \mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{ q; \mathbb{G}} \mathrm{v}_{n+1} (\mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}_{n+1} (\mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0. \end{aligned}$$

By hypothesis (C8) there is a subsequence \(\{\mathrm{v}_{n_{j}}\}\) of \(\{\mathrm{v}_{n}\}\) such that

$$\begin{aligned} &\chi ^{*} \bigl( \bigl( \mathrm{v}_{n_{j}}(\mathfrak{t}), {^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}_{n_{j}}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}_{n_{j}}(\mathfrak{t}) \bigr), \\ &\quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{ q;\mathbb{G}} \mathrm{v}_{n_{j}}(\mathfrak{t}) \bigr) \bigr) \bigr), \\ & \quad\bigl(\mathrm{v}(\mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v} ( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{ q; \mathbb{G}} \mathrm{v} ( \mathfrak{t}) \bigr), \\ & \quad {^{c}\mathcal{D}}_{a^{+}}^{ r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{ p;\mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v} ( \mathfrak{t}) \bigr) \bigr) \bigr) \bigr) \geq 0. \end{aligned}$$

Thus \(\alpha (\mathrm{v}_{n_{j}}, \mathrm{v}) \geq 1 (\forall j)\), that is, \(\mathcal{C}\) has the property \(C_{\alpha }\). Theorem 2.12 guarantees that \(\mathfrak{N}\) has a fixed point, which is the solution of the inclusion BVP (46). □

Theorem 5.2

Consider a multifunction \(\mathfrak{H}: [a, b] \times \mathcal{C}\times \mathcal{C} \to \mathcal{P}(\mathcal{C})\). Assume that:

  1. (C11)

    \(\uppsi: \mathbb{R}_{\geq 0}\rightarrow \mathbb{R}_{\geq 0}\) is u.s.c nondecreasing map with \(\liminf_{\mathrm{v} \to \infty }(\mathrm{v} - \uppsi (\mathrm{v})) > 0\) and \(\uppsi (\mathrm{v}) < \mathrm{v}\) for all \(\mathrm{v}>0\);

  2. (C12)

    The operator \(\mathfrak{H}: [a, b] \times \mathcal{C} \times \mathcal{C} \to \mathcal{P}_{\mathrm{CP}}(\mathcal{C})\) is integrable and bounded, and \(\mathfrak{H}( \cdot,\mathrm{v}_{1}',\mathrm{v}_{2}', \mathrm{v}_{3}', \mathrm{v}_{4}'): [a, b] \to \mathcal{P}_{\mathrm{CP}}(\mathcal{C})\) is measurable for all \(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\in \mathcal{C}\);

  3. (C13)

    There is \(\upphi \in C( [a, b], [0,\infty ))\) such that

    $$\begin{aligned} \mathcal{H}_{d} \bigl( \mathfrak{H}( \mathfrak{t}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}), \mathfrak{H}( \mathfrak{t}, \acute{ \mathrm{v}_{1}},\acute{\mathrm{v}_{2}}, \acute{ \mathrm{v}_{3}}, \acute{\mathrm{v}_{4}} ) \bigr) \leq \upphi (\mathfrak{t}) \mathcal{O}^{*} \uppsi \Biggl( \sum _{k=1}^{4} \vert \mathrm{v}_{k} - \acute{\mathrm{v}_{k}} \vert \Biggr) \end{aligned}$$

    for all \(\mathrm{v}_{k}, \acute{\mathrm{v}}_{k} \in \mathcal{C}\ (k=1,2,3,4)\), where \(\mathcal{O}^{*} =\mathcal{O}^{-1}\);

  4. (xv)

    \(\mathfrak{U}\) has the (AEP)-property.

Then the inclusion BVP (46) has a solution.

Proof

We have to prove that \(\mathfrak{U}: \mathcal{C} \to \mathcal{P}(\mathcal{C})\) includes end points. Firstly, we must prove that \(\mathfrak{U}(\mathrm{v})\) is closed for every \(\mathrm{v} \in \mathcal{C}\). Since the mapping

$$\begin{aligned} \mathfrak{t} \to \mathfrak{H} \bigl( \mathfrak{t}, \mathrm{v}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}), {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr), {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \bigr) \end{aligned}$$

is closed-valued and measurable for \(\mathrm{v} \in \mathcal{C}\), it has a measurable selection, and \(\mathfrak{S}^{*}_{\mathfrak{H},\mathrm{v}} \neq \emptyset \). By applying the same deduction as in the proof of Theorem 5.1, we may simply verify that \(\mathfrak{U}(\mathrm{v})\) is closed. Also, \(\mathfrak{U}(\mathrm{v})\) is bounded because of the compactness of \(\mathfrak{H}\). Finally, it is simple to prove that

$$\begin{aligned} \mathcal{H}_{d} \bigl( \mathfrak{U}(\mathrm{v}), \mathfrak{U}( \Upsilon )\bigr) \leq \uppsi \bigl( \Vert \mathrm{v} - \Upsilon \Vert \bigr). \end{aligned}$$

Suppose that \(\mathrm{v}, \Upsilon \in \mathcal{C}\) and \(\hslash _{1}^{*} \in \mathfrak{U}(\Upsilon )\). Choose \(\wp _{1} \in \mathfrak{S}_{\mathfrak{H},\Upsilon }\) such that

$$\begin{aligned} \hslash _{1}^{*}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{ \mathrm{v}_{2}( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ &{} + \frac{ \mathrm{v}_{3}( \mathbb{G}( \mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ & {}+ \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp _{1} (\xi ) \,\mathrm{d}\xi \end{aligned}$$

for all \(\mathfrak{t} \in [a, b]\). As

$$\begin{aligned} \mathcal{H}_{d} \bigl(\widehat{ \mathfrak{H}}_{\mathrm{v}}( \mathfrak{t}), \widehat{\mathfrak{H}}_{\Upsilon }( \mathfrak{t} ) \bigr) \leq {}&\upphi ( \mathfrak{t}) \mathcal{O}^{*} \uppsi \bigl( \vert \mathrm{v} - \Upsilon \vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr\vert \\ & {}+ \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \\ &{} - {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \end{aligned}$$

for all \(\mathfrak{t}\in {}[ a, b]\), there exists \(\upphi ^{*} \in \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{t})\) such that

$$\begin{aligned} \bigl\vert \wp _{1}(\mathfrak{t}) - \upphi ^{*} \bigr\vert \leq{}& \upphi (\mathfrak{t}) \mathcal{O}^{*}\uppsi \bigl( \bigl\vert \mathrm{v} (\mathfrak{t}) - \Upsilon (\mathfrak{t}) \bigr\vert + \bigl\vert {}^{\mathcal{C}} \mathfrak{D}_{0}^{1} \mathrm{v} (\mathfrak{t}) - {}^{\mathcal{C}} \mathfrak{D}_{0}^{1} \Upsilon (\mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr\vert \\ & {}+ \bigl\vert {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) \\ &{} - {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \end{aligned}$$

for all \(\mathfrak{t}\in [a, b]\). Consider the multivalued map \(\mathfrak{O}^{*}: [a, b] \to \mathcal{P}(\mathcal{C})\) defined by

$$\begin{aligned} \mathfrak{O}^{*}(\mathfrak{t}) = \left \{ \textstyle\begin{array}{l} \upphi ^{*} \in \mathcal{C}: \vert \wp _{1} (\mathfrak{t}) - \upphi ^{*} \vert \\ \quad \leq \upphi (\mathfrak{t}) \mathcal{O}^{*} \uppsi ( \vert \mathrm{v} - \Upsilon \vert + \vert {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \vert \\ \qquad{} + \vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ) - {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) ) \vert \\ \qquad{} + \vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}(\mathfrak{t}) ) ) \\ \qquad{} - {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} ( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} ( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \Upsilon (\mathfrak{t}) ) ) \vert ) \end{array}\displaystyle \right \}. \end{aligned}$$

By the measurability of \(\wp _{1}\) and

$$\begin{aligned} \upphi ^{*} ={}& \upphi (\mathfrak{t})\mathcal{O}^{*} \uppsi \bigl( \vert \mathrm{v} - \Upsilon \vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr\vert \\ & {}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \end{aligned}$$

it is obvious that that multifunction \(\mathfrak{O}^{*}(\cdot ) \cap \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{\cdot })\) is also measurable. Now we take \(\wp _{2} \in \widehat{\mathfrak{H}}_{\mathrm{v}}( \mathfrak{t})\) such that

$$\begin{aligned} \bigl\vert \wp _{1}(\mathfrak{t}) - \wp _{2}( \mathfrak{t}) \bigr\vert \leq{}& \upphi (\mathfrak{t})\mathcal{O}^{*} \uppsi \bigl( \vert \mathrm{v} - \Upsilon \vert + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \mathrm{v}( \mathfrak{t}) - {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr\vert \\ & {}+ \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) - {^{c}\mathcal{D}}_{a^{+}}^{p; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q; \mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr\vert \\ &{} + \bigl\vert {^{c}\mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \mathrm{v}( \mathfrak{t}) \bigr) \bigr) - {^{c} \mathcal{D}}_{a^{+}}^{r; \mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl( {^{c}\mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \Upsilon ( \mathfrak{t}) \bigr) \bigr) \bigr\vert \bigr) \end{aligned}$$

for all \(\mathfrak{t}\in [a, b]\). Choose \(\hslash _{2}^{*} \in \mathfrak{U}(\mathrm{v})\) such that

$$\begin{aligned} \hslash _{2}^{*}(\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{ \mathrm{v}_{2}( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ & {}+ \frac{ \mathrm{v}_{3}( \mathbb{G}( \mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ &{} + \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp _{2} (\xi ) \,\mathrm{d}\xi \end{aligned}$$

for all \(\mathfrak{t}\in [a, b]\). By the same argument as in Theorem 5.1 we get

$$\begin{aligned} \bigl\Vert \hslash _{1}^{*} - \hslash _{2}^{*} \bigr\Vert ={}& \sup_{ \mathfrak{t}\in {}[ a,b]} \bigl\vert \hslash _{1}^{*}(\mathfrak{t}) - \hslash _{2}^{*}(\mathfrak{t}) \bigr\vert + \sup _{\mathfrak{t} \in {}[ a,b]} \bigl\vert {}^{c}\mathcal{D}_{a^{+}}^{q; \mathbb{G}} \hslash _{1}^{*} (\mathfrak{t}) - \hslash _{2}^{*} (\mathfrak{t}) \bigr\vert \\ &{} + \sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert {}^{c} \mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl({}^{c} \mathcal{D}_{a^{+}}^{q ; \mathbb{G}} \hslash _{1}^{*}( \mathfrak{t}) \bigr) - {}^{c} \mathcal{D}_{a^{+}}^{p;\mathbb{G}} \bigl({}^{c}\mathcal{D}_{a^{+}}^{q ; \mathbb{G}} \hslash _{2}^{*}(\mathfrak{t}) \bigr) \bigr\vert \\ & {}+\sup_{\mathfrak{t}\in {}[ a,b]} \bigl\vert {} {^{c} \mathcal{D}}_{a^{+}}^{r;\mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{p ;\mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{q;\mathbb{G}} \hslash _{1}^{*} (\mathfrak{t}) \bigr) \bigr) \\ & {} - {} {^{c}\mathcal{D}}_{a^{+}}^{r;\mathbb{G}} \bigl({^{c} \mathcal{D}}_{a^{+}}^{p;\mathbb{G}} \bigl({^{c}\mathcal{D}}_{a^{+}}^{q ;\mathbb{G}} \hslash _{2}^{*} (\mathfrak{t}) \bigr) \bigr) \bigr\vert \\ \leq {}&\biggl[ \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q +p +r +k }}{\Gamma (q +p +r +k +1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ &{} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{r +k }}{\Gamma (r +k +1)} + \frac{(\mathbb{G}(b) -\mathbb{G}(a))^{k }}{ \Gamma (k +1)} \biggr] \mathcal{O}^{*} \uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr) \\ ={}&\uppsi \bigl( \Vert \mathrm{v} - \acute{\mathrm{v}} \Vert \bigr). \end{aligned}$$

Hence

$$\begin{aligned} \mathcal{H}_{d}\bigl( \mathfrak{U}( \mathrm{v}), \mathfrak{U}( \Upsilon )\bigr) \leq \uppsi \bigl( \Vert \mathrm{v} - \Upsilon \Vert \bigr) \end{aligned}$$

for all \(\mathrm{v}, \Upsilon \in \mathcal{C}\). By using hypothesis (xv) we can easily find that \(\mathfrak{U}\) has the (AEP)-property. By Theorem 2.13 there exists \(\mathrm{v}^{*} \in \mathcal{C}\) such that \(\mathfrak{U}(\mathrm{v}^{*}) = \{\mathrm{v}^{*}\}\). This implies that \(\mathrm{v}^{*}\) satisfies the given problem (46), and the proof is completed. □

6 Numerical applications

Here we give some examples of fractional \(\mathbb{G}\)-snap systems based on numerical simulations to analyze their solutions. In these examples, we consider different cases of the function \(\mathbb{G}\) to cover the Caputo, Caputo–Hadamard, and Katugampola versions. For numerical computations, one can use Algorithms 1, 2 and 3.

Example 6.1

Based on system (4), we consider the nonlinear fractional ψ-snap BVP

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}}\mathrm{v}( \mathfrak{t}) = \mathrm{u}(\mathfrak{t}), \quad 1.1 \leq \mathfrak{t} \leq 2.6, \mathrm{v}(1.1) = 2.25, \\ {^{c}\mathcal{D}}_{1.1^{+}}^{0.86; \mathbb{G}} \mathrm{u}( \mathfrak{t})=\mathrm{w}(\mathfrak{t}), \quad \mathrm{u}(1.1)=-1.69, \\ {^{c}\mathcal{D}}_{1.1^{+}}^{0.54; \mathbb{G}}\mathrm{w}(\mathfrak{t}) = \mathrm{x}(\mathfrak{t}), \quad \mathrm{w}(1.1)=3.12, \\ {^{c}\mathcal{D}}_{1.1^{+}}^{0.25; \mathbb{G}} \mathrm{x}( \mathfrak{t}) = h ( \mathfrak{t},\mathrm{v},\mathrm{u}, \mathrm{w}, \mathrm{x} ), \quad \mathrm{x}(1.1)=-4.71, \end{cases}\displaystyle \end{aligned}$$
(56)

where

$$\begin{aligned} h(\mathfrak{t}, \mathrm{v}, \mathrm{u},\mathrm{w}, \mathrm{x}) ={}& \frac{ \sqrt{\mathfrak{t}}}{ 12 ( 1 + \sqrt{\mathfrak{t}})} + \frac{ \vert \mathrm{v}( \mathfrak{t}) \vert }{ 30( 1 + \exp ( |\mathrm{v}(\mathfrak{t}))|) } + \frac{1}{15} \tan ^{-1} \bigl(\mathrm{u}(\mathfrak{t})\bigr) \\ &{} + \frac{\mathfrak{t}}{40} \frac{\sin ^{2} (\mathrm{w}( \mathfrak{ \mathfrak{t}})) }{5 + \sin ^{2}(\mathrm{w}( \mathfrak{t}))} + \frac{3\mathfrak{t}}{20} \frac{ \vert \sin ^{-1} (\mathrm{x}(\mathfrak{t})) \vert }{ 8 + \vert \sin ^{-1} (\mathrm{x}(\mathfrak{t})) \vert } \end{aligned}$$
(57)

for \(\mathfrak{t} \in [1.1, 2.6]\). It is clear that \(a=1.1\), \(b=2.6\), \(q=0.34\in (0,1]\), \(\mathrm{v}(0)= \mathrm{v}_{0} =2.25\), \(p=0.86\in (0,1]\), \(\mathrm{u}(0) = \mathrm{v}_{1}=-1.69\), \(r=0.54 \in (0,1]\), \(\mathrm{w}(0) = \mathrm{v}_{2} = 3.12\), \(k=0.25 \in (0,1]\), \(\mathrm{x}(0) = \mathrm{v}_{3}=-4.71\), and

$$\begin{aligned} h ( \mathfrak{t}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{3}) ={}& \frac{ \sqrt{\mathfrak{t}}}{ 12 ( 1 +\sqrt{\mathfrak{t}})} + \frac{ \vert \mathrm{v}_{1} \vert }{ 30( 1 + \exp (|\mathrm{v}_{1})| ) } + \frac{1}{15} \tan ^{-1} ( \mathrm{v}_{2}) \\ &{} + \frac{\mathfrak{t}}{40} \frac{\sin ^{2} (\mathrm{v}_{3}) }{5 + \sin ^{2}(\mathrm{v}_{3}) } + \frac{3\mathfrak{t}}{20} \frac{ \vert \sin ^{-1} (\mathrm{v}_{4}) \vert }{ 8 + \vert \sin ^{-1} (\mathrm{v}_{4}) \vert }. \end{aligned}$$

Thus we can rewrite the above system as

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{1.1^{+}}^{0.25; \mathbb{G}} ( {^{c} \mathcal{D}}_{1.1^{+}}^{0.54; \mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.86; \mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ) \\ \quad= \frac{ \sqrt{\mathfrak{t}}}{12( 1 +\sqrt{ \mathfrak{t}})} + \frac{ \vert \mathrm{v}(\mathfrak{t}) \vert ) }{ 30 ( 1 + \exp ( \vert \mathrm{v}(\mathfrak{t}) \vert ) ) } + \frac{1}{15} \tan ^{-1} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}} \mathrm{v}(\mathfrak{\mathfrak{t}}) ) \\ \qquad{} + \frac{ \mathfrak{t} \sin ^{2} ( {^{c} \mathcal{D}}_{1.1^{+}}^{0.86;\mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) }{ 40 ( 5 + \sin ^{2} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.86; \mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) )} \\ \qquad{} + \frac{ 3\mathfrak{t} \vert \sin ^{-1} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.54;\mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.86; \mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ) \vert }{20 ( 8 + \vert \sin ^{-1} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.54;\mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.86; \mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ) \vert )}, \\ \mathrm{v}(1.1) =2.25, \qquad {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}} \mathrm{v}(1.1) = -1.69, \\ {^{c}\mathcal{D}}_{1.1^{+}}^{0.86;\mathbb{G}} ( {^{c} \mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}}\mathrm{v}(1.1) ) =3.12, \\ {^{c}\mathcal{D}}_{1.1^{+}}^{0.54; \mathbb{G}} ( {^{c} \mathcal{D}}_{1.1^{+}}^{0.86;\mathbb{G}} ( {^{c}\mathcal{D}}_{1.1^{+}}^{0.34; \mathbb{G}}\mathrm{v}(1.1) ) ) =-4.71. \end{cases}\displaystyle \end{aligned}$$
(58)

Now we have

$$\begin{aligned} &\bigl\vert h \bigl( \mathfrak{t}, \mathrm{v}_{1}(\mathfrak{t}), \mathrm{v}_{2}(\mathfrak{t}), \mathrm{v}_{3}(\mathfrak{t}), \mathrm{v}_{4}(\mathfrak{t}) \bigr) - h \bigl( \mathfrak{t}, \mathrm{v}^{*}_{1}( \mathfrak{t}), \mathrm{v}^{*}_{2}( \mathfrak{t}), \mathrm{v}^{*}_{3}( \mathfrak{t}), \mathrm{v}^{*}_{4}(\mathfrak{t}) \bigr) \bigr\vert \\ &\quad = \biggl\vert \frac{ \vert \mathrm{v}_{1}(\mathfrak{t}) \vert }{ 30( 1 + \exp (|\mathrm{v}_{1}(\mathfrak{t}))| ) } + \frac{1}{15} \tan ^{-1} \bigl(\mathrm{v}_{2}(\mathfrak{t})\bigr) \\ & \qquad{}+ \frac{\mathfrak{t}\sin ^{2} (\mathrm{v}_{3}(\mathfrak{t})) }{40 ( 5 + \sin ^{2}(\mathrm{v}_{3}(\mathfrak{t})) )} + \frac{3\mathfrak{t} \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert }{20 ( 8 + \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert )} \\ &\qquad{} - \biggl( \frac{ \vert \mathrm{v}^{*}_{1}(\mathfrak{t}) \vert }{ 30( 1 + \exp (|\mathrm{v}^{*}_{1}(\mathfrak{t}))| ) } + \frac{1}{15} \tan ^{-1} \bigl(\mathrm{v}^{*}_{2}(\mathfrak{t})\bigr) \\ &\qquad{} + \frac{\mathfrak{t}\sin ^{2} (\mathrm{v}^{*}_{3}(\mathfrak{t})) }{ 40 ( 5 + \sin ^{2}(\mathrm{v}^{*}_{3}(\mathfrak{t})) )} + \frac{3\mathfrak{t} \vert \sin ^{-1} (\mathrm{v}^{*}_{4}(\mathfrak{t})) \vert }{20 ( 8 + \vert \sin ^{-1} (\mathrm{v}^{*}_{4}(\mathfrak{t})) \vert ) } \biggr) \biggr\vert \\ & \quad\leq \frac{1}{30} \biggl\vert \frac{ \vert \mathrm{v}_{1}(\mathfrak{t}) \vert }{ 1 + \exp (|\mathrm{v}_{1}(\mathfrak{t}))| } - \frac{ \vert \mathrm{v}^{*}_{1}(\mathfrak{t}) \vert }{ 1 + \exp (|\mathrm{v}^{*}_{1}(\mathfrak{t}))| } \biggr\vert \\ &\qquad{} + \frac{1}{15} \bigl\vert \tan ^{-1} \bigl( \mathrm{v}_{2}( \mathfrak{t})\bigr) - \tan ^{-1} \bigl( \mathrm{v}^{*}_{2}(\mathfrak{t})\bigr) \bigr\vert \\ &\qquad{} + \frac{ \vert \mathfrak{t} \vert }{40} \biggl\vert \frac{\sin ^{2} (\mathrm{v}_{3}(\mathfrak{t})) }{ 5 + \sin ^{2}(\mathrm{v}_{3}(\mathfrak{t})) } - \frac{\sin ^{2} (\mathrm{v}^{*}_{3}(\mathfrak{t})) }{ 5 + \sin ^{2}(\mathrm{v}^{*}_{3}(\mathfrak{t}))} \biggr\vert \\ & \qquad{}+ \frac{3 \vert \mathfrak{t} \vert }{20} \biggl\vert \frac{ \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert }{ 8 + \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert } - \frac{ \vert \sin ^{-1} (\mathrm{v}^{*}_{4}(\mathfrak{t})) \vert }{ 8 + \vert \sin ^{-1} (\mathrm{v}^{*}_{4}(\mathfrak{t})) \vert } \biggr\vert \\ & \quad\leq \frac{1}{30} \bigl\vert \mathrm{v}_{1}(\mathfrak{t})- \mathrm{v}^{*}_{1}(\mathfrak{t}) \bigr\vert + \frac{1}{15} \bigl\vert \mathrm{v}_{2}(\mathfrak{t}) - \mathrm{v}^{*}_{2}(\mathfrak{t}) \bigr\vert \\ & \qquad{}+ \frac{ \vert \mathfrak{t} \vert }{40} \bigl\vert \mathrm{v}_{3}( \mathfrak{t}) - \mathrm{v}^{*}_{3} (\mathfrak{t}) \bigr\vert + \frac{3 \vert \mathfrak{t} \vert }{ 20} \bigl\vert \mathrm{v}_{4}(\mathfrak{t})- \mathrm{v}^{*}_{4}(\mathfrak{t}) \bigr\vert \\ & \quad\leq \frac{1}{30} \sum_{j=1}^{4} \bigl\vert \mathrm{v}_{j}( \mathfrak{t})- \mathrm{v}^{*}_{j}( \mathfrak{t}) \bigr\vert . \end{aligned}$$

So we can choose \(L=\frac{1}{30}\). Additionally,

$$\begin{aligned} h_{0}^{*} = \sup_{\mathfrak{t}\in [1.1,2.6]} \bigl\vert h( \mathfrak{t}, 0,0,0,0) \bigr\vert = \frac{\sqrt{2.6}}{2(1+\sqrt{2.6})}=0.308608. \end{aligned}$$

Now we consider four cases for \(\mathbb{G}\):

$$\begin{aligned} \mathbb{G}_{1}(\mathfrak{t}) = 2^{\mathfrak{t}},\qquad \mathbb{G}_{2}( \mathfrak{t})= \mathfrak{t},\qquad \mathbb{G}_{3}( \mathfrak{t}) = \ln \mathfrak{t},\qquad \mathbb{G}_{4}( \mathfrak{t} )= \sqrt{ \mathfrak{t}}. \end{aligned}$$

Note that \(\mathbb{G}_{2}\), \(\mathbb{G}_{3}\), and \(\mathbb{G}_{4}\) give the Caputo, Caputo–Hadamard, and Katugampola (for \(\rho = 0.5\)) derivatives. By using equation (12) in the first case \(\mathbb{G}_{1}(\mathfrak{t})= 2^{\mathfrak{t}}\), we have

$$\begin{aligned} \mathcal{O}=\mathcal{O}_{1} :={}& \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{q +p +r +k }}{\Gamma (q +p +r +k +1)} + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ & {}+ \frac{(\mathbb{G}_{1}(b)-\mathbb{G}_{1}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{k }}{\Gamma (k +1)} \\ ={}& \frac{(\mathbb{G}_{1}(2.6) -\mathbb{G}_{1}(1.1))^{1.99 }}{ \Gamma (2.99)} + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{1.65}}{\Gamma (2.65)} \\ &{} + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.79 }}{\Gamma (1.79)} + \frac{( \mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.25}}{\Gamma (1.25)} \\ ={}& 23.746838. \end{aligned}$$

Thus \(L \mathcal{O}_{1} = 0.791561<1\), and (C1) holds. Also, using equation (14), we obtain

$$\begin{aligned} \Lambda = \Lambda _{1} :={}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{q}}{\Gamma (q+1)} \biggr) \\ & {}+ \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{q + p}}{\Gamma (q + p+1)} \biggr) \\ &{} + \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{r}}{ \Gamma (r+1)} + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{r + p}}{ \Gamma (r + p+1)} \\ &{} + \frac{( \mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{q+p+r}}{ \Gamma (q+p+r+1)} \biggr) \\ ={}& \vert 2.25 \vert + \vert 1.69 \vert \biggl( 1 + \frac{ (\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.34}}{\Gamma (1.34)} \biggr) \\ & {}+ \vert 3.12 \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.86}}{\Gamma (1.86)} + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{1.2}}{\Gamma (2.2)} \biggr) \\ &{} + \vert 4.71 \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.54}}{ \Gamma (1.54)} + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{1.4}}{ \Gamma (2.4)} \\ &{} + \frac{( \mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{1.74}}{ \Gamma (2.74)} \biggr) = 95.915326. \end{aligned}$$
(59)

Hence

$$\begin{aligned} \ell _{1} \geq \frac{\Lambda _{1} + h_{0}^{*} \mathcal{O}_{1}}{1 - L \mathcal{O}_{1}}= \frac{95.915326 + 0.308608\times 23.746838}{1 - 0.791561}= 493.529331. \end{aligned}$$
(60)

Table 1 shows the numerical results of \(\mathcal{O}_{1}\), \(\Lambda _{1}\), and \(\ell _{1}\) for \(\mathfrak{t}\in [1.1,2.6]\). These values are also shown in Fig. 1.

Figure 1
figure 1

Graphical representation of \(L \mathcal{O}_{1}\) and \(\ell _{1} \) for \(\mathfrak{t} \in [0,2]\) in Example 6.1

Table 1 Numerical values of \(\mathcal{O}_{1}\) and \(\Lambda _{1}\) for \(\in [1.1,2.6]\) in Example 6.1 when \(\mathbb{G}_{1}=2^{\mathfrak{t}}\)

In the second case \(\mathbb{G}_{2}(\mathfrak{t})=\mathfrak{t}\) (Caputo type), we have

$$\begin{aligned} \mathcal{O} = \mathcal{O}_{2} :={}& \frac{(\mathbb{G}_{2}(b) - \mathbb{G}_{2}(a))^{q +p +r +k }}{\Gamma (q+p +r +k +1)} + \frac{(\mathbb{G}_{2}(b) - \mathbb{G}_{2}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ & {}+ \frac{(\mathbb{G}_{2}(b) - \mathbb{G}_{2}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}_{2}(b) - \mathbb{G}_{2}(a))^{k }}{\Gamma (k +1)} \\ = {}&\frac{(\mathbb{G}_{2}(2.6) -\mathbb{G}_{2}(1.1))^{1.99 }}{ \Gamma (2.99)} + \frac{(\mathbb{G}_{2}(2.6) - \mathbb{G}_{2}(1.1))^{1.65}}{\Gamma (2.65)} \\ &{} + \frac{(\mathbb{G}_{2}(2.6) - \mathbb{G}_{2}(1.1))^{0.79 }}{\Gamma (1.79)} + \frac{( \mathbb{G}_{2}(2.6) - \mathbb{G}_{2}(1.1))^{0.25}}{\Gamma (1.25)} \\ ={}& 5.306821. \end{aligned}$$

Thus \(L \mathcal{O}_{2} = 0.176894<1\), and (C1) holds. Also, using equation (14), we obtain

$$\begin{aligned} \Lambda = \Lambda _{2} :={}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{q}}{\Gamma (q+1)} \biggr) \\ &{} + \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{q + p}}{\Gamma (q + p+1)} \biggr) \\ &{} + \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{r}}{ \Gamma (r+1)} + \frac{(\mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{r + p}}{ \Gamma (r + p+1)} \\ &{} + \frac{( \mathbb{G}_{1}(b) - \mathbb{G}_{1}(a))^{q+p+r}}{ \Gamma (q+p+r+1)} \biggr) \\ ={}& \vert 2.25 \vert + \vert 1.69 \vert \biggl( 1 + \frac{ (\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.34}}{\Gamma (1.34)} \biggr) \\ & {}+ \vert 3.12 \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.86}}{\Gamma (1.86)} \\ & {}+ \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{1.2}}{\Gamma (2.2)} \biggr) \\ &{} + \vert 4.71 \vert \biggl( 1 + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{0.54}}{ \Gamma (1.54)} \\ &{} + \frac{(\mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{1.4}}{ \Gamma (2.4)} \\ &{} + \frac{( \mathbb{G}_{1}(2.6) - \mathbb{G}_{1}(1.1))^{1.74}}{ \Gamma (2.74)} \biggr) = 40.261437. \end{aligned}$$
(61)

Hence

$$\begin{aligned} \ell _{2} \geq \frac{\Lambda _{2} + h_{0}^{*} \mathcal{O}_{2}}{1 - L \mathcal{O}_{2}} = \frac{40.261437 + 0.308608\times 5.306821}{1 - 0.176894}=50.802414. \end{aligned}$$
(62)

In the third case \(\mathbb{G}_{3}(\mathfrak{t})= \ln \mathfrak{t}\) (Caputo–Hadamard type), we have

$$\begin{aligned} \mathcal{O} = \mathcal{O}_{3} :={}& \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{q +p +r +k }}{\Gamma (q+p +r +k +1)} + \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ &{} + \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{k }}{\Gamma (k +1)} \\ ={}& \frac{(\mathbb{G}_{3}(2.6) -\mathbb{G}_{3}(1.1))^{1.99 }}{ \Gamma (2.99)} + \frac{(\mathbb{G}_{3}(2.6) - \mathbb{G}_{3}(1.1))^{ 1.65}}{ \Gamma (2.65)} \\ &{} + \frac{(\mathbb{G}_{3}(2.6) - \mathbb{G}_{3}(1.1))^{0.79 }}{\Gamma (1.79)} + \frac{( \mathbb{G}_{3}(2.6) - \mathbb{G}_{3}(1.1))^{0.25}}{\Gamma (1.25)} \\ ={}& 2.4709. \end{aligned}$$

Thus \(L \mathcal{O}_{3} = 0.082363<1\), and (C1) holds. Also, using equation (14), we obtain

$$\begin{aligned} \Lambda = \Lambda _{3} := {}&\vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{q}}{\Gamma (q+1)} \biggr) \\ & {}+ \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{q + p}}{\Gamma (q + p+1)} \biggr) \\ &{} + \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{r}}{ \Gamma (r+1)} + \frac{(\mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{r + p}}{ \Gamma (r + p+1)} \\ & {}+ \frac{( \mathbb{G}_{3}(b) - \mathbb{G}_{3}(a))^{q+p+r}}{ \Gamma (q+p+r+1)} \biggr) \\ ={}& \vert 2.25 \vert + \vert 1.69 \vert \biggl( 1 + \frac{ (\mathbb{G}_{3}(2.6) - \mathbb{G}_{3}(1.1))^{0.34}}{\Gamma (1.34)} \biggr) \\ &{} + \vert 3.12 \vert \biggl( 1 + \frac{(\mathbb{G}_{3}(2.6) - \mathbb{G}_{3}(1.1))^{0.86}}{\Gamma (1.86)} \\ & {}+ \frac{(\mathbb{G}_{3}(2.6) - \mathbb{G}_{3}(1.1))^{1.2}}{\Gamma (2.2)} \biggr) \\ &{} + \vert 4.71 \vert \biggl( 1 + \frac{(\mathbb{G}_{3}(2.6) - \mathbb{G}_{3} (1.1))^{0.54}}{ \Gamma (1.54)} \\ &{} + \frac{(\mathbb{G}_{3} (2.6) - \mathbb{G}_{3} (1.1))^{1.4}}{ \Gamma (2.4)} \\ &{} + \frac{( \mathbb{G}_{3}(2.6) - \mathbb{G}_{3}(1.1))^{1.74}}{ \Gamma (2.74)} \biggr) = 28.290416. \end{aligned}$$
(63)

Hence

$$\begin{aligned} \ell _{3} \geq \frac{\Lambda _{3} + h_{0}^{*} \mathcal{O}_{3}}{1 - L \mathcal{O}_{3}} = \frac{28.290416 + 0.308608\times 5.306821}{1 - 0.082363}=31.660634. \end{aligned}$$
(64)

In the fourth case \(\mathbb{G}_{4}(\mathfrak{t})= \sqrt{\mathfrak{t}}\) (Katugampola type for \(\rho =0.5\)), we have

$$\begin{aligned} \mathcal{O} = \mathcal{O}_{4} :={}& \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{q +p +r +k }}{\Gamma (q+p +r +k +1)} + \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ &{} + \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{k }}{\Gamma (k +1)} \\ ={}& \frac{(\mathbb{G}_{4}(2.6) -\mathbb{G}_{4}(1.1))^{1.99 }}{ \Gamma (2.99)} + \frac{(\mathbb{G}_{4}(2.6) - \mathbb{G}_{4}(1.1))^{ 1.65}}{ \Gamma (2.65)} \\ &{} + \frac{(\mathbb{G}_{4}(2.6) - \mathbb{G}_{4}(1.1))^{0.79 }}{\Gamma (1.79)} + \frac{( \mathbb{G}_{4}(2.6) - \mathbb{G}_{4}(1.1))^{0.25}}{\Gamma (1.25)} \\ ={}& 1.43141. \end{aligned}$$

Thus \(L \mathcal{O}_{4} = 0.047713<1\), and (C1) holds. Also, using equation (14), we obtain

$$\begin{aligned} \Lambda =\Lambda _{4} :={}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{q}}{\Gamma (q+1)} \biggr) \\ & {}+ \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{q + p}}{\Gamma (q + p+1)} \biggr) \\ &{} + \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{r}}{ \Gamma (r+1)} + \frac{(\mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{r + p}}{ \Gamma (r + p+1)} \\ &{} + \frac{( \mathbb{G}_{4}(b) - \mathbb{G}_{4}(a))^{q+p+r}}{ \Gamma (q+p+r+1)} \biggr) \\ ={}& \vert 2.25 \vert + \vert 1.69 \vert \biggl( 1 + \frac{ (\mathbb{G}_{4}(2.6) - \mathbb{G}_{4}(1.1))^{0.34}}{\Gamma (1.34)} \biggr) \\ &{} + \vert 3.12 \vert \biggl( 1 + \frac{(\mathbb{G}_{4}(2.6) - \mathbb{G}_{4}(1.1))^{0.86}}{\Gamma (1.86)} + \frac{(\mathbb{G}_{4}(2.6) - \mathbb{G}_{4}(1.1))^{1.2}}{\Gamma (2.2)} \biggr) \\ &{} + \vert 4.71 \vert \biggl( 1 + \frac{(\mathbb{G}_{4}(2.6) - \mathbb{G}_{4} (1.1))^{0.54}}{ \Gamma (1.54)} + \frac{(\mathbb{G}_{4} (2.6) - \mathbb{G}_{4} (1.1))^{1.4}}{ \Gamma (2.4)} \\ &{} + \frac{( \mathbb{G}_{4}(2.6) - \mathbb{G}_{4}(1.1))^{1.74}}{ \Gamma (2.74)} \biggr) = 22.866749. \end{aligned}$$
(65)

Hence

$$\begin{aligned} \ell _{4} \geq \frac{\Lambda _{4} + h_{0}^{*} \mathcal{O}_{4}}{1 - L \mathcal{O}_{4}} = \frac{22.866749 + 0.308608\times 1.43141}{1 - 0.047713}=24.476352. \end{aligned}$$
(66)

Table 2 shows the numerical values of \(\mathcal{O}_{j}\), \(\Lambda _{j}\), and \(\ell _{j}\), \(j=2,3,4\), for \(\mathfrak{t}\in [1.1,2.6]\). These values are also shown in Fig. 2. Figure 3 shows a 3D-graph of the numerical values of \(\ell _{j}\) based on \(\mathcal{O}_{j}\) and \(\Lambda _{j}\), \(j=2,3,4\), for \(\mathfrak{t} \in [1.1, 2.6]\).

Figure 2
figure 2

Graphical representation of \(\mathcal{O}_{j}\), \(\Lambda _{j}\), and \(\ell _{j}\) for \(\mathfrak{t} \in [1.1, 2.6]\) and \(j=2,3,4\) in Example 6.1 where \(\mathbb{G}_{2}(t)=\mathfrak{t}\), \(\mathbb{G}_{3}(\mathfrak{t})=\ln \mathfrak{t,}\) and \(\mathbb{G}_{4}(\mathfrak{t}) = \sqrt{\mathfrak{t}}\)

Figure 3
figure 3

3D-graph of \(\ell \geq \frac{\Lambda + h_{0}^{*} \mathcal{O}}{1 - L \mathcal{O}}\) for \(\mathfrak{t} \in [1.1, 2.6]\) in Example 6.1

Table 2 Numerical values of \(\mathcal{O}_{j}\) and \(\Lambda _{j}\), \(j=2,3,4\), for \(\mathfrak{t} \in [1.1, 2.6]\) in Example 6.1 when \(\mathbb{G}_{2}=\mathfrak{t}\), \(\mathbb{G}_{3} = \ln \mathfrak{t}\), and \(\mathbb{G}_{4} = \sqrt{\mathfrak{t}}\)

In all four cases for the function \(\mathbb{G}\), we saw that all requirements of Theorem 3.2 are fulfilled. Therefore this guarantees that for all four different cases in terms of the function \(\mathbb{G}\), the fractional \(\mathbb{G}\)-snap system (56) admits a unique solution on the interval \([1.1, 2.6]\).

In the next example, we examine the correctness of the results caused by Theorem 3.3. In that example, we consider the case \(\mathbb{G}(\mathfrak{t}) = \mathfrak{t}\) (Caputo type) for three different orders \(q_{1}\), \(q_{2}\), and \(q_{3}\) and show the obtained results computationally and graphically.

Example 6.2

Based on the given system (4) for \(\mathbb{G}(\mathfrak{t}) = \mathfrak{t}\) (Caputo type), we consider the nonlinear fractional \(\mathbb{G}\)-snap BVP

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}}\mathrm{v}(\mathfrak{t}) = \mathrm{u}(\mathfrak{t}), \quad 0.02 \leq \mathfrak{t} \leq 0.99, \mathrm{v}(0.02) = -1.07, \\ {^{c}\mathcal{D}}_{0.02^{+}}^{0.37; \mathbb{G}} \mathrm{u}( \mathfrak{t}) = \mathrm{w}(\mathfrak{t}), \quad \mathrm{u}(0.02)= 4.46, \\ {^{c}\mathcal{D}}_{0.02^{+}}^{0.27; \mathbb{G}} \mathrm{w}( \mathfrak{t}) = \mathrm{x}(\mathfrak{t}), \quad \mathrm{w}(0.02) = -3.8, \\ {^{c}\mathcal{D}}_{0.02^{+}}^{0.83; \mathbb{G}} \mathrm{x}( \mathfrak{t}) = h ( \mathfrak{t},\mathrm{v},\mathrm{u}, \mathrm{w}, \mathrm{x} ), \quad \mathrm{x}(1.1)=-2.15, \end{cases}\displaystyle \end{aligned}$$
(67)

where

$$\begin{aligned} h( \mathfrak{t}, \mathrm{v}, \mathrm{u},\mathrm{w}, \mathrm{x}) ={}& \frac{ \sin (\mathrm{v}( \mathfrak{t})) }{ 10 ( 25 + \sin ( \mathrm{v}(\mathfrak{t})) ) } + \frac{\tan ^{-1} (\mathrm{u}(\mathfrak{t}))}{15 ( 32 + \mathfrak{t}^{2} )} \\ & {}+ \frac{\mathfrak{t}(\mathrm{w}( \mathfrak{ \mathfrak{t}}))^{2} }{14 ( 17 + (\mathrm{w}( \mathfrak{t}))^{2} ) } + \frac{ 3\mathfrak{t} \vert \sin ^{-1} (\mathrm{x}(\mathfrak{t})) \vert }{(10+3\mathfrak{t}^{2}) ( 13 + \vert \sin ^{-1} (\mathrm{x}(\mathfrak{t})) \vert )} \end{aligned}$$
(68)

for \(\mathfrak{t} \in [0.02, 0.99]\). Clearly, \(a=0.02\), \(b=0.99\), \(\mathrm{v}(0)= \mathrm{v}_{0} =-1.07\), \(p=0.37\in (0,1]\), \(\mathrm{u}(0) = \mathrm{v}_{1}=4.46\), \(r=0.27 \in (0,1]\), \(\mathrm{w}(0) = \mathrm{v}_{2} = -3.8\), \(k=0.8 \in (0,1]\), \(\mathrm{x}(0) = \mathrm{v}_{3}=-2.15\), and

$$\begin{aligned} h ( \mathfrak{t}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{3})={}& \frac{ \sin (\mathrm{v}_{1}( \mathfrak{t})) }{ 10 ( 25 + \sin ( \mathrm{v}_{1}(\mathfrak{t})) ) } + \frac{\tan ^{-1} (\mathrm{v}_{2}(\mathfrak{t}))}{15 ( 32 + \mathfrak{t}^{2} )} \\ &{} + \frac{\mathfrak{t}(\mathrm{v}_{3}( \mathfrak{ \mathfrak{t}}))^{2} }{14 ( 17 + (\mathrm{v}_{3}( \mathfrak{t}))^{2} ) } + \frac{ 3\mathfrak{t} \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert }{( 10 + 3\mathfrak{t}^{2}) ( 13 + \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert )} \end{aligned}$$

for \(\mathfrak{t} \in [0.02,0.99]\). Thus we can rewrite the above system as

$$ \textstyle\begin{cases} {^{c}\mathcal{D}}_{0.02^{+}}^{0.0.8; \mathbb{G}} ( {^{c} \mathcal{D}}_{0.02^{+}}^{0.0.27; \mathbb{G}} ( {^{c} \mathcal{D}}_{0.02^{+}}^{0.37; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ) \\ \quad = \frac{ \sin (\mathrm{v}( \mathfrak{t})) }{ 10 (25 + \sin ( \mathrm{v}(\mathfrak{t})) ) } + \frac{\tan ^{-1} ( {^{c}\mathcal{D}}_{ 0.02^{+}}^{q; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ) }{15 ( 32 + \mathfrak{t}^{2} ) } \\ \qquad{} + \frac{\mathfrak{t} ( {^{c} \mathcal{D}}_{0.02^{+}}^{0.0.37;\mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) )^{2} }{14 ( 17 + ({^{c} \mathcal{D}}_{0.02^{+}}^{0.0.37; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) )^{2} )} \\ \qquad{} + \frac{ 3 \mathfrak{t} \vert \sin ^{-1} ( {^{c}\mathcal{D}}_{0.02^{+}}^{0.27;\mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{0.37; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ) \vert }{(10+3\mathfrak{t}^{2}) (13 + \vert \sin ^{-1} ( {^{c}\mathcal{D}}_{0.02^{+}}^{0.27;\mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{0.37; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ) \vert )}, \\ \mathrm{v}(0.02) =-1.07, \qquad {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}} \mathrm{v}(0.02) = 4.46, \\ {^{c}\mathcal{D}}_{0.02^{+}}^{0.37;\mathbb{G}} ( {^{c} \mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}}\mathrm{v}(0.02) ) =-3.8, \\ {^{c}\mathcal{D}}_{0.02^{+}}^{0.27; \mathbb{G}} ( {^{c} \mathcal{D}}_{0.02^{+}}^{0.37;\mathbb{G}} ( {^{c}\mathcal{D}}_{0.02^{+}}^{q; \mathbb{G}}\mathrm{v}(0.02) ) ) =-2.15. \end{cases} $$

Now we have

$$\begin{aligned} &\bigl\vert h ( \mathfrak{t}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{3}) \bigr\vert \\ &\quad= \biggl\vert \frac{ \sin (\mathrm{v}_{1}( \mathfrak{t})) }{ 10 ( 25 + \sin ( \mathrm{v}_{1}(\mathfrak{t})) )} + \frac{ \tan ^{-1} (\mathrm{v}_{2} ( \mathfrak{t}))}{15 ( 32 +\mathfrak{t}^{2} )} \\ & \qquad{}+ \frac{ \mathfrak{t}(\mathrm{v}_{3}( \mathfrak{ \mathfrak{t}}))^{2} }{14 ( 17 + (\mathrm{v}_{3}( \mathfrak{t}))^{2} )} + \frac{3\mathfrak{t} \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert }{(10 + 3 \mathfrak{t}^{2}) ( 13 + \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert )} \biggr\vert \\ &\quad \leq \frac{1}{10} \biggl\vert \frac{ \sin (\mathrm{v}_{1}( \mathfrak{t})) }{ 25 + \sin ( \mathrm{v}_{1}(\mathfrak{t})) } \biggr\vert + \frac{1}{15} \biggl\vert \frac{\tan ^{-1} (\mathrm{v}_{2}(\mathfrak{t}))}{ 32 + \mathfrak{t}^{2}} \biggr\vert \\ &\qquad{} + \frac{ \vert \mathfrak{t} \vert }{14} \biggl\vert \frac{ (\mathrm{v}_{3}( \mathfrak{ \mathfrak{t}}))^{2} }{17 + (\mathrm{v}_{3}( \mathfrak{t}))^{2}} \biggr\vert + \biggl\vert \frac{3\mathfrak{t}}{10 + 3 \mathfrak{t}^{2}} \biggr\vert \biggl\vert \frac{ \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert }{ 13 + \vert \sin ^{-1} (\mathrm{v}_{4}(\mathfrak{t})) \vert } \biggr\vert \\ & \quad\leq \frac{ \mathfrak{t}}{10} \biggl( \frac{1}{15} \bigl\vert \mathrm{v}_{1}( \mathfrak{t} ) \bigr\vert + \frac{1}{15} \bigl\vert \mathrm{v}_{2}(\mathfrak{t}) \bigr\vert + \frac{1}{15} \bigl\vert \mathrm{v}_{3}(\mathfrak{t}) \bigr\vert + \frac{1}{15} \bigl\vert \mathrm{v}_{4}( \mathfrak{t}) \bigr\vert \biggr) \\ &\quad = \frac{1}{10}\mathfrak{t} \sum_{j=1}^{4} \frac{1}{15} \bigl\vert \mathrm{v}_{j}(\mathfrak{t}) \bigr\vert . \end{aligned}$$

So we can choose \(\varrho (\mathfrak{t}) = \frac{1}{10} \mathfrak{t}\) and \(f(\mathrm{v}) = \frac{1}{15} \mathrm{v}\). Thus for \(j=1,2,3,4\),

$$\begin{aligned} \bigl\vert h\bigl(\mathfrak{t}, \mathrm{v}_{1}(\mathfrak{t}), \mathrm{v}_{2}( \mathfrak{t}), \mathrm{v}_{3}(\mathfrak{t}), \mathrm{v}_{4}( \mathfrak{t})\bigr) \bigr\vert \leq \varrho ( \mathfrak{t}) f \Biggl( \sum_{j=1}^{4} \bigl\vert \mathrm{v}_{j}(\mathfrak{t}) \bigr\vert \Biggr), \end{aligned}$$

and (C2) holds. In addition,

$$\begin{aligned} \varrho _{0}^{*} = \sup _{\mathfrak{t}\in [0.02, 0.99]} \bigl\vert \varrho (\mathfrak{t}) \bigr\vert = 0.099. \end{aligned}$$
(69)

Now we consider three cases for \(q\in \{ q_{1} = 0.28, q_{2} = 0.53, q_{3} = 0.89\}\). By equation (12), in the first case \(q = q_{1} = 0.28\), we have

$$\begin{aligned} \mathcal{O} = \mathcal{O}_{1} :={}& \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q_{1} +p +r +k }}{\Gamma (q_{1}+p +r +k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ & {}+ \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{k }}{\Gamma (k +1)} \\ ={}& \frac{(\mathbb{G}(0.99) -\mathbb{G}(0.02))^{1.72 }}{ \Gamma (2.72)} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.44}}{ \Gamma (2.44)} \\ &{} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.07}}{\Gamma (2.07)} + \frac{( \mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.8}}{\Gamma (1.8)} \\ ={}& 4.120828. \end{aligned}$$
(70)

Also, by equation (14) we obtain

$$\begin{aligned} \Lambda =\Lambda _{1} :={}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}(b) - \mathbb{G}(a))^{q_{1}}}{\Gamma (q_{1}+1)} \biggr) \\ &{} + \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q_{1} + p}}{\Gamma (q_{1} + p+1)} \biggr) \\ &{} + \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r}}{ \Gamma (r+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r + p}}{ \Gamma (r + p+1)} \\ & {}+ \frac{( \mathbb{G}(b) - \mathbb{G}(a))^{q+p+r}}{ \Gamma (q_{1} + p+r+1)} \biggr) \\ ={}& \vert -1.07 \vert + \vert 4.46 \vert \biggl( 1 + \frac{ (\mathbb{G}(0.99) - \mathbb{G}(0.2))^{0.28}}{\Gamma (1.28)} \biggr) \\ &{} + \vert -3.8 \vert \biggl( 1 + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.37}}{\Gamma (1.37)} \\ &{} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.65}}{\Gamma (1.65)} \biggr) \\ &{} + \vert -2.15 \vert \biggl( 1 + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.27}}{ \Gamma (1.27)} \\ &{} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.55}}{ \Gamma (1.55)} \\ &{} + \frac{( \mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.92}}{ \Gamma (1.92)} \biggr) = 31.920297. \end{aligned}$$
(71)

We consider \(B=100\). Then, substituting (69), (70), and (71) into inequality (24), we obtain

$$\begin{aligned} \Lambda _{1} + \mathcal{O}_{1} \varrho _{0}^{*} f (B) & = 31.920297 + 4.120828 \times 0.099 \times f(100) \\ & =34.640043 < 100=B. \end{aligned}$$

Hence (C3) holds for \(q = q_{1}=0.28\).

In the second case for \(q = q_{2} = 0.53\), we get

$$\begin{aligned} \mathcal{O} = \mathcal{O}_{2} := {}&\frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q_{2} +p +r +k }}{\Gamma (q_{2}+p +r +k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ &{} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{k }}{\Gamma (k +1)} \\ ={}& \frac{(\mathbb{G}(0.99) -\mathbb{G}(0.02))^{1.97 }}{ \Gamma (2.97)} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.44}}{ \Gamma (2.44)} \\ &{} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.07}}{\Gamma (2.07)} + \frac{( \mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.8}}{\Gamma (1.8)} \\ = {}&4.037502. \end{aligned}$$
(72)

Also, by equation (14) we obtain

$$\begin{aligned} \Lambda = \Lambda _{2} :={}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}(b) - \mathbb{G}(a))^{q_{2}}}{\Gamma (q_{2}+1)} \biggr) \\ &{} + \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q_{2} + p}}{\Gamma (q_{2} + p+1)} \biggr) \\ &{} + \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r}}{ \Gamma (r + 1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r + p}}{ \Gamma (r + p+1)} \\ & {}+ \frac{( \mathbb{G}(b) - \mathbb{G}(a))^{q_{2} + p + r}}{ \Gamma (q_{2} + p+r+1)} \biggr) \\ ={}& \vert -1.07 \vert + \vert 4.46 \vert \biggl( 1 + \frac{ (\mathbb{G}(0.99) - \mathbb{G}(0.2))^{0.53}}{\Gamma (1.53)} \biggr) \\ & {}+ \vert -3.8 \vert \biggl( 1 + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.37}}{\Gamma (1.37)} \\ &{} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.9}}{\Gamma (1.9)} \biggr) \\ &{} + \vert -2.15 \vert \biggl( 1 + \frac{ (\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.27}}{ \Gamma (1.27)} \\ & {}+ \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.8}}{ \Gamma (1.8)} \\ &{} + \frac{( \mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.33}}{ \Gamma (2.33)} \biggr) = 31.486714. \end{aligned}$$
(73)

We consider \(K=100\). Then, substituting (69), (72), and (73) into inequality (24), we obtain

$$\begin{aligned} \Lambda _{2} + \mathcal{O}_{2} \varrho _{0}^{*} f (B) & = 31.486714 + 4.037502 \times 0.099 \times f(100) \\ & =34.151466 < 100=B. \end{aligned}$$

Hence (C3) holds for \(q = q_{2}=0.53\).

In the third case for \(q =q_{3} = 0.89\), we get

$$\begin{aligned} \mathcal{O} = \mathcal{O}_{3} :={}& \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q_{3} +p +r +k }}{\Gamma (q_{3}+p +r +k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ & {}+ \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{k }}{\Gamma (k +1)} \\ ={}& \frac{(\mathbb{G}(0.99) -\mathbb{G}(0.02))^{2.33 }}{ \Gamma (3.33)} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.44}}{ \Gamma (2.44)} \\ &{} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.07}}{\Gamma (2.07)} + \frac{( \mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.8}}{\Gamma (1.8)} \\ ={}& 3.866648. \end{aligned}$$
(74)

Also, using equation (14), we obtain

$$\begin{aligned} \Lambda = \Lambda _{3} :={}& \vert \mathrm{v}_{0} \vert + \vert \mathrm{v}_{1} \vert \biggl( 1 + \frac{ (\mathbb{G}(b) - \mathbb{G}(a))^{q_{3}}}{\Gamma (q_{3} + 1)} \biggr) \\ & {}+ \vert \mathrm{v}_{2} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p}}{\Gamma (p+1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q_{3} + p}}{\Gamma (q_{3} + p+1)} \biggr) \\ & {}+ \vert \mathrm{v}_{3} \vert \biggl( 1 + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r}}{ \Gamma (r + 1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r + p}}{ \Gamma (r + p+1)} \\ &{} + \frac{( \mathbb{G}(b) - \mathbb{G}(a))^{q_{3} + p + r}}{ \Gamma (q_{3} + p+r+1)} \biggr) \\ ={}& \vert -1.07 \vert + \vert 4.46 \vert \biggl( 1 + \frac{ (\mathbb{G}(0.99) - \mathbb{G}(0.2))^{0.89}}{\Gamma (1.89)} \biggr) \\ & {}+ \vert -3.8 \vert \biggl( 1 + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.37}}{\Gamma (1.37)} \\ &{} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.26}}{\Gamma (2.26)} \biggr) \\ & {}+ \vert -2.15 \vert \biggl( 1 + \frac{ (\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.27}}{ \Gamma (1.27)} + \frac{(\mathbb{G}(0.99) - \mathbb{G}(0.02))^{0.8}}{ \Gamma (1.8)} \\ &{} + \frac{( \mathbb{G}(0.99) - \mathbb{G}(0.02))^{1.53}}{ \Gamma (2.53)} \biggr) = 30.099324. \end{aligned}$$
(75)

We consider \(B=100\). Then, substituting (69), (74), and (75) into inequality (24), we obtain

$$\begin{aligned} \Lambda _{3} + \mathcal{O}_{3} \varrho _{0}^{*} f (B) & = 30.099324 + 3.866648 \times 0.099 \times f(100) \\ &=32.651312 < 100=B. \end{aligned}$$

Hence (C3) holds for \(q=q_{3}=0.89\). Tables 3, 4, and 5 show the numerical values of \(\mathcal{O}_{j}\), \(\Lambda _{j}\), and \(\frac{B}{\Lambda _{j} + \mathcal{O}_{j} \varrho _{0}^{*} f (B)}\) for \(\mathfrak{t}\in [0.02,0.99]\) and \(q_{j} \in \{0.28, 0.53, 0.89 \}\), \(j= 1,2,3\).

Table 3 Numerical results of \(\mathcal{O}_{i}\) and \(\Lambda _{i}\), \(i=1,2,3\), for \(\mathfrak{t}\in [0.02,0.99]\) in Example 6.2 when \(q_{1}=0.28\), \(q_{2}=0.53\), and \(q_{3}=0.89\)
Table 4 Numerical results of \(\mathcal{O}_{i}\) and \(\Lambda _{i}\), \(i=1,2,3\), for \(\mathfrak{t}\in [0.02,0.99]\) in Example 6.2 when \(q_{1}=0.28\), \(q_{2}=0.53\), and \(q_{3}=0.89\)
Table 5 Numerical results of \(\mathcal{O}_{i}\) and \(\Lambda _{i}\), \(i=1,2,3\), for \(\mathfrak{t}\in [0.02,0.99]\) in Example 6.2 when \(q_{1}=0.28\), \(q_{2}=0.53\), and \(q_{3}=0.89\)

These results are also plotted in Fig. 4. In all three cases for the order \(q_{i}\), we see that all requirements of Theorem 3.3 are fulfilled. Therefore this guarantees that for all three different cases by terms of the order q, the fractional \(\mathbb{G}\)-snap system (67) admits at least one solution on the interval \([0.02,0.99]\).

Figure 4
figure 4

Graphical representation of \(\Delta _{j}\), \(\Lambda _{j}\), and \(\frac{K}{\Lambda _{j} + \Delta _{j} \phi _{0}^{*} \varphi (K)}\) for \(\mathfrak{t} \in [0.05,0.95]\), \(j=1,2,3\), in Example 6.2 where \(q_{1}=0.28\), \(q_{2}=0.53\), and \(q_{3}=0.89\)

Example 6.3

Based on system (46), we consider the nonlinear fractional inclusion system

$$\begin{aligned} \textstyle\begin{cases} {^{c}\mathcal{D}}_{0.2^{+}}^{0.73; \mathbb{G}} ( {^{c} \mathcal{D}}_{0.2^{+}}^{0.35; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.49; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}} \mathrm{v}( \mathfrak{t}) ) ) ) \\ \quad\in [0, \frac{\mathfrak{t}|\sin ^{2} (\mathrm{v}(\mathfrak{t}))}{23(2+\mathfrak{t}^{2})} + \frac{ \vert \tan ^{-1} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.61;\mathbb{G}} \mathrm{v}(\mathfrak{t}) ) \vert }{15 ( 3 + \vert \tan ^{-1} ( {^{c}\mathcal{D}}_{0.2^{+}}^{ 0.61;\mathbb{G}} \mathrm{v}(\mathfrak{t}) ) \vert )} \\ \qquad{} + \frac{\mathfrak{t}\sin ^{-1} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.49; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ) )}{(18+\mathfrak{t}^{2}) ( 2+ \sin ^{-1} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.49; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ) ) ) } \\ \qquad{} + \frac{ ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.35; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.49; \mathbb{G}} ({^{c} \mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ) ) )^{2} }{ (3+\mathfrak{t} ) (2+ ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.35; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.49; \mathbb{G}} ({^{c} \mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}} \mathrm{v}(\mathfrak{t}) ) ) )^{2} ) } ] \\ \mathrm{v}(0.2) =3.92,\qquad {^{c}\mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}} \mathrm{v}(0.2) = -5.23, \\ {^{c}\mathcal{D}}_{0.2^{+}}^{0.49;\mathbb{G}} ( {^{c} \mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}}\mathrm{v}(0.2) ) =4.08, \\ {^{c}\mathcal{D}}_{0.2^{+}}^{0.35; \mathbb{G}} ( {^{c} \mathcal{D}}_{0.2^{+}}^{0.49; \mathbb{G}} ( {^{c}\mathcal{D}}_{0.2^{+}}^{0.61; \mathbb{G}}\mathrm{v}(0.2) ) ) =-1.15 \end{cases}\displaystyle \end{aligned}$$
(76)

for \(\mathfrak{t} \in [0.2, 0.85]\). It is clear that \(a=0.2\), \(b=0.85\), \(q=0.61\in (0,1]\), \(\mathrm{v}(0.2)= \mathrm{v}_{0} =3.92\), \(p=0.49\in (0,1]\), \(\mathrm{u}(0.2) = \mathrm{v}_{1}=-5.23\), \(r=0.35 \in (0,1]\), \(\mathrm{w}(0.2) = \mathrm{v}_{2} = 4.08\), \(k=0.73 \in (0,1]\), \(\mathrm{x}(0) = \mathrm{v}_{3} = -1.15\), and

$$\begin{aligned} \widehat{\mathfrak{H}}_{\mathrm{v}} (\mathfrak{t}) ={}& \mathfrak{H} ( \mathfrak{t}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}) ) \\ = {}&\biggl[ 0, \frac{\mathfrak{t}|\sin ^{2} (\mathrm{v}_{1}(\mathfrak{t}))}{23(2+\mathfrak{t}^{2})} + \frac{ \vert \tan ^{-1} ((\mathrm{v}_{2}(\mathfrak{t})) ) \vert }{ 15 ( 3 + \vert \tan ^{-1} ((\mathrm{v}_{2}(\mathfrak{t})) ) \vert )} \\ &{} + \frac{ \mathfrak{t} \sin ^{-1} ((\mathrm{v}_{3}(\mathfrak{t})) )}{ ( 18 + \mathfrak{t}^{2}) ( 2+ \sin ^{-1} ((\mathrm{v}_{3}(\mathfrak{t})) ) )} + \frac{ ((\mathrm{v}_{4}( \mathfrak{t})) )^{2} }{ ( 3 + \mathfrak{t} ) (2 + ( (\mathrm{v}_{4} (\mathfrak{t})) )^{2} ) } \biggr]. \end{aligned}$$

For, \(\mathrm{v}_{j}, \acute{\mathrm{v}}_{j} \in \mathcal{C}\ (j=1,2,3,4)\), we have

$$\begin{aligned} &\mathcal{H}_{d} \bigl( \mathfrak{H}( \mathfrak{t}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}), \mathfrak{H}( \mathfrak{t}, \acute{ \mathrm{v}_{1}},\acute{\mathrm{v}_{2}}, \acute{ \mathrm{v}_{3}}, \acute{\mathrm{v}_{4}} ) \bigr) \\ &\quad \leq \frac{\mathfrak{t}}{4} \biggl( \frac{1}{2} \bigl\vert \sin \bigl( \mathrm{v}_{1}(\mathfrak{t})\bigr) - \sin ( \acute{ \mathrm{v}_{1}} \mathfrak{t}) \bigr\vert + \frac{1}{2} \bigl\vert \tan ^{-1} \bigl( \mathrm{v}_{2}(\mathfrak{t}) \bigr) - \tan ^{-1} \bigl( \acute{\mathrm{v}_{2}} (\mathfrak{t}) \bigr) \bigr\vert \\ &\qquad{} + \frac{1}{2} \bigl\vert - \sin ^{-1} \bigl( \mathrm{v}_{3}( \mathfrak{t}) \bigr) \sin ^{-1} \bigl( \acute{\mathrm{v}_{3}}( \mathfrak{t}) \bigr) \bigr\vert + \frac{1}{2} \bigl\vert \mathrm{v}_{4}( \mathfrak{t}) - \acute{\mathrm{v}_{4}}(\mathfrak{t}) \bigr\vert \biggr) \\ & \quad\leq \upphi (\mathfrak{t}) \mathcal{O}^{*} \uppsi \Biggl( \sum _{j=1}^{4} \vert \mathrm{v}_{j} - \acute{\mathrm{v}_{j}} \vert \Biggr). \end{aligned}$$

Now we consider four cases for \(\mathbb{G}\):

$$\begin{aligned} \mathbb{G}_{1}(\mathfrak{t}) = 2^{\mathfrak{t}},\qquad \mathbb{G}_{2}( \mathfrak{t})= \mathfrak{t}, \qquad\mathbb{G}_{3}( \mathfrak{t}) = \ln \mathfrak{t},\qquad \mathbb{G}_{4}( \mathfrak{t} )= \sqrt{ \mathfrak{t}}. \end{aligned}$$

Note that \(\mathbb{G}_{2}\), \(\mathbb{G}_{3}\), and \(\mathbb{G}_{4}\) give the Caputo, Caputo–Hadamard, and Katugampola (for \(\rho = 0.5\)) derivatives in this example. By equation (12) we have

$$\begin{aligned} \mathcal{O}^{*} = \mathcal{O}^{-1} :={}& \biggl[ \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{q +p +r +k }}{\Gamma (q+p +r +k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{p +r +k }}{\Gamma (p +r +k +1)} \\ &{} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{r +k }}{\Gamma (r + k +1)} + \frac{(\mathbb{G}(b) - \mathbb{G}(a))^{k }}{\Gamma (k +1)} \biggr]^{-1} \\ ={}& \biggl[ \frac{ (\mathbb{G}(0.85) - \mathbb{G}(0.2))^{2.18}}{ \Gamma (3.18)} + \frac{(\mathbb{G}(0.85) - \mathbb{G}(0.2))^{1.57}}{ \Gamma (2.57)} \\ & {}+ \frac{(\mathbb{G}(0.85) - \mathbb{G}(0.2))^{1.08}}{\Gamma (2.08)} + \frac{( \mathbb{G}(0.85) - \mathbb{G}(0.2))^{0.73}}{\Gamma (1.73)} \biggr]^{-1}. \end{aligned}$$

Therefore

$$\begin{aligned} \mathcal{O}^{*} =0.458030, 0.461510, 0.150228, 0.685475 \end{aligned}$$

for \(\mathbb{G}_{j}(\mathfrak{t})\) \((j=1,2,3,4)\), respectively. Choose the nonnegative function \(\upphi \in C([a, b], [0,\infty ))\) defined by \(\upphi (\mathfrak{t}) =\frac{\mathfrak{t}}{4}\) for \(\mathfrak{t}\in [a, b]\). Then \(\Vert \upphi \Vert = 0.2125\). Also, we consider the nonnegative nondecreasing u.s.c map \(\uppsi: \mathbb{R}_{\geq 0}\rightarrow \mathbb{R}_{\geq 0}\) defined by \(\uppsi (\mathfrak{t}) = \frac{\mathfrak{t}}{2}\) for almost all \(\mathfrak{t} > 0\). Note that \(\lim_{\mathfrak{t} \to \infty } \inf (\mathfrak{t} -\uppsi ( \mathfrak{t})) > 0\) with \(\uppsi (\mathfrak{t}) <\mathfrak{t} (\forall \mathfrak{t} > 0)\). Finally, consider \(\mathfrak{U}: \mathcal{C}\to \mathcal{P}( \mathcal{C})\) by

$$\begin{aligned} \mathfrak{U}(\mathrm{v}): = \bigl\{ \mathfrak{p} \in \mathcal{C}: \text{there exists} \wp \in \mathfrak{S}_{\mathfrak{H}, \mathrm{v}} \text{s.t.} \mathfrak{p}( \mathfrak{t}) = \Upsilon (\mathfrak{t}) \ \forall \mathfrak{t} \in [a, b] \bigr\} , \end{aligned}$$

where we have

$$\begin{aligned} \Upsilon (\mathfrak{t}) ={}& \mathrm{v}_{0} + \frac{\mathrm{v}_{1}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q }}{ \Gamma (q +1)} + \frac{\mathrm{v}_{2}( \mathbb{G}(\mathfrak{t}) - \mathbb{G}(a))^{q +p}}{ \Gamma (q + p +1)} \\ & {}+ \frac{\mathrm{v}_{3}(\mathbb{G}(\mathfrak{t})-\mathbb{G}(a))^{q + p + r }}{\Gamma (q + p + r +1)} \\ &{} + \int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k )} \wp (\xi ) \,\mathrm{d}\xi \\ = {}&3.92 + \frac{ (-5.23) (\mathbb{G}(\mathfrak{t}) - \mathbb{G}(0.2))^{0.61}}{ \Gamma (1.61)} + \frac{ 4.08( \mathbb{G}(\mathfrak{t}) - \mathbb{G}(0.2))^{1.1}}{ \Gamma (2.1)} \\ & {}+ \frac{(-1.15) ( \mathbb{G}( \mathfrak{t}) - \mathbb{G}(0.2))^{1.45}}{\Gamma (2.45)} \\ &{} + \int _{0.2}^{\mathfrak{t}} \mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{1.18}}{\Gamma (2.18)} \wp (\xi ) \,\mathrm{d}\xi. \end{aligned}$$
(77)

Considering \(\wp =\frac{\mathfrak{t}}{10}\), we can see the results of \(\Upsilon (\mathfrak{t})\) in Table 6. These results are plotted in Fig. 5. Since the operator \(\mathfrak{U}\) has the (AEP)-property, by Theorem 5.2 system (76) has at least one solution.

Figure 5
figure 5

Graphical representation of \(\mathcal{O}_{j}\) and \(\Upsilon _{j}\) for \(\mathfrak{t} \in [0.2,0.85]\), \(j=1,2,3,4\), in Example 6.3 where \(\mathbb{G}_{1}(\mathfrak{t}) = 2^{\mathfrak{t}}\), \(\mathbb{G}_{2}(\mathfrak{t})= \mathfrak{t}\), \(\mathbb{G}_{3}(\mathfrak{t}) = \ln \mathfrak{t}\), \(\mathbb{G}_{4}( \mathfrak{t} )= \sqrt{\mathfrak{t}}\)

Algorithm 1
figure a

MATLAB function for calculating the fractional integral \(\int _{a}^{\mathfrak{t}}\mathbb{G}'(\xi ) \frac{(\mathbb{G}(\mathfrak{t}) - \mathbb{G}(\xi ))^{q + p + r + k -1}}{\Gamma (q + p + r + k)} \wp (\xi ) \,\mathrm{d}\xi \) in Example 6.3 for \(\mathfrak{t} \in [a,b]\)

Algorithm 2
figure b

MATLAB lines for calculating values of \(\mathcal{O}\), \(L\mathcal{O}\), Λ, and in Example 6.1 for \(\mathfrak{t} \in [1.1, 2.6]\) and \(\mathbb{G}(\mathfrak{t}):=\{ 2^{\mathfrak{t}}, \mathfrak{t}, \ln \mathfrak{t}, \sqrt{\mathfrak{t}} \}\)

Table 6 Numerical results of \(\mathcal{O}_{j}^{*}\) and \(\Upsilon _{j}\), \(j=1,2,3,4\), for \(\mathfrak{t}\in [0.2,0.85]\) in Example 6.3 when \(\mathbb{G}_{1}(\mathfrak{t}) = 2^{\mathfrak{t}}\), \(\mathbb{G}_{2}(\mathfrak{t})= \mathfrak{t}\), \(\mathbb{G}_{3}(\mathfrak{t}) = \ln \mathfrak{t}\), \(\mathbb{G}_{4}( \mathfrak{t} )= \sqrt{\mathfrak{t}}\)

7 Conclusion

In this paper, we defined a new fractional mathematical model of a BVP consisting of the snap equation in the framework of the generalized sequential \(\mathbb{G}\)-operators and turned to the investigation of the qualitative behaviors of its solutions including the existence, uniqueness, stability, and inclusion version. To obtain an existence criterion, we used the Leray–Schauder theorem, and to obtain a uniqueness criterion, we utilized the Banach theorem. We studied different kinds of stability criteria based on the standard definitions of these notions. With the help of some special contractions, we established some theorems regarding the inclusion structure of the \(\mathbb{G}\)-snap problem. In the final step, we designed three examples, and considering different cases of the function \(\mathbb{G}\) and order q, we obtained numerical results of these two suggested fractional \(\mathbb{G}\)-snap systems in Caputo, Caputo–Hadamard, and Katugampola versions. Note that in this paper, by assuming \(\mathbb{G}(\mathfrak{t}) =\mathfrak{t}\) and \(q=p=r=k = 1\) we derived the standard 4th-order ODE of snap equation. Therefore we will be able to review other properties of this extended fractional \(\mathbb{G}\)-snap BVP by designing new generalized models based on nonsingular operators in the future works.