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Abstract
This research is conducted for studying some qualitative specifications of solution to
a generalized fractional structure of the standard snap boundary problem. We first
rewrite the mathematical model of the extended fractional snap problem by means
of theG-operators. After finding its equivalent solution as a form of the integral
equation, we establish the existence criterion of this reformulated model with respect
to some known fixed point techniques. Then we analyze its stability and further
investigate the inclusion version of the problem with the help of some special
contractions. We present numerical simulations for solutions of several examples
regarding the fractionalG-snap system in different structures including the Caputo,
Caputo–Hadamard, and Katugampola operators of different orders.
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1 Introduction
Fractional calculus is one of the most important branches of applied mathematics. The
main importance of this field can be observed in many published papers regarding differ-
ent fractional differential equations and inclusions in recent years. In this direction, differ-
ent generalizations of derivatives have been introduced by some researchers. For example,
recently, Lazreg et al. [1] investigated the Cauchy problem of Caputo–Fabrizio impulsive
fractional differential equations

⎧
⎪⎪⎨

⎪⎪⎩

(CFDr
ak

v)(t) = f (t, v(t)), t ∈ Ik , k = 0, 1, . . . , m,

v(a+
k ) = v(a–

k ) + �k(v(a–
k )), k = 1, 2, . . . , m,

v(0) = v0,

where I0 = [0, a1], Ik = (ak , ak+1], k = 1, 2, . . . , m, 0 = a0 < a1 < a2 < · · · < am < am+1 = τ , v0 ∈
R, f : Ik × R → R (k = 0, 1, . . . , m) and �k : R → R (k = 1, . . . , m) are given continuous
functions, and CFDr

ak
is the Caputo–Fabrizio derivative of order r ∈ (0, 1). Also, Krim et al.
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[2] considered the class of terminal value problems of Katugampola implicit differential
equations of noninteger orders

⎧
⎨

⎩

(KDr
0+ + v)(t) = f (t, v(t), (KDr

0+ + v)(t)), I = [0, τ0],

v(τ0) = v0 ∈R, τ > 0,

where the function f : I×R
2 →R is continuous, and KDr

0+ is the Katugampola fractional
derivative of order r ∈ (0, 1]. In 2020, Baitiche et al. [3] generalized the fractional settings
and studied the existence of solutions of the following ψ-Caputo fractional differential
equation:

⎧
⎨

⎩

CDq,ψ
a+ v(t) + f (t, v(t)) = 0, t ∈ J = [a, b],

v(a) = v′(a) = 0, v(b) =
∑m

i=1 λiv(ηi), ηi ∈ (a, b),

where CDq,ψ
a+ is the ψ-Caputo fractional derivative of order q ∈ (2, 3], w : J × R → R is a

given continuous function, and λi are real constants satisfying � =
∑m

i=1 λi(ψ(ηi)–ψ(a))2 –
(ψ(b) – ψ(a))2 �= 0. Also, Wahash et al. [4] investigated the existence and interval of exis-
tence, uniqueness, estimates of solutions, and different types of Ulam stability results of
solutions on a subinterval of [0, b] for the nonlinear fractional differential equation in-
volving generalized Caputo fractional derivatives with respect to the function ψ given by
CDq,ψ

a+ v(t) = f (t, v(t)), t ∈ [0, b], with nonlocal condition v(0) = �(v) = v0, where q ∈ (0, 1),
v0 ∈ R, CDq,ψ

a+ denotes the ψ-Caputo fractional derivative of order q, f : [0, b] × R → R

and � : C([0, b],R) → R are nonlinear continuous functions, and v ∈ C([0, b],R) is such
that the operator CDq,ψ

a+ exists and CDq,ψ
a+ ∈ C([0, b],R).

In 2019, Pham et al. [5] introduced a chaotic integer-order system, called a snap system,
which involves only one quadratic nonlinear term and takes the following mathematical
form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dv1
dt = v2(t),

dv2
dt = v3(t),

dv3
dt = v4(t),

dv4
dt = T (v1, v2, v3, v4),

(1)

where T (v1, v2, v3, v4) = –av1 – v2 – v4 + bv1v3. Equation (1) can be transformed into a
fourth-order differential equation

d4v1

dt4 = T
(

v1,
dv1

dt
,

d2v1

dt2 ,
d3v1

dt3

)

. (2)

The new equation (2) contains a fourth-order derivative of the variable v1, which in physics
stands for a second derivative of acceleration in a mechanical system. Equation (2) is called
a snap or jounce equation and describes a fourth-order dynamical model.

Many researchers have investigated sufficient conditions for the uniqueness, existence,
stability, and attractivity of solutions for a wide domain of fractional nonlinear ordi-
nary differential equations (ODEs) or mathematical models containing different fractional
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derivatives by using numerous types of methods including standard fixed point theory, T-
degree theory, variational methods, monotone iterative approaches, MNC technique, and
so on. For more detail, see [6–23]. However, to the best of our knowledge, limited results
can be found on the existence and stability of solutions of fractional snap systems via the
generalized G-Caputo derivative.

The authors in [24] studied the fractional snap model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDqv1 = v2(t),
cDqv2 = v3(t),
cDqv3 = v4(t),
cDqv4 = –av1 – v2 – v4 + bv1v3,

where a = 2, b = 1, and the Caputo fractional order q = 0.95.
In view of the above facts, in this paper, we focus our attention on the problem of the

existence and uniqueness along with the Hyers–Ulam stability of solutions for different
forms of fractional nonlinear snap systems in the G-Caputo sense with initial conditions.
Namely, we study the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDq;G
a+ v(t) = u(t), v(a) = v0,

cDp;G
a+ u(t) = w(t), u(a) = v1,

cDr;G
a+ w(t) = x(t), w(a) = v2,

cDk;G
a+ x(t) = h(t, v, u, w, x), x(a) = v3,

(3)

where cDη;G
a+ are the G-Caputo derivatives, η belong to {q, p, r, k} such that 0 < q, p, r, k ≤ 1,

the increasing function G ∈ C1([a, b]) is such that G′(t) �= 0, t ∈ [a, b], h ∈ C([a, b]×R
4,R),

and v0, v1, v2, v3 ∈ R. It is obvious that this system can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDk;G
a+ (cDr;G

a+ (cDp;G
a+ (cDq;G

a+ v(t))))

= h(t, v(t), cDq;G
a+ v(t), cDp;G

a+ (cDq;G
a+ v(t)), cDr;G

a+ (cDp;G
a+ (cDq;G

a+ v(t)))),

v(a) = v0, cDq;G
a+ v(t)|t=a = v1,

cDp;G
a+ (cDq;G

a+ v(t))|t=a = v2, cDr;G
a+ (cDp;G

a+ (cDq;G
a+ v(t)))|t=a = v3.

(4)

It is natural that if we set G(t) = t, a = 0, and q = p = r = k = 1, then we obtain the standard
4th-order ODE (2) with initial conditions. Our method in this paper is based on fixed
point approaches. Also, we can find more ideas on fractional calculus and its applications
in [3, 25–41].

The summary of our work in this research is as follows. In Sect. 2, we recall several
assembled concepts of fractional calculus, useful lemmas, and some theorems about the
fixed points. In Sect. 3, we give the proof of the fundamental theorems of this paper by
utilizing fixed point approaches such as Banach’s principle and Schauder’s theorem. In
Sect. 4, we discuss the stability in the context of the Ulam–Hyers stability, its generalized
version along with Ulam–Hyers–Rassias stability, and its generalized version for solutions
of the fractional G-snap system (4). In Sect. 5, we utilize a special form of contractions to
prove the existence results for an inclusion version of (4). Appropriate applications with
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numerical simulation are provided in Sect. 6 to illustrate and analyze the obtained results.
Finally, in Sect. 7, we give the conclusion of our article.

2 Preliminaries
Here we recall some initial notions, definitions and notations.

Let G : [a, b] → R be increasing via G′(t) �= 0 for all t. We start this part by defining the
G-Riemann–Liouville fractional (G-FRL) integrals and derivatives. In this section, we set

A =
(

1
G′(t)

d
dt

)

.

Definition 2.1 ([42, 43]) For η > 0, the ηth G-FRL integral of an integrable function v :
[a, b] →R with respect to G is given as follows:

Iη;G
a+ v(t) =

1
�(η)

∫ t

a

(
G(t) – G(ξ )

)η–1
G

′(ξ )v(ξ ) dξ , (5)

where �(η) =
∫ +∞

0 e–ttη–1 dt,η > 0.

Let n ∈N, and let G, v ∈ Cn([a, b],R) be such that G has the same properties mentioned
above. The ηth G-FRL derivative of v is defined by

Dη;G
a+ v(t) = A(n)In–η;G

a+ v(t)

=
1

�(n – η)
A(n)

∫ t

a

(
G(t) – G(ξ )

)n–η–1
G

′(ξ )v(ξ ) dξ ,

where n = [η] + 1 [42, 43]. The ηth G-fractional Caputo derivative of v is defined by
cDη;G

a+ v(t) = In–η;G
a+ A(n)v(t), where n = [η] + 1 for η /∈ N and n = η for η ∈ N [44]. In other

words,

cDη;G
a+ v(t) =

⎧
⎨

⎩

∫ t

a
(G(t)–G(ξ ))n–η–1

�(n–η) G
′(ξ )A(n)v(ξ ) dξ , η /∈ N,

Anv(t), η = n ∈N.
(6)

Extension (6) gives the Caputo derivative when G(t) = t. Also, in the case G(t) = ln t, it
yields the Caputo–Hadamard derivative. If v ∈ Cn([a, b],R), then the ηth G-fractional Ca-
puto derivative of v is specified as [44, Theorem 3]

cDη;G
a+ v(t) = Dη;G

a+

(

v(t) –
n–1∑

j=0

A(j)v(a)
j!

(
G(t) – G(a)

)j
)

.

The composition rules for the above G-operators are recalled in the following lemma.

Lemma 2.2 ([45]) Let n – 1 < η < n and v ∈ Cn([a, b],R). Then

Iη;G
a+

cDη;G
a+ v(t) = v(t) –

n–1∑

j=0

A(j)v(a)
j!

[
G(t) – G(a)

]j



Samei et al. Advances in Difference Equations        (2021) 2021:498 Page 5 of 55

for all t ∈ [a, b]. Moreover, if m ∈ N and v ∈ Cn+m([a, b],R), then

A(m)(cDη;G
a+ v

)
(t) = cDη+m;G

a+ v(t) +
m–1∑

j=0

[G(t) – G(a)]j+n–η–m

�(j + n – η – m + 1)
A(j+n)v(a). (7)

From equation (7) observe that if A(j)v(a) = 0 for j = n, n + 1, . . . , n + m – 1, then
A(m)(cDη;G

a+ v)(t) =c Dη+m;G
a+ v(t), t ∈ [a, b].

Lemma 2.3 ([45]) Let η,ν > 0 and v ∈ C([a, b],R). Then for all t ∈ [a, b], denoting Fa(t) =
G(t) – G(a), we have

1. Iη;G
a+ (Iν;G

a+ v)(t) = Iη+ν;G
a+ v(t),

2. cDη;G
a+ (Iη;G

a+ v)(t) = v(t),
3. Iη;G

a+ (Fa(t))ν–1 = �(ν)
�(ν+η) (Fa(t))ν+η–1,

4. cDη;G
a+ (Fa(t))ν–1 = �(ν)

�(ν–η) (Fa(t))ν–η–1,
5. cDη;G

a+ (Fa(t))j = 0, (j = 0, 1, . . . , n – 1), n ∈N, n – 1 ≤ η ≤ n.

To end this part of the paper, we state the following fixed point theorems.

Theorem 2.4 (Banach contraction principle [46]) Let (V,ρ) be a nonempty complete met-
ric space, and let � : V→V be a contraction, that is,

ρ
(
�v,�v∗) ≤ μρ

(
v, v∗) for all v, v∗ ∈V

and for some μ ∈ (0, 1). Then � admits a unique fixed point.

Theorem 2.5 (Leray–Schauder [46]) Let V be a Banach space, let  be a bounded convex
closed subset of V, and let U be an open set contained in  with 0 ∈U. Let � : U →  be a
continuous and compact mapping. Then either (i) � admits a fixed point belonging to Ū,
or (ii) there exist v ∈ ∂U and μ ∈ (0, 1) such that v = μ�(v).

Consider normed space (C,‖ · ‖). The collection of all closed, bounded, compact and
convex subsets of C are denoted by PCL(C), PBN(C), PCP(C), and PCV(C), respectively.

Definition 2.6 ([47]) Consider v : R →R as a real-valued function and H as a multifunc-
tion. (i) H is u.s.c on C if H(v∗) ∈ PCL(C) for any v∗ ∈ C , and also there exists a neighbor-
hood N∗

0 of v∗ subject to H(N∗
0) ⊆ O for O ⊆ C , where O is an arbitrary open set. (ii) A

real-valued map v : R →R is upper semicontinuous such that lim supn→∞ v(rn) ≤ v(r) for
each {rn}n≥1 with rn → r.

A Pompeiu–Hausdorff metric Hρ : (P(C))2 →R∪ {∞} is defined as

Hρ

(
A∗

1,A∗
2
)

= max
{

sup
a∗

1∈A∗
1

ρ
(
a∗

1,A∗
2
)
, sup

A∗
2∈A∗

2

ρ
(
A∗

1, a∗
2
)}

,

where ρ is the metric of M, and [47] ρ(A∗
1, a∗

2) = infa∗
1∈A∗

1
ρ(a∗

1, a∗
2) and ρ(a∗

1,A∗
2) =

infA∗
2∈A∗

2
ρ(a∗

1, a∗
2). Suppose for H : C →PCL(C) and v1, v2 ∈M, we have the inequality

Hρ

(
H(v1),H(v2)

) ≤ Lρ(v1, v2).
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Then H is said to be (H1) a Lipschitz map if L > 0 and (H2) a contraction if 0 < L < 1
[47].

Definition 2.7 ([47]) (i)H : [a, b]×R→P(R) is Carathéodory if t →H(t, v) is measurable
for any v ∈ R and v → H(t, v) is u.s.c for a.e. t ∈ [a, b]. (ii) A Carathéodory multifunction
H : [a, b] × R → P(R) is L1-Carathéodory if for any ε > 0, there exists κε ∈ L1([a, b],R+)
such that

∥
∥H(t, v)

∥
∥ = sup

t∈[a,b]

{|ω| : ω ∈ H(t, v)
} ≤ κε(t)

for all |υ| ≤ ε and almost all t ∈ [a, b].

Definition 2.8 ([48]) Let ψ : R≥0 → R≥0 be a nondecreasing map belonging to class �

such that for all t > 0,
∑∞

j=1 ψj(t) < ∞ and ψ(t) < t. Let �∗ : C → C and α : C2 →R≥0. Then
(i) �∗ is α-ψ-contraction if for v1, v2 ∈ C ,

α(v1, v2)ρ
(
�∗v1,�∗v2

) ≤ ψ
(
ρ(v1, v2)

)
.

(ii) �∗ is α-admissible if α(v1, v2) ≥ 1 gives α(�∗v1,�∗v2) ≥ 1.
(iii) C has property (B) if for every sequence {vn}n≥1 of C with α(vn, vn+1) ≥ 1 and

vn → v, we have α(vn, v) ≥ 1 for all n ≥ 1.

Definition 2.9 ([49]) Let ψ : R≥0 → R≥0 be a nondecreasing map belonging to class �

such that for all t > 0,
∑∞

j=1 ψj(t) < ∞ and ψ(t) < t. Let H : C → P(C) and α : C2 → R≥0.
Then

(i) H : C →PCL,BN(C) is α-ψ-contraction if for all v1, v2 ∈ C ,

α(v1, v2)Hρ(Hv1,Hv2) ≤ ψ
(
ρ(v1, v2)

)
.

(ii) H is α-admissible if for all v1 ∈ C and v2 ∈Hv1, the inequality α(v1, v2) ≥ 1 gives
α(v2, v3) ≥ 1 for each v3 ∈Hv2.

(iii) C has property (Cα) if for every sequence {vn}n≥1 of C with vn → v and
α(vn, vn+1) ≥ 1, there exists a subsequence {vnk } of {vn} such that α(vnk , v) ≥ 1 for all
k ∈N.

Theorem 2.10 ([48]) Let (C,ρ) a complete metric space, and let ψ ∈ �, α : C2 → R, and
�∗ : C → C . Assume that: (i) �∗ is α-admissible and α-ψ-contraction, (ii) α(v0,�∗v0) ≥ 1
for some v0 ∈ C , and (iii) C has property (B). Then �∗ has a fixed point.

Theorem 2.11 ([50]) Let C be a Banach space, and let A �= ∅ belong to PCL,BN,CV(C). Sup-
pose that for T1 and T1 defined on A, (i) T1v + T2v′ ∈ A for v, v′ ∈ A, (ii) T1 is compact-
continuous, and (iii)T2 is a contraction. Then there exists v∗ ∈A such that v∗ = T1v∗ +T2v∗.

Theorem 2.12 ([49]) Let (C,ρ) be a complete metric space, and let ψ ∈ �, α : C2 →
R≥0, and H : C → PCL,BN(C). Assume that (i) H is an α-admissible α-ψ-contraction, (ii)
α(v0, v1) ≥ 1 for some v0 ∈ C and v1 ∈ Hv0, and (iii) C has property (Cα). Then H has a
fixed point.
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Theorem 2.13 ([47]) Let (C,ρ) be a complete metric space. Assume that (i) ψ ∈ � is u.s.c
such that lim inft→∞(t – ψ(t)) > 0 for t > 0 and (ii) H : C →PCL,BN(C) satisfies the property

Hρ(Ht1,Ht2) ≤ ψ
(
ρ(t1, t2)

)
, t1, t2 ∈ C.

Then H has a unique end-point iff H has the (AEP)-property.

3 Existence and uniqueness results
Here we analyze the existence properties of solutions and their uniqueness for the pro-
posed fractional G-snap problem (4). We need the following lemma, which specifies the
corresponding integral equation.

Lemma 3.1 Let q, p, r, k ∈ (0, 1] and v0, v1, v2, v3 ∈ R. If g ∈ C([a, b],R), then the linear G-
snap FBVP

⎧
⎪⎪⎨

⎪⎪⎩

cDk;G
a+ (cDr;G

a+ (cDp;G
a+ (cDq;G

a+ v(t)))) = g(t),

v(a) = v0, cDq;G
a+ v(a) = v1,

cDp;G
a+ (cDq;G

a+ v(a)) = v2, cDr;G
a+ (cDp;G

a+ (cDq;G
a+ v(a))) = v3

(8)

has the solution

v(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
g(ξ ) dξ . (9)

Proof Consider v(t) satisfying the linear fractionalG-snap problem (3.1). Applying the kth
G-integral operator Ik;G

a+ to both sides of equation (8), by the 4th boundary condition we
obtain

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

))
= v3 + Ik;G

a+
cDk;G

a+
(cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

= v3 + Ik;G
a+ g(t).

Similarly, by the 3rd boundary condition, applying the r-th G-integral operator Ir;G
a+ , we

get

cDp;G
a+

(cDq;G
a+ v(t)

)
= v2 +

v3(G(t) – G(a))r

�(r + 1)
+ Ik+r;G

a+ g(t).

By the 2nd boundary condition, applying the pth G-integral operator Ip;G
a+ , we get

cDq;G
a+ v(t) = v1 +

v2(G(t) – G(a))p

�(p + 1)
+

v3(G(t) – G(a))p+r

�(p + r + 1)
+ Ik+r+p;G

a+ g(t), (10)
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and finally, applying the qth G-integral operator Iq;G
a+ to both sides of (10), by the 1st

boundary condition, we get

v(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)
+ Ik+r+p+q;G

a+ g(t).

We see that v(t) fulfills (9), and the proof is complete. �

At present, we aim to verify the existence of a unique solution of the fractional G-snap
system (4) by relying on Theorem 2.4. Note that C([a, b],R) is a Banach space with norm

‖v‖ = sup
t∈[a,b]

∣
∣v(t)

∣
∣ + sup

t∈[a,b]

∣
∣cDq;G

a+ v(t)
∣
∣ + sup

t∈[a,b]

∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)∣
∣

+ sup
t∈[a,b]

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))∣

∣, ∀v ∈ C
(
[a, b],R

)
.

Theorem 3.2 Let h ∈ C([a, b] ×R
4,R), and let

(C1) ∃L > 0 such that ∀t ∈ [a, b] and vj, v∗
j ∈ C([a, b],R), j = 1, 2, 3, 4,

∣
∣h

(
t, v1(t), v2(t), v3(t), v4(t)

)
– h

(
t, v∗

1(t), v∗
2(t), v∗

3(t), v∗
4(t)

)∣
∣

≤ L
4∑

j=1

∣
∣vj(t) – v∗

j (t)
∣
∣. (11)

Then the fractional G-snap system (4) admits a unique solution on [a, b] if LO < 1, where

O :=
(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)
. (12)

Proof To prove the desired result, we first let

�� =
{

v ∈ C
(
[a, b],R

)
: ‖v‖ ≤ �

}

for some constant � > 0 satisfying

� ≥ � + h∗
0O

1 – LO , (13)

where h∗
0 = supt∈[a,b] |h(t, 0, 0, 0, 0)|, and

� := |v0| + |v1|
(

1 +
(G(b) – G(a))q

�(q + 1)

)

+ |v2|
(

1 +
(G(b) – G(a))p

�(p + 1)
+

(G(b) – G(a))q+p

�(q + p + 1)

)
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+ |v3|
(

1 +
(G(b) – G(a))r

�(r + 1)
+

(G(b) – G(a))r+p

�(r + p + 1)

+
(G(b) – G(a))q+p+r

�(q + p + r + 1)

)

. (14)

To apply the Banach principle, we verify that � : C([a, b],R) → C([a, b],R) given as

(�v)(t) = Iq+p+r+k;G
a+ ĥv(t) + v0 + v1

(G(t) – G(a))q

�(q + 1)

+ v2
(G(t) – G(a))p+q

�(p + q + 1)
+ v3

(G(t) – G(a))r+p+q

�(r + p + q + 1)
, (15)

where

ĥv(t) = h
(
t, v(t), cDq;G

a+ v(t), cDp;G
a+

(cDq;G
a+ v(t)

)
, cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

,

admits a unique fixed point, which is the same solution of the fractional G-snap BVP (4).
First, we show ��� ⊂ ��, that is, � maps �� into itself. For each v ∈ �r , we have

∣
∣(�v)(t)

∣
∣ ≤ |v0| + |v1| (G(t) – G(a))q

�(q + 1)
+ |v2| (G(t) – G(a))p+q

�(p + q + 1)

+ |v3| (G(t) – G(a))r+p+q

�(r + p + q + 1)
+ Iq+p+r+k;G

a+
∣
∣ĥv(t)

∣
∣

≤ |v0| + |v1| (G(t) – G(a))q

�(q + 1)
+ |v2| (G(t) – G(a))p+q

�(p + q + 1)

+ |v3| (G(t) – G(a))r+p+q

�(r + p + q + 1)

+ Iq+p+r+k;G
a+

(∣
∣ĥv(t) – h(t, 0, 0, 0, 0)

∣
∣ +

∣
∣h(t, 0, 0, 0, 0)

∣
∣
)

≤ |v0| + |v1| (G(t) – G(a))q

�(q + 1)
+ |v2| (G(t) – G(a))p+q

�(p + q + 1)

+ |v3| (G(t) – G(a))r+p+q

�(r + p + q + 1)

+ Iq+p+r+k;G
a+

(
L
(∣
∣v(t)

∣
∣ +

∣
∣cDq;G

a+ v(t)
∣
∣ +

∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))∣

∣
)

+ h∗
0
)

≤ |v0| + |v1| (G(b) – G(a))q

�(q + 1)
+ |v2| (G(b) – G(a))p+q

�(p + q + 1)

+ |v3| (G(b) – G(a))r+p+q

�(r + p + q + 1)

+
(
L‖v‖ + h∗

0
) (G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)

≤ |v0| + |v1| (G(b) – G(a))q

�(q + 1)
+ |v2| (G(b) – G(a))p+q

�(p + q + 1)

+ |v3| (G(b) – G(a))r+p+q

�(r + p + q + 1)
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+
(
L� + h∗

0
) (G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
. (16)

Also,

∣
∣cDq;G

a+ (�v)(t)
∣
∣

≤ |v1| + |v2| (G(t) – G(a))p

�(p + 1)

+ |v3| (G(t) – G(a))r+p

�(r + p + 1)
+ Ip+r+k;G

a+
∣
∣ĥv(t)

∣
∣

≤ |v1| + |v2| (G(t) – G(a))p

�(p + 1)
+ |v3| (G(t) – G(a))r+p

�(r + p + 1)

+ Ip+r+k;G
a+

(∣
∣ĥv(t) – h(t, 0, 0, 0, 0)

∣
∣ +

∣
∣h(t, 0, 0, 0, 0)

∣
∣
)

≤ |v1| + |v2| (G(t) – G(a))p

�(p + 1)
+ |v3| (G(t) – G(a))r+p

�(r + p + 1)

+ Ip+r+k;G
a+

(
L
(∣
∣v(t)

∣
∣ +

∣
∣cDq;G

a+ v(t)
∣
∣ +

∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))∣

∣
)

+ h∗
0
)

q ≤ |v1| + |v2| (G(b) – G(a))p

�(p + 1)
+ |v3| (G(t) – G(a))r+p

�(r + p + 1)

+
(
L� + h∗

0
) (G(b) – G(a))p+r+k

�(p + r + k + 1)
, (17)

∣
∣cDp;G

a+
(cDq;G

a+ (�v)
)
(t)

∣
∣

≤ |v2| + |v3| (G(t) – G(a))r

�(r + 1)
+ Ir+k;G

a+
∣
∣ĥv(t)

∣
∣

≤ |v2| + |v3| (G(t) – G(a))r

�(r + 1)

+ Ir+k;G
a+

(
L
(∣
∣v(t)

∣
∣ +

∣
∣cDq;G

a+ v(t)
∣
∣ +

∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))∣

∣
)

+ h∗
0
)

≤ |v2| + |v3| (G(t) – G(a))r

�(r + 1)
+

(
L� + h∗

0
) (G(b) – G(a))r+k

�(r + k + 1)
, (18)

and

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ (�v)
))

(t)
∣
∣

≤ |v3| + Ik;G
a+

∣
∣ĥv(t)

∣
∣

≤ |v3| + Ik;G
a+

(
L
(∣
∣v(t)

∣
∣ +

∣
∣cDq;G

a+ v(t)
∣
∣ +

∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))∣

∣
)

+ h∗
0
)

≤ |v3| +
(
L� + h∗

0
) (G(b) – G(a))k

�(k + 1)
. (19)
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From (16), (17), (18), (19), and (13) we get

‖�v‖ = sup
t∈[a,b]

(∣
∣(�x)(t)

∣
∣ +

∣
∣cDq;G

a+ (�v)(t)
∣
∣ +

∣
∣cDp;G

a+
(cDq;G

a+ (�v)
)
(t)

∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ (�v)
))

(t)
∣
∣
)

≤
[

|v0| + |v1|
(

1 +
(G(b) – G(a))q

�(q + 1)

)

+ |v2|
(

1 +
(G(b) – G(a))p

�(p + 1)
+

(G(b) – G(a))p+q

�(p + q + 1)

)

+ |v3|
(

1 +
(G(b) – G(a))r

�(r + 1)
+

(G(b) – G(a))r+p

�(r + p + 1)

+
(G(b) – G(a))q+p+r

�(q + p + r + 1)

)]

+
(
L� + h∗

0
)
[

(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)

+
(G(b) – G(a))p+r+k

�(p + r + k + 1)
+

(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

]

= � +
(
L� + h∗

0
)
O < �,

which implies that ‖�v‖ ≤ � for v ∈ ��, and so ��� ⊂ ��. Next, we investigate the con-
tractivity property of the operator � . For v, w ∈ C([a, b],R), we estimate

∣
∣(�v)(t) – (�w)(t)

∣
∣

≤ Iq+p+r+k;G
a+

∣
∣ĥv(t) – ĥW(t)

∣
∣

≤ Iq+p+r+k;G
a+ L

(∣
∣v(t) – w(t)

∣
∣ +

∣
∣cDq;G

a+ v(t) – cDq;G
a+ w(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ w(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ w(t)

))∣
∣
)

≤ L
(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
‖v – w‖, (20)

∣
∣cDq;G

a+ (�v)(t) – cDq;G
a+ (�w)(t)

∣
∣

≤ Ip+r+k;G
a+ |ĥv – ĥw|

≤ Ip+r+k;G
a+ L

(∣
∣v(t) – w(t)

∣
∣ +

∣
∣cDq;G

a+ x(t) – cDq;G
a+ w(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ w(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ w(t)

))∣
∣
)

≤ L
(G(b) – G(a))p+r+k

�(p + r + k + 1)
‖v – w‖, (21)

∣
∣cDp;G

a+
(cDq;G

a+ (�v)
)
(t) – cDp;G

a+
(cDq;G

a+ (�w)
)
(t)

∣
∣

≤ Ir+k;G
a+ |ĥv – ĥw|

≤ Ir+k;G
a+ L

(∣
∣v(t) – w(t)

∣
∣ +

∣
∣cDq;G

a+ v(t) – cDq;G
a+ w(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ w(t)

)∣
∣
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+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ w(t)

))∣
∣
)

≤ L
(G(b) – G(a))r+k

�(r + k + 1)
‖v – w‖, (22)

and

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ (�v)
))

(t) – cDr;G
a+

(cDp;G
a+

(cDq;G
a+ (�w)

))
(t)

∣
∣

≤ Ik;G
a+ |ĥv – ĥw|

≤ Ik;G
a+ L

(∣
∣v(t) – w(t)

∣
∣ +

∣
∣cDq;G

a+ v(t) – cDq;G
a+ w(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ w(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ w(t)

))∣
∣
)

≤ L
(G(b) – G(a))k

�(k + 1)
‖v – w‖. (23)

From (20), (21), (22), and (23) we obtain

‖�v – �w‖ ≤ L
[

(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

]

‖v – w‖

= LO‖v – w‖.

Thus ‖�v – �w‖ ≤ LO‖v – w‖. Since LO < 1, � is a contraction on C([a, b],R). This,
together with Theorem 2.4, guarantees the existence of a unique fixed point for � and
accordingly the existence of a unique solution for the fractional G-snap BVP (4). The proof
is complete. �

The next existence property for possible solutions of the fractional G-snap BVP (4) is
checked based on the hypotheses of Theorem 2.5.

Theorem 3.3 Let h ∈ C([a, b] ×R
4,R) and assume that:

(C2) there exist � ∈ L1([a, b],R+) and an increasing function f ∈ C([0,∞), (0,∞)) such
that for all t ∈ [a, b] and vj ∈ C([a, b],R), j = 1, 2, 3, 4,

∣
∣h

(
t, v1(t), v2(t), v3(t), v4(t)

)∣
∣ ≤ �(t)f

( 4∑

j=1

∣
∣vj(t)

∣
∣

)

;

(C3) there exists B > 0 such that

B
� + O�∗

0 f (B)
> 1, (24)

where �∗
0 = supt∈[a,b] |�(t)|, and O and � are represented in (12) and (14).

Then the fractional G-snap system (4) has at least one solution on [a, b].
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Proof consider � : C([a, b],R) → C([a, b],R) defined by (15) and the ball Nε = {v ∈
C([a, b],R) : ‖v‖ ≤ ε} for some ε > 0. The continuity of h yields that of the operator � .
Now by (C2) we have

∣
∣(�v)(t)

∣
∣ ≤ |v0| + |v1| (G(t) – G(a))q

�(q + 1)
+ |v2| (G(t) – G(a))p+q

�(p + q + 1)

+ |v3| (G(t) – G(a))r+p+q

�(r + p + q + 1)
+ Iq+p+r+k;G

a+
∣
∣ĥv(t)

∣
∣

≤ |v0| + |v1| (G(t) – G(a))q

�(q + 1)
+ |v2| (G(t) – G(a))p+q

�(p + q + 1)

+ |v3| (G(t) – G(a))r+p+q

�(r + p + q + 1)

+ Iq+p+r+k;G
a+ �(t)f

(∣
∣v(t)

∣
∣ +

∣
∣cDq;G

a+ v(t)
∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)∣
∣ + |cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

≤ |v0| + |v1| (G(b) – G(a))q

�(q + 1)
+ |v2| (G(b) – G(a))p+q

�(p + q + 1)

+
(G(b) – G(a))q+p+r

�(q + p + r + 1)
φ∗

0ϕ
(‖v‖)

≤ |v0| + |v1| (G(b) – G(a))q

�(q + 1)
+ |v2| (G(b) – G(a))p+q

�(p + q + 1)

+ |v3| (G(t) – G(a))r+p+q

�(r + p + q + 1)
+

(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
�∗

0 f (ε) (25)

for v ∈ Nε . In a similar way, we get that

∣
∣cDq;G

a+ (�v)(t)
∣
∣

≤ |v1| + |v2| (G(b) – G(a))p

�(p + 1)

+ |v3| (G(t) – G(a))r+p

�(r + p + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)
�∗

0 f (ε), (26)

∣
∣cDp;G

a+
(cDq;G

a+ (�v)
)
(t)

∣
∣

≤ |v2| + |v3| (G(t) – G(a))r

�(r + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
�∗

0 f (ε), (27)

and

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ (�v)
))

(t)
∣
∣ ≤ |v3| +

(G(b) – G(a))k

�(k + 1)
�∗

0 f (ε). (28)

As a consequence, by (25), (26), (27), and (28) we obtain

‖�v‖ ≤ � + O�∗
0 f (ε) < ∞, (29)
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where O and � are represented by (12) and (14). Hence � is uniformly bounded on
C([a, b],R). Now let us check the equicontinuity of � . Choose arbitrary t, t∗ ∈ [a, b] with
t < t∗ and v ∈ Nε . We have

∣
∣(�v)

(
t
∗) – (�v)(t)

∣
∣ ≤ |v1| |(G(t∗) – G(a))q – (G(t) – G(a))q|

�(q + 1)

+ |v2| |(G(t∗) – G(a))p+q – (G(t) – G(a))p+q|
�(p + q + 1)

+ |v3| |(G(t∗) – G(a))p+q+r – (G(t) – G(a))p+q+r|
�(p + q + r + 1)

+
∣
∣Iq+p+r+k;G

a+ ĥv
(
t
∗) – Iq+p+r+k;G

a+ ĥv(t)
∣
∣.

By letting

sup
(t,v,w,x,y)∈[a,b]×N4

ε

∣
∣h(t, v, w, x, y)

∣
∣ = H̃ < ∞,

this becomes

∣
∣(�v)

(
t
∗) – (�v)(t)

∣
∣

≤ |v1| |(G(t∗) – G(a))q – (G(t) – G(a))q|
�(q + 1)

+ |v2| |(G(t∗) – G(a))p+q – (G(t) – G(a))p+q|
�(p + q + 1)

+ |v3| |(G(t∗) – G(a))p+q+r – (G(t) – G(a))p+q+r|
�(p + q + r + 1)

+
H̃

�(q + p + r + k + 1)
[∣
∣
(
G

(
t
∗) – G(a)

)q+p+r+k

–
(
G(t) – G(a)

)q+p+r+k∣∣ + 2
(
G

(
t
∗) – G(t)

)q+p+r+k]. (30)

Obviously, the right-hand side of (30) does not depend on v and approaches 0 as t∗ tends
to t. In the same way,

∣
∣cDq;G

a+ (�v)
(
t
∗) – cDq;G

a+ (�v)(t)
∣
∣

≤ |v2| |(G(t∗) – G(a))p – (G(t) – G(a))p|
�(p + 1)

+ |v3| |(G(t∗) – G(a))p+r – (G(t) – G(a))p+r|
�(p + r + 1)

+
∣
∣Ip+r+k;G

a+ hv
(
t
∗) – Ip+r+k;G

a+ hv(t)
∣
∣

≤ |v2| |(G(t∗) – G(a))p – (G(t) – G(a))p|
�(p + 1)

+ |v3| |(G(t∗) – G(a))p+r – (G(t) – G(a))p+r|
�(p + r + 1)

+
H̃

�(p + r + k + 1)
[∣
∣
(
G

(
t
∗) – G(a)

)p+r+k
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–
(
G(t) – G(a)

)p+r+k∣∣ + 2
(
G

(
t
∗) – G(t)

)p+r+k]. (31)

Again, the right-hand side of (31) goes to zero as t∗ → t independently of v. Finally,

∣
∣cDp;G

a+
(cDq;G

a+ (�v)
)(
t
∗) – cDp;G

a+
(cDq;G

a+ (�v)
)
(t)

∣
∣

≤ |v3| |(G(t∗) – G(a))r – (G(t) – G(a))r|
�(r + 1)

+
∣
∣Ir+k;G

a+ hv
(
t
∗) – Ir+k;G

a+ hv(t)
∣
∣

≤ H̃
�(r + k + 1)

[∣
∣
(
G

(
t
∗) – G(a)

)r+k

–
(
G(t) – G(a)

)r+k∣∣ + 2
(
G

(
t
∗) – G(t)

)r+k] (32)

and

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ (�v)
))(

t
∗) – cDr;G

a+
(cDp;G

a+
(cDq;G

a+ (�v)
))

(t)
∣
∣

≤ H̃
�(k + 1)

[∣
∣
(
G

(
t
∗) – G(a)

)k –
(
G(t) – G(a)

)k∣∣

+ 2
(
G

(
t
∗) – G(t)

)k], (33)

which independent of v. The right-hand sides of (34) and (33) approach 0 as t∗ → t. There-
fore relations (30), (31), (32), and (34) imply that

∥
∥(�v)

(
t∗) – (�v)(t)

∥
∥ → 0

as t∗ → t. Thus the equicontinuity of � is confirmed. Hence � is compact on Nε by the
Arzelá–Ascoli theorem. Until now, we saw that the hypotheses of Theorem 2.5 are fulfilled
for the operator � . Thus one of two cases (i) or (ii) is valid. By (C3) we build

U :=
{

v ∈ C
(
[a, b],R

)
: ‖v‖ < B

}

for B > 0 via � + O�∗
0 f (B) < B. With the help of (C2), by (29) we write

‖�v‖ ≤ � + O�∗
0 f

(‖v‖). (34)

Now we assume the existence of v ∈ ∂U and μ ∈ (0, 1) subject to v = μ�v. For such a
selection of v and μ, we may write by (34) that

B = ‖v‖ = μ‖�v‖ < � + O�∗
0 f

(‖v‖) = � + O�∗
0 f (B) < B,

a contradiction. Therefore case (ii) does not hold, and by Theorem 2.5 � admits a fixed
point in U, which is regarded as a solution of the fractional G-snap system (4), and this
concludes the proof. �
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4 Stability criterion
In this part, we review the stability criterion in the context of the Ulam–Hyers stability, its
generalized version along with Ulam–Hyers–Rassias stability, and its generalized version
for solutions of the fractional G-snap system (4).

Definition 4.1 The fractional G-snap BVP (4) is Ulam–Hyers stable if there exists 0 <
c∗

h ∈ R such that for all ε > 0 and v∗ ∈ C([a, b],R) satisfying

∣
∣cDk;G

a+
(cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗(t)
)))

– ĥv∗ (t)
∣
∣ < ε, (35)

there exists v ∈ C([a, b],R) satisfying the fractional G-snap BVP (4) with

∣
∣v∗(t) – v(t)

∣
∣ ≤ εc∗

h ∀t ∈ [a, b].

Definition 4.2 The fractional G-snap BVP (4) is generalized Ulam–Hyers stable if there
exists c∗

h ∈ C(R+,R+) with c∗
h(0) = 0 such that for all ε > 0 and v∗ ∈ C([a, b],R) satisfying

the inequality

∣
∣cDk;G

a+
(cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗(t)
)))

– ĥv∗ (t)
∣
∣ < ε,

there exists a solution v ∈ C([a, b],R) of the fractional G-snap BVP (4) such that

∣
∣v∗(t) – v(t)

∣
∣ ≤ c∗

h(ε) ∀t ∈ [a, b].

Definition 4.3 The fractionalG-snap BVP (4) is Ulam–Hyers–Rassias stable with respect
to � if there exists 0 < c∗

h,� ∈R such that for all ε > 0 and v∗ ∈ C([a, b],R) satisfying

∣
∣cDk;G

a+
(cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗(t)
)))

– ĥv∗ (t)
∣
∣ < ε�(t), (36)

there exists a solution v ∈ C([a, b],R) of the fractional G-snap BVP (4) such that

∣
∣v∗(t) – v(t)

∣
∣ ≤ εc∗

h,��(t) ∀t ∈ [a, b].

Definition 4.4 The fractional G-snap BVP (4) is generalized Ulam–Hyers–Rassias stable
with respect to � if there exists 0 < c∗

h,� ∈R such that for all v∗ ∈ C([a, b],R) satisfying

∣
∣cDk;G

a+
(cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗(t)
)))

– ĥv∗ (t)
∣
∣ < �(t),

there exists a solution v ∈ C([a, b],R) of the fractional G-snap BVP (4) such that

∣
∣v∗(t) – v(t)

∣
∣ ≤ c∗

h,��(t) ∀t ∈ [a, b].

Remark 4.1 (a1) Def. 4.1 ⇒ Def. 4.2; (a2) Def. 4.3 ⇒ Def. 4.4; and (a3) for �(t) = 1, Def.
4.3 ⇒ Def. 4.1.
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Remark 4.2 Note that v∗ ∈ C([a, b],R) is called a solution ofinequality (35) iff there exists
g ∈ C([a, b],R) depending on v∗ such that for all t ∈ [a, b], (i) |g(t)| < ε; and (ii)

cDk;G
a+

(cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v∗(t)

)))
= ĥv∗ (t) + g(t).

Remark 4.3 Note that v∗ ∈ C([a, b],R) is called a solution off inequality (36) iff there exists
g ∈ C([a, b],R) depending on v∗ such that for all t ∈ [a, b], (i) |g(t)| < ε�(t); and (ii)

cDk;G
a+

(cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v∗(t)

)))
= ĥv∗ (t) + g(t).

Here we discuss the Ulam–Hyers stability of the fractional G-snap BVP (4).

Theorem 4.5 If all assumptions (C1) are fulfilled, then the fractional G-snap BVP (4) is
Ulam–Hyers stable on [a, b] and is generalized Ulam–Hyers stable if LO < 1.

Proof For every ε > 0 and all v∗ ∈ C([a, b],R) satisfying

∣
∣cDk;G

a+
(cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

– ĥv(t)
∣
∣ < ε,

we can find a function g(t) satisfying

cDk;G
a+

(cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

)))
= ĥv(t) + g(t)

with |g(t)| ≤ ε. It follows that

v∗(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))p+q

�(p + q + 1)

+
v3(G(t) – G(a))r+p+q

�(r + p + q + 1)
+ Iq+p+r+k;G

a+ g(t) + Iq+p+r+k;G
a+ ĥv(t).

Let v ∈ C([a, b],R) be the unique solution of the fractionalG-snap BVP (4). Then it is given
by

v(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))p+q

�(p + q + 1)

+
v3(G(t) – G(a))r+p+q

�(r + p + q + 1)
+ Iq+p+r+k;G

a+ ĥv(t)

and

∣
∣v∗(t) – v(t)

∣
∣ ≤ Iq+p+r+k;G

a+
∣
∣g(t)

∣
∣ + Iq+p+r+k;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ ε(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
+

L(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
∥
∥v∗ – v

∥
∥. (37)

Also,

∣
∣
(cDq;G

a+ v∗)(t) –
(cDq;G

a+ v
)
(t)

∣
∣
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≤ Ip+r+k;G
a+

∣
∣g(t)

∣
∣ + Ip+r+k;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ ε(G(b) – G(a))p+r+k

�(p + r + k + 1)
+

L(G(b) – G(a))p+r+k

�(p + r + k + 1)
∥
∥v∗ – v

∥
∥, (38)

∣
∣cDp;G

a+
(cDq;G

a+ v∗)(t) – cDp;G
a+

(cDq;G
a+ v

)
(t)

∣
∣

≤ Ir+k;G
a+

∣
∣g(t)

∣
∣ + Ir+k;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ ε(G(b) – G(a))r+k

�(r + k + 1)
+

L(G(b) – G(a))r+k

�(r + k + 1)
∥
∥v∗ – v

∥
∥, (39)

and

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗)(t)
)

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v

))
(t)

∣
∣

≤ Ik;G
a+

∣
∣g(t)

∣
∣ + Ik;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ ε(G(b) – G(a))k

�(k + 1)
+

L(G(b) – G(a))k

�(k + 1)
∥
∥v∗ – v

∥
∥. (40)

From (37), (38), (39), and (40) we get

∥
∥v∗ – v

∥
∥ = sup

t∈[a,b]

(∣
∣v∗(t) – v(t)

∣
∣ +

∣
∣
(cDq;G

a+ v∗)(t) –
(cDq;G

a+ v
)
(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v∗)(t) – cDp;G
a+

(cDq;G
a+ v

)
(t)

∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗))(t) – cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v

))
(t)

∣
∣
)

≤Oε + LO
∥
∥v∗ – v

∥
∥,

where O is defined in (12). As a consequence, it follows that

∥
∥v∗ – v

∥
∥ ≤ Oε

1 – LO .

If we let c∗
h = O

1–LO , then the Ulam–Hyers stability is fulfilled. Next, for

c∗
h(ε) =

O
1 – LO ε

with c∗
h(0) = 0, the generalized Ulam–Hyers stability is fulfilled. �

The Ulam–Hyers–Rassias stability for the fractional G-snap BVP (4) is checked in the
following:

Theorem 4.6 Let conditions (C1) be satisfied, and assume that
(C4) there exist an increasing map � ∈ C([a, b],R+) and λ� > 0 such that for all

t ∈ [a, b],

Iq+p+r+k;G
a+ �(t) + Ip+r+k;G

a+ �(t) + Ir+k+;G
a+ �(t) + Ik;G

a+ �(t) < λ��(t). (41)

Then the fractional G-snap BVP (4) is Ulam–Hyers–Rassias stable and is generalized
Ulam–Hyers–Rassias stable.
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Proof For every ε > 0 and all v∗ ∈ C([a, b],R) satisfying

∣
∣cDk;G

a+
(cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

– ĥv(t)
∣
∣ < ε�(t),

we can find a function g(t) satisfying

cDk;G
a+

(cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

)))
= ĥv(t) + g(t)

with |g(t)| ≤ ε�(t). It follows that

v∗(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))p+q

�(p + q + 1)

+
v3(G(t) – G(a))p+q+r

�(p + q + r + 1)
+ Iq+p+r+k;G

a+ g(t) + Iq+p+r+k;G
a+ ĥv∗ (t).

If v ∈ C([a, b],R) is a unique solution of (4), then we have

v(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))p+q

�(p + q + 1)

+
v3(G(t) – G(a))p+q+r

�(p + q + r + 1)
+ Ip+q+r+k;G

a+ ĥv(t).

Then

∣
∣v∗(t) – v(t)

∣
∣ ≤ Iq+p+r+k;G

a+
∣
∣g(t)

∣
∣ + Iq+p+r+k;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ εIq+p+r+k;G
a+ �(t) +

L(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
∥
∥v∗ – v

∥
∥. (42)

Also,

∣
∣
(cDq;G

a+ v∗)(t) –
(cDq;G

a+ v
)
(t)

∣
∣

≤ Ip+r+k;G
a+

∣
∣g(t)

∣
∣ + Ip+r+k;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ εIp+r+k;G
a+ �(t) +

L(G(b) – G(a))p+r+k

�(p + r + k + 1)
∥
∥v∗ – v

∥
∥, (43)

∣
∣cDp;G

a+
(cDq;G

a+ v∗)(t) – cDp;G
a+

(cDq;G
a+ v

)
(t)

∣
∣

≤ Ir+k;G
a+

∣
∣g(t)

∣
∣ + Ir+k;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ εIr+k;G
a+ �(t) +

L(G(b) – G(a))r+k

�(r + k + 1)
∥
∥v∗ – v

∥
∥, (44)

and

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗))(t) – cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v

))
(t)

∣
∣

≤ Ik;G
a+

∣
∣g(t)

∣
∣ + Ik;G

a+
∣
∣ĥv∗ (t) – ĥv(t)

∣
∣

≤ εIk;G
a+ �(t) +

L(G(b) – G(a))r+k

�(k + 1)
∥
∥v∗ – v

∥
∥. (45)
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From (42), (43), (44), and (45) we get

∥
∥v∗ – v

∥
∥ = sup

t∈[a,b]

(∣
∣v∗(t) – v(t)

∣
∣ +

∣
∣
(cDq;G

a+ v∗)(t) –
(cDq;G

a+ v
)
(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v∗)(t) – cDp;G
a+

(cDq;G
a+ v

)
(t)

∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v∗))(t) – cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v

))
(t)

∣
∣
)

≤ ε
[
Iq+p+r+k;G

a+ �(t) + Ip+r+k;G
a+ �(t) + Ir+k;G

a+ �(t)

+ Ik;G
a+ �(t)

]
+ LO

∥
∥v∗ – v

∥
∥

≤ ελ��(t) + LO
∥
∥v∗ – v

∥
∥,

where O is defined in (12). Accordingly, it gives

∥
∥v∗ – v

∥
∥ ≤ ελ��(t)

1 – LO .

If we let c∗
h,� = λ�

1–LO , then the fractional G-snap BVP (4) is stable in the Ulam–Hyers–
Rassias sense. Along with this, setting ε = 1, the fractional G-snap BVP (4) is generalized
Ulam–Hyers–Rassias stable. �

5 Inclusion version of (4)
Here we will derive the existence of solutions to the inclusion version of fractional non-
linear snap system of the G-Caputo sense with initial conditions (4), which takes the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDk;G
a+ (cDr;G

a+ (cDp;G
a+ (cDq;G

a+ v(t))))

∈H(t, v(t), cDq;G
a+ v(t), cDp;G

a+ (cDq;G
a+ v(t)), cDr;G

a+ (cDp;G
a+ (cDq;G

a+ v(t)))),

v(a) = v0, cDq;G
a+ v(a) = v1,

cDp;G
a+ (cDq;G

a+ v(a)) = v2, cDr;G
a+ (cDp;G

a+ (cDq;G
a+ v(a))) = v3,

(46)

where H ia a multifunction on the product space [a, b] × R
4. The function v ∈ C :=

C([a, b],R) is called a solution of system (46) if it satisfies the boundary conditions and
there is ℘ ∈ L1([a, b]) such that ℘(t) ∈ Ĥv(t) for almost all t ∈ [a, b], where

Ĥv(t) = H
(
t, v(t), cDq;G

a+ v(t), cDp;G
a+

(cDq;G
a+ v(t)

)
, cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

,

and

v(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘(ξ ) dξ (47)

for all t ∈ [a, b]. For each v ∈ C , we define the set of selections of the operator H as

SH,v =
{
℘ ∈ L1([a, b]

)
: ℘(t) ∈ Ĥv(t),∀t ∈ [a, b]

}
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and define the operator U : C →P(C) by

U(v) =
{
p ∈ C : there exists℘ ∈SH,vsuch thatp(t) = ϒ(t) ∀t ∈ [a, b]

}
, (48)

where

ϒ(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘(ξ ) dξ . (49)

Theorem 5.1 Let H : [a, b] × C4 →PCP(C) be a multifunction. Suppose that the following
conditions are satisfied:

(C5) The multifunction H is integrable and bounded, and

H(·, v1, v2, v3, v4) : [a, b] →PCP(C)

is measurable for v1, v2, v3, v4 ∈ C ;
(C6) There exist φ ∈ C([a, b], [0,∞)) and a nondecreasing function ψ ∈ � such that

Hd
(
H(t, v1, v2, v3, v4),H(t, v́1, v́2, v́3, v́4)

) ≤ φ(t)λ∗

‖φ‖ ψ

( 4∑

k=1

|vk – v́k|
)

for all t ∈ [a, b] and v1, v2, v3, v4, v́1, v́2, v́3, v́4 ∈ C , where O∗ = O–1;
(C7) There is χ∗ : R4 ×R

4 → R such that

χ∗((v1, v2, v3, v4), (v́1, v́2, v́3, v́4)
) ≥ 0

for all vk , v́k ∈ C (k = 1, 2, 3, 4);
(C8) If {vn} is a sequence in C with vn → v and

χ∗((vn(t), cDq;G
a+ vn(t), cDp;G

a+
(cDq;G

a+ vn(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ vn(t)

)))
,

(
vn+1(t), cDq;G

a+ vn+1(t), cDp;G
a+

(cDq;G
a+ vn+1(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ vn+1(t)

)))) ≥ 0

for all t ∈ [a, b] and natural numbers n, then there exists a subsequence {vnj} of
{vn} such that

χ∗((vnj (t),
cDq;G

a+ vnj (t),
cDp;G

a+
(cDq;G

a+ vnj (t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ vnj (t)

)))
,

(
v(t), cDq;G

a+ v(t), cDp;G
a+

(cDq;G
a+ v(t)

)
,
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cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

)))) ≥ 0

for all t ∈ [a, b] and j ≥ 1;
(C9) There exist v0 ∈ C and p ∈ U(v0) such that

χ∗((v0(t), cDq;G
a+ v0(t), cDp;G

a+
(cDq;G

a+ v0(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v0(t)

)))
,

(
p(t), cDq;G

a+ p(t), cDp;G
a+

(cDq;G
a+ p(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ p(t)

)))) ≥ 0

for t ∈ [a, b], where U : C → P(C) is defined by (48);
(C10) For any v ∈ C and p ∈ U(v) with

χ∗((v(t), cDq;G
a+ v(t), cDp;G

a+
(cDq;G

a+ v(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

)))
,

(
p(t), cDq;G

a+ p(t), cDp;G
a+

(cDq;G
a+ p(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ p(t)

)))) ≥ 0,

there exists p∗ ∈ U(v) such that

χ∗((
p(t), cDq;G

a+ p(t), cDp;G
a+

(cDq;G
a+ p(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ p(t)

)))
,

(
v(t), cDq;G

a+ p
∗(t), cDp;G

a+
(cDq;G

a+ p
∗(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ p

∗(t)
)))) ≥ 0

for all t ∈ [a, b].
Then the inclusion problem (46) has at least one solution.

Proof Obviously, the fixed point of U : C →P(C) is a solution of BVP (46). Since the mul-
tivalued map t → Ĥv(t) is closed-valued and measurable for all v ∈ C , H has measurable
selection, and SH,v is nonempty. We have to prove that U(v) is closed in C for v ∈ C . Take
{vn} in U(v) such that vn → v. For each n, ℘n ∈ SH,v is chosen such that

vn(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘n(ξ ) dξ (50)

for all t ∈ [a, b]. Since H has compact values, we define a subsequence of {℘n} (again by
the same notation) that converges to ℘ ∈ L1([0, 1]). Hence ℘ ∈SH,v and

vn(t) → v(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)
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+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘(ξ ) dξ (51)

for all t ∈ [a, b], which gives that v ∈ U(v) and U is closed valued. As H is compact-valued,
it is a simple task to affirm the boundedness of U(v) for arbitrary v ∈ C . We have to prove
that U is an α-ψ-contraction. For such a goal, we define α(v, v́) = 1 whenever

χ∗((v(t), cDq;G
a+ v(t), cDp;G

a+
(cDq;G

a+ v(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

)))
,

(
v́(t), cDq;G

a+ v́(t), cDp;G
a+

(cDq;G
a+ v́(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́(t)

)))) ≥ 0,

otherwise α(v, v́) = 0 for all v, v́ ∈ C . Let v, v́ ∈ C and �
∗
1 ∈ U(v́) and choose ℘1 ∈ SH,v́ such

that

�
∗
1(t) = v0 +

v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘1(ξ ) dξ

for all t ∈ [a, b]. We estimate

Hd
(
Ĥv(t), Ĥv́(t)

)

≤ φ(t)O∗

‖φ‖ ψ
(|v – v́| +

∣
∣cDq;G

a+ v(t) – cDq;G
a+ v́(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ v́(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́(t)

))∣
∣
)

for all v, v́ ∈ C with

χ∗((v(t), cDq;G
a+ v(t), cDp;G

a+
(cDq;G

a+ v(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

)))
,

(
v́(t), cDq;G

a+ v́(t), cDp;G
a+

(cDq;G
a+ v́(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́(t)

)))) ≥ 0

for almost all t ∈ [a, b]. Thus there exists ϒ ∈ Ĥv such that

∣
∣℘1(t) – ϒ

∣
∣ ≤ φ(t)O∗

‖φ‖ ψ
(|v1 – v́1| +

∣
∣cDq;G

a+ v1(t) – cDq;G
a+ v́1(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v1(t)
)

– cDp;G
a+

(cDq;G
a+ v́1(t)

)∣
∣
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+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v1(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́1(t)

))∣
∣
)
.

Now let N∗ : [0, 1] →P(C) be a multivalued map defined as

N
∗(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϒ ∈ C : |℘1(t) – ϒ |
≤ φ(t)O∗

‖φ‖ ψ(|v1 – v́1| + |cDq;G
a+ v1(t) – cDq;G

a+ v́1(t)|
+ |cDp;G

a+ (cDq;G
a+ v1(t)) – cDp;G

a+ (cDq;G
a+ v́1(t))|

+ |cDr;G
a+ (cDp;G

a+ (cDq;G
a+ v1(t)))

– cDr;G
a+ (cDp;G

a+ (cDq;G
a+ v́1(t)))|)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

for all t ∈ [a, b]. As ℘1 and

ζ =
φ(t)O∗

‖φ‖ ψ
(|v1 – v́1| +

∣
∣cDq;G

a+ v1(t) – cDq;G
a+ v́1(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v1(t)
)

– cDp;G
a+

(cDq;G
a+ v́1(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v1(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́1(t)

))∣
∣
)

are measurable, so is the multivalued function N∗(·) ∩ Ĥv(·). Now let ℘2 ∈ Ĥv(t) be such
that

∣
∣℘1(t) – ℘2(t)

∣
∣ ≤ φ(t)O∗

‖φ‖ ψ
(|v1 – v́1| +

∣
∣cDq;G

a+ v1(t) – cDq;G
a+ v́1(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v1(t)
)

– cDp;G
a+

(cDq;G
a+ v́1(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v1(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́1(t)

))∣
∣
)

for all t ∈ [a, b]. Let us define �
∗
2 ∈ U(t) by

�
∗
2(t) = v0 +

v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘1(ξ ) dξ

for all t ∈ [a, b]. Let supt∈[a,b] |φ(t)| = ‖φ‖. Then

∣
∣�∗

1(t) – �
∗
2(t)

∣
∣ ≤ Iq+p+r+k;G

a+
∣
∣Ĥ�

∗
1
(t) – Ĥ�

∗
2
(t)

∣
∣

≤ (G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
∥
∥φ(t)

∥
∥ψ

(‖v – v́‖) O∗

‖φ(t)‖

=
(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
O∗ψ

(‖v – v́‖). (52)

Also,

∣
∣
(cDq;G

a+ �
∗
1
)
(t) –

(cDq;G
a+ �

∗
2
)
(t)

∣
∣
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≤ Ip+r+k;G
a+

∣
∣Ĥ�

∗
1
(t) – Ĥ�

∗
2
(t)

∣
∣

≤ (G(b) – G(a))p+r+k

�(p + r + k + 1)
∥
∥φ(t)

∥
∥ψ

(‖v – v́‖) O∗

‖φ(t)‖

=
(G(b) – G(a))p+r+k

�(p + r + k + 1)
O∗ψ

(‖v – v́‖), (53)

∣
∣cDp;G

a+
(cDq;G

a+ �
∗
1
)
(t) – cDp;G

a+
(cDq;G

a+ �
∗
2
)
(t)

∣
∣

≤ Ir+k;G
a+

∣
∣Ĥ�

∗
1
(t) – Ĥ�

∗
2
(t)

∣
∣

≤ (G(b) – G(a))r+k

�(r + k + 1)
∥
∥φ(t)

∥
∥ψ

(‖v – v́‖) O∗

‖φ(t)‖

=
(G(b) – G(a))r+k

�(r + k + 1)
O∗ψ

(‖v – v́‖), (54)

and

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ �
∗
1
))

(t) – cDr;G
a+

(cDp;G
a+

(cDq;G
a+ �

∗
2
))

(t)
∣
∣

≤ Ik;G
a+

∣
∣Ĥ�

∗
1
(t) – Ĥ�

∗
2
(t)

∣
∣

≤ (G(b) – G(a))k

�(k + 1)
∥
∥φ(t)

∥
∥ψ

(‖v – v́‖) O∗

‖φ(t)‖

=
(G(b) – G(a))k

�(k + 1)
O∗ψ

(‖v – v́‖) (55)

for all t ∈ [a, b]. Hence

∥
∥�∗

1 – �
∗
2
∥
∥ = sup

t∈[a,b]

∣
∣�∗

1(t) – �
∗
2(t)

∣
∣ + sup

t∈[a,b]

∣
∣cDq;G

a+ �
∗
1(t) – �

∗
2(t)

∣
∣

+ sup
t∈[a,b]

∣
∣cDp;G

a+
(cDq;G

a+ �
∗
1(t)

)
– cDp;G

a+
(cDq;G

a+ �
∗
2(t)

)∣
∣

+ sup
t∈[a,b]

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ �
∗
1(t)

))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ �

∗
2(t)

))∣
∣

≤
[

(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

]

O∗ψ
(‖v – v́‖)

= ψ
(‖v – v́‖),

and thus

α(v, v́)Hd
(
U(v),U(v́)

) ≤ ψ
(‖v – v́‖)

for all v, v́ ∈ C, which implies that U is an α-ψ-contraction. Now, let v ∈ C and v́ ∈ U(v) be
two functions such that α(v, v́) ≥ 1. In this case,

χ∗((v(t), cDq;G
a+ v(t), cDp;G

a+
(cDq;G

a+ v(t)
)
, cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

,



Samei et al. Advances in Difference Equations        (2021) 2021:498 Page 26 of 55

(
v́(t), cDq;G

a+ v́(t), cDp;G
a+

(cDq;G
a+ v́(t)

)
, cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v́(t)
)))) ≥ 0,

so there exists ϒ ∈ U(v́) such that

χ∗((v́(t), cDq;G
a+ v́(t), cDp;G

a+
(cDq;G

a+ v́(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́(t)

)))
,

(
ϒ(t), cDq;G

a+ ϒ(t), cDp;G
a+

(cDq;G
a+ ϒ(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ ϒ(t)

)))) ≥ 0.

From this it follows that α(v́,ϒ) ≥ 1, which means that the operator U is an α-admissible.
Now suppose that v0 ∈ C and v́ ∈ U(v0) are such that

χ∗((v0(t), cDq;G
a+ v0(t), cDp;G

a+
(cDq;G

a+ v0(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v0(t)

)))
,

(
v́(t), cDq;G

a+ v́(t), cDp;G
a+

(cDq;G
a+ v́(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v́(t)

)))) ≥ 0

for all t ∈ [a, b]. Subsequently, we have α(v0, v́) ≥ 1. Consider {vn} ⊆ C such that vn → v
and α(vn, vn+1) ≥ 1. Then we get

χ∗((vn(t), cDq;G
a+ vn(t), cDp;G

a+
(cDq;G

a+ vn(t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ vn(t)

)))
,

(
vn+1(t), cDq;G

a+ vn+1(t), cDp;G
a+

(cDq;G
a+ vn+1(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ vn+1(t)

)))) ≥ 0.

By hypothesis (C8) there is a subsequence {vnj} of {vn} such that

χ∗((vnj (t),
cDq;G

a+ vnj (t),
cDp;G

a+
(cDq;G

a+ vnj (t)
)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ vnj (t)

)))
,

(
v(t), cDq;G

a+ v(t), cDp;G
a+

(cDq;G
a+ v(t)

)
,

cDr;G
a+

(cDp;G
a+

(cDq;G
a+ v(t)

)))) ≥ 0.

Thus α(vnj , v) ≥ 1(∀j), that is, C has the property Cα . Theorem 2.12 guarantees that N has
a fixed point, which is the solution of the inclusion BVP (46). �

Theorem 5.2 Consider a multifunction H : [a, b] × C × C →P(C). Assume that:
(C11) ψ : R≥0 →R≥0 is u.s.c nondecreasing map with lim infv→∞(v – ψ(v)) > 0 and

ψ(v) < v for all v > 0;
(C12) The operator H : [a, b] × C × C →PCP(C) is integrable and bounded, and

H(·, v′
1, v′

2, v′
3, v′

4) : [a, b] →PCP(C) is measurable for all v1, v2, v3, v4 ∈ C ;
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(C13) There is φ ∈ C([a, b], [0,∞)) such that

Hd
(
H(t, v1, v2, v3, v4),H(t, v́1, v́2, v́3, v́4)

) ≤ φ(t)O∗ψ

( 4∑

k=1

|vk – v́k|
)

for all vk , v́k ∈ C (k = 1, 2, 3, 4), where O∗ = O–1;
(xv) U has the (AEP)-property.

Then the inclusion BVP (46) has a solution.

Proof We have to prove that U : C →P(C) includes end points. Firstly, we must prove that
U(v) is closed for every v ∈ C . Since the mapping

t →H
(
t, v(t), cDq;G

a+ v(t), cDp;G
a+

(cDq;G
a+ v(t)

)
, cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
)))

is closed-valued and measurable for v ∈ C , it has a measurable selection, and S∗
H,v �= ∅. By

applying the same deduction as in the proof of Theorem 5.1, we may simply verify that
U(v) is closed. Also, U(v) is bounded because of the compactness of H. Finally, it is simple
to prove that

Hd
(
U(v),U(ϒ)

) ≤ ψ
(‖v – ϒ‖).

Suppose that v,ϒ ∈ C and �
∗
1 ∈ U(ϒ). Choose ℘1 ∈SH,ϒ such that

�
∗
1(t) = v0 +

v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘1(ξ ) dξ

for all t ∈ [a, b]. As

Hd
(
Ĥv(t), Ĥϒ (t)

) ≤ φ(t)O∗ψ
(|v – ϒ | +

∣
∣cDq;G

a+ v(t) – cDq;G
a+ ϒ(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ ϒ(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ ϒ(t)

))∣
∣
)

for all t ∈ [a, b], there exists φ∗ ∈ Ĥv(t) such that

∣
∣℘1(t) – φ∗∣∣ ≤ φ(t)O∗ψ

(∣
∣v(t) – ϒ(t)

∣
∣ +

∣
∣CD1

0v(t) – C
D

1
0ϒ(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ ϒ(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ ϒ(t)

))∣
∣
)
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for all t ∈ [a, b]. Consider the multivalued map O∗ : [a, b] →P(C) defined by

O
∗(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ∗ ∈ C : |℘1(t) – φ∗|
≤ φ(t)O∗ψ(|v – ϒ | + |cDq;G

a+ v(t) – cDq;G
a+ ϒ(t)|

+ |cDp;G
a+ (cDq;G

a+ v(t)) – cDp;G
a+ (cDq;G

a+ ϒ(t))|
+ |cDr;G

a+ (cDp;G
a+ (cDq;G

a+ v(t)))
– cDr;G

a+ (cDp;G
a+ (cDq;G

a+ ϒ(t)))|)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

By the measurability of ℘1 and

φ∗ = φ(t)O∗ψ
(|v – ϒ | +

∣
∣cDq;G

a+ v(t) – cDq;G
a+ ϒ(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ ϒ(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ ϒ(t)

))∣
∣
)

it is obvious that that multifunction O∗(·) ∩ Ĥv(·) is also measurable. Now we take ℘2 ∈
Ĥv(t) such that

∣
∣℘1(t) – ℘2(t)

∣
∣ ≤ φ(t)O∗ψ

(|v – ϒ | +
∣
∣cDq;G

a+ v(t) – cDq;G
a+ ϒ(t)

∣
∣

+
∣
∣cDp;G

a+
(cDq;G

a+ v(t)
)

– cDp;G
a+

(cDq;G
a+ ϒ(t)

)∣
∣

+
∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ v(t)
))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ ϒ(t)

))∣
∣
)

for all t ∈ [a, b]. Choose �
∗
2 ∈ U(v) such that

�
∗
2(t) = v0 +

v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘2(ξ ) dξ

for all t ∈ [a, b]. By the same argument as in Theorem 5.1 we get

∥
∥�∗

1 – �
∗
2
∥
∥ = sup

t∈[a,b]

∣
∣�∗

1(t) – �
∗
2(t)

∣
∣ + sup

t∈[a,b]

∣
∣cDq;G

a+ �
∗
1(t) – �

∗
2(t)

∣
∣

+ sup
t∈[a,b]

∣
∣cDp;G

a+
(cDq;G

a+ �
∗
1(t)

)
– cDp;G

a+
(cDq;G

a+ �
∗
2(t)

)∣
∣

+ sup
t∈[a,b]

∣
∣cDr;G

a+
(cDp;G

a+
(cDq;G

a+ �
∗
1(t)

))

– cDr;G
a+

(cDp;G
a+

(cDq;G
a+ �

∗
2(t)

))∣
∣

≤
[

(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

]

O∗ψ
(‖v – v́‖)

= ψ
(‖v – v́‖).
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Hence

Hd
(
U(v),U(ϒ)

) ≤ ψ
(‖v – ϒ‖)

for all v,ϒ ∈ C . By using hypothesis (xv) we can easily find that U has the (AEP)-property.
By Theorem 2.13 there exists v∗ ∈ C such that U(v∗) = {v∗}. This implies that v∗ satisfies
the given problem (46), and the proof is completed. �

6 Numerical applications
Here we give some examples of fractional G-snap systems based on numerical simulations
to analyze their solutions. In these examples, we consider different cases of the function G

to cover the Caputo, Caputo–Hadamard, and Katugampola versions. For numerical com-
putations, one can use Algorithms 1, 2 and 3.

Example 6.1 Based on system (4), we consider the nonlinear fractional ψ-snap BVP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD0.34;G
1.1+ v(t) = u(t), 1.1 ≤ t ≤ 2.6, v(1.1) = 2.25,

cD0.86;G
1.1+ u(t) = w(t), u(1.1) = –1.69,

cD0.54;G
1.1+ w(t) = x(t), w(1.1) = 3.12,

cD0.25;G
1.1+ x(t) = h(t, v, u, w, x), x(1.1) = –4.71,

(56)

where

h(t, v, u, w, x) =
√
t

12(1 +
√
t)

+
|v(t)|

30(1 + exp(|v(t))|) +
1

15
tan–1(u(t)

)

+
t

40
sin2(w(t))

5 + sin2(w(t))
+

3t
20

| sin–1(x(t))|
8 + | sin–1(x(t))| (57)

for t ∈ [1.1, 2.6]. It is clear that a = 1.1, b = 2.6, q = 0.34 ∈ (0, 1], v(0) = v0 = 2.25, p = 0.86 ∈
(0, 1], u(0) = v1 = –1.69, r = 0.54 ∈ (0, 1], w(0) = v2 = 3.12, k = 0.25 ∈ (0, 1], x(0) = v3 =
–4.71, and

h(t, v1, v2, v3, v3) =
√
t

12(1 +
√
t)

+
|v1|

30(1 + exp(|v1)|) +
1

15
tan–1(v2)

+
t

40
sin2(v3)

5 + sin2(v3)
+

3t
20

| sin–1(v4)|
8 + | sin–1(v4)| .

Thus we can rewrite the above system as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD0.25;G
1.1+ (cD0.54;G

1.1+ (cD0.86;G
1.1+ (cD0.34;G

1.1+ v(t))))

=
√
t

12(1+
√
t) + |v(t)|)

30(1+exp(|v(t)|)) + 1
15 tan–1(cD0.34;G

1.1+ v(t))

+ t sin2(cD0.86;G
1.1+ (cD0.34;G

1.1+ v(t)))

40(5+sin2(cD0.86;G
1.1+ (cD0.34;G

1.1+ v(t))))

+ 3t| sin–1(cD0.54;G
1.1+ (cD0.86;G

1.1+ (cD0.34;G
1.1+ v(t))))|

20(8+| sin–1(cD0.54;G
1.1+ (cD0.86;G

1.1+ (cD0.34;G
1.1+ v(t))))|) ,

v(1.1) = 2.25, cD0.34;G
1.1+ v(1.1) = –1.69,

cD0.86;G
1.1+ (cD0.34;G

1.1+ v(1.1)) = 3.12,
cD0.54;G

1.1+ (cD0.86;G
1.1+ (cD0.34;G

1.1+ v(1.1))) = –4.71.

(58)
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Now we have

∣
∣h

(
t, v1(t), v2(t), v3(t), v4(t)

)
– h

(
t, v∗

1(t), v∗
2(t), v∗

3(t), v∗
4(t)

)∣
∣

=
∣
∣
∣
∣

|v1(t)|
30(1 + exp(|v1(t))|) +

1
15

tan–1(v2(t)
)

+
t sin2(v3(t))

40(5 + sin2(v3(t)))
+

3t| sin–1(v4(t))|
20(8 + | sin–1(v4(t))|)

–
( |v∗

1(t)|
30(1 + exp(|v∗

1(t))|) +
1

15
tan–1(v∗

2(t)
)

+
t sin2(v∗

3(t))
40(5 + sin2(v∗

3(t)))
+

3t| sin–1(v∗
4(t))|

20(8 + | sin–1(v∗
4(t))|)

)∣
∣
∣
∣

≤ 1
30

∣
∣
∣
∣

|v1(t)|
1 + exp(|v1(t))| –

|v∗
1(t)|

1 + exp(|v∗
1(t))|

∣
∣
∣
∣

+
1

15
∣
∣tan–1(v2(t)

)
– tan–1(v∗

2(t)
)∣
∣

+
|t|
40

∣
∣
∣
∣

sin2(v3(t))
5 + sin2(v3(t))

–
sin2(v∗

3(t))
5 + sin2(v∗

3(t))

∣
∣
∣
∣

+
3|t|
20

∣
∣
∣
∣

| sin–1(v4(t))|
8 + | sin–1(v4(t))| –

| sin–1(v∗
4(t))|

8 + | sin–1(v∗
4(t))|

∣
∣
∣
∣

≤ 1
30

∣
∣v1(t) – v∗

1(t)
∣
∣ +

1
15

∣
∣v2(t) – v∗

2(t)
∣
∣

+
|t|
40

∣
∣v3(t) – v∗

3(t)
∣
∣ +

3|t|
20

∣
∣v4(t) – v∗

4(t)
∣
∣

≤ 1
30

4∑

j=1

∣
∣vj(t) – v∗

j (t)
∣
∣.

So we can choose L = 1
30 . Additionally,

h∗
0 = sup

t∈[1.1,2.6]

∣
∣h(t, 0, 0, 0, 0)

∣
∣ =

√
2.6

2(1 +
√

2.6)
= 0.308608.

Now we consider four cases for G:

G1(t) = 2t, G2(t) = t, G3(t) = ln t, G4(t) =
√
t.

Note that G2, G3, and G4 give the Caputo, Caputo–Hadamard, and Katugampola (for
ρ = 0.5) derivatives. By using equation (12) in the first case G1(t) = 2t, we have

O = O1 :=
(G1(b) – G1(a))q+p+r+k

�(q + p + r + k + 1)
+

(G1(b) – G1(a))p+r+k

�(p + r + k + 1)

+
(G1(b) – G1(a))r+k

�(r + k + 1)
+

(G1(b) – G1(a))k

�(k + 1)

=
(G1(2.6) – G1(1.1))1.99

�(2.99)
+

(G1(2.6) – G1(1.1))1.65

�(2.65)
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Table 1 Numerical values ofO1 and �1 for ∈ [1.1, 2.6] in Example 6.1 whenG1 = 2t

t O1 LO1 < 1 O1 �1 ≥
1.10 0.000000 0.000000 11.770000 11.770000
1.20 0.441466 0.014716 16.049142 16.427116
1.30 0.823549 0.027452 19.031261 19.829775
1.40 1.316793 0.043893 22.196803 23.640848
1.50 1.949409 0.064980 25.691224 28.120080
1.60 2.747700 0.091590 29.597402 33.515007
1.70 3.740314 0.124677 33.984940 40.144312
1.80 4.959615 0.165320 38.922357 48.465235
1.90 6.442580 0.214753 44.481788 59.178840
2.00 8.231606 0.274387 50.741485 73.430081
2.10 10.375358 0.345845 57.787565 93.234045
2.20 12.929718 0.430991 65.715482 122.503611
2.30 15.958843 0.531961 74.631461 169.978522
2.40 19.536380 0.651213 84.653973 259.995318
2.50 23.746839 0.791561 95.915326 495.319774

+
(G1(2.6) – G1(1.1))0.79

�(1.79)
+

(G1(2.6) – G1(1.1))0.25

�(1.25)

= 23.746838.

Thus LO1 = 0.791561 < 1, and (C1) holds. Also, using equation (14), we obtain

� = �1 := |v0| + |v1|
(

1 +
(G1(b) – G1(a))q

�(q + 1)

)

+ |v2|
(

1 +
(G1(b) – G1(a))p

�(p + 1)
+

(G1(b) – G1(a))q+p

�(q + p + 1)

)

+ |v3|
(

1 +
(G1(b) – G1(a))r

�(r + 1)
+

(G1(b) – G1(a))r+p

�(r + p + 1)

+
(G1(b) – G1(a))q+p+r

�(q + p + r + 1)

)

= |2.25| + |1.69|
(

1 +
(G1(2.6) – G1(1.1))0.34

�(1.34)

)

+ |3.12|
(

1 +
(G1(2.6) – G1(1.1))0.86

�(1.86)
+

(G1(2.6) – G1(1.1))1.2

�(2.2)

)

+ |4.71|
(

1 +
(G1(2.6) – G1(1.1))0.54

�(1.54)
+

(G1(2.6) – G1(1.1))1.4

�(2.4)

+
(G1(2.6) – G1(1.1))1.74

�(2.74)

)

= 95.915326. (59)

Hence

�1 ≥ �1 + h∗
0O1

1 – LO1
=

95.915326 + 0.308608 × 23.746838
1 – 0.791561

= 493.529331. (60)

Table 1 shows the numerical results of O1, �1, and �1 for t ∈ [1.1, 2.6]. These values are
also shown in Fig. 1.
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Figure 1 Graphical representation of LO1 and �1 for t ∈ [0, 2] in Example 6.1

In the second case G2(t) = t (Caputo type), we have

O = O2 :=
(G2(b) – G2(a))q+p+r+k

�(q + p + r + k + 1)
+

(G2(b) – G2(a))p+r+k

�(p + r + k + 1)

+
(G2(b) – G2(a))r+k

�(r + k + 1)
+

(G2(b) – G2(a))k

�(k + 1)

=
(G2(2.6) – G2(1.1))1.99

�(2.99)
+

(G2(2.6) – G2(1.1))1.65

�(2.65)

+
(G2(2.6) – G2(1.1))0.79

�(1.79)
+

(G2(2.6) – G2(1.1))0.25

�(1.25)

= 5.306821.

Thus LO2 = 0.176894 < 1, and (C1) holds. Also, using equation (14), we obtain

� = �2 := |v0| + |v1|
(

1 +
(G1(b) – G1(a))q

�(q + 1)

)

+ |v2|
(

1 +
(G1(b) – G1(a))p

�(p + 1)
+

(G1(b) – G1(a))q+p

�(q + p + 1)

)
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+ |v3|
(

1 +
(G1(b) – G1(a))r

�(r + 1)
+

(G1(b) – G1(a))r+p

�(r + p + 1)

+
(G1(b) – G1(a))q+p+r

�(q + p + r + 1)

)

= |2.25| + |1.69|
(

1 +
(G1(2.6) – G1(1.1))0.34

�(1.34)

)

+ |3.12|
(

1 +
(G1(2.6) – G1(1.1))0.86

�(1.86)

+
(G1(2.6) – G1(1.1))1.2

�(2.2)

)

+ |4.71|
(

1 +
(G1(2.6) – G1(1.1))0.54

�(1.54)

+
(G1(2.6) – G1(1.1))1.4

�(2.4)

+
(G1(2.6) – G1(1.1))1.74

�(2.74)

)

= 40.261437. (61)

Hence

�2 ≥ �2 + h∗
0O2

1 – LO2
=

40.261437 + 0.308608 × 5.306821
1 – 0.176894

= 50.802414. (62)

In the third case G3(t) = ln t (Caputo–Hadamard type), we have

O = O3 :=
(G3(b) – G3(a))q+p+r+k

�(q + p + r + k + 1)
+

(G3(b) – G3(a))p+r+k

�(p + r + k + 1)

+
(G3(b) – G3(a))r+k

�(r + k + 1)
+

(G3(b) – G3(a))k

�(k + 1)

=
(G3(2.6) – G3(1.1))1.99

�(2.99)
+

(G3(2.6) – G3(1.1))1.65

�(2.65)

+
(G3(2.6) – G3(1.1))0.79

�(1.79)
+

(G3(2.6) – G3(1.1))0.25

�(1.25)

= 2.4709.

Thus LO3 = 0.082363 < 1, and (C1) holds. Also, using equation (14), we obtain

� = �3 := |v0| + |v1|
(

1 +
(G3(b) – G3(a))q

�(q + 1)

)

+ |v2|
(

1 +
(G3(b) – G3(a))p

�(p + 1)
+

(G3(b) – G3(a))q+p

�(q + p + 1)

)

+ |v3|
(

1 +
(G3(b) – G3(a))r

�(r + 1)
+

(G3(b) – G3(a))r+p

�(r + p + 1)

+
(G3(b) – G3(a))q+p+r

�(q + p + r + 1)

)

= |2.25| + |1.69|
(

1 +
(G3(2.6) – G3(1.1))0.34

�(1.34)

)
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+ |3.12|
(

1 +
(G3(2.6) – G3(1.1))0.86

�(1.86)

+
(G3(2.6) – G3(1.1))1.2

�(2.2)

)

+ |4.71|
(

1 +
(G3(2.6) – G3(1.1))0.54

�(1.54)

+
(G3(2.6) – G3(1.1))1.4

�(2.4)

+
(G3(2.6) – G3(1.1))1.74

�(2.74)

)

= 28.290416. (63)

Hence

�3 ≥ �3 + h∗
0O3

1 – LO3
=

28.290416 + 0.308608 × 5.306821
1 – 0.082363

= 31.660634. (64)

In the fourth case G4(t) =
√
t (Katugampola type for ρ = 0.5), we have

O = O4 :=
(G4(b) – G4(a))q+p+r+k

�(q + p + r + k + 1)
+

(G4(b) – G4(a))p+r+k

�(p + r + k + 1)

+
(G4(b) – G4(a))r+k

�(r + k + 1)
+

(G4(b) – G4(a))k

�(k + 1)

=
(G4(2.6) – G4(1.1))1.99

�(2.99)
+

(G4(2.6) – G4(1.1))1.65

�(2.65)

+
(G4(2.6) – G4(1.1))0.79

�(1.79)
+

(G4(2.6) – G4(1.1))0.25

�(1.25)

= 1.43141.

Thus LO4 = 0.047713 < 1, and (C1) holds. Also, using equation (14), we obtain

� = �4 := |v0| + |v1|
(

1 +
(G4(b) – G4(a))q

�(q + 1)

)

+ |v2|
(

1 +
(G4(b) – G4(a))p

�(p + 1)
+

(G4(b) – G4(a))q+p

�(q + p + 1)

)

+ |v3|
(

1 +
(G4(b) – G4(a))r

�(r + 1)
+

(G4(b) – G4(a))r+p

�(r + p + 1)

+
(G4(b) – G4(a))q+p+r

�(q + p + r + 1)

)

= |2.25| + |1.69|
(

1 +
(G4(2.6) – G4(1.1))0.34

�(1.34)

)

+ |3.12|
(

1 +
(G4(2.6) – G4(1.1))0.86

�(1.86)
+

(G4(2.6) – G4(1.1))1.2

�(2.2)

)

+ |4.71|
(

1 +
(G4(2.6) – G4(1.1))0.54

�(1.54)
+

(G4(2.6) – G4(1.1))1.4

�(2.4)

+
(G4(2.6) – G4(1.1))1.74

�(2.74)

)

= 22.866749. (65)
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Table 2 Numerical values ofOj and �j , j = 2, 3, 4, for t ∈ [1.1, 2.6] in Example 6.1 whenG2 = t,
G3 = ln t, andG4 =

√
t

t O1 LO1 < 1 O1 �1 ≥
G2(t) = t

1.10 0.0000 0.0000 11.7700 11.7700
1.20 0.3282 0.0109 15.0025 15.2709
1.30 0.5418 0.0181 16.9019 17.3831
1.40 0.7766 0.0259 18.6975 19.4404
1.50 1.0389 0.0346 20.4797 21.5464
1.60 1.3307 0.0444 22.2789 23.7427
1.70 1.6525 0.0551 24.1088 26.0539
1.80 2.0046 0.0668 25.9761 28.4991
1.90 2.3869 0.0796 27.8846 31.0952
2.00 2.7993 0.0933 29.8361 33.8594
2.10 3.2416 0.1081 31.8319 36.8096
2.20 3.7137 0.1238 33.8722 39.9656
2.30 4.2154 0.1405 35.9573 43.3493
2.40 4.7465 0.1582 38.0871 46.9858
2.50 5.3068 0.1769 40.2614 50.9037

G3(t) = ln t
1.10 0.0000 0.0000 11.7700 11.7700
1.20 0.3010 0.0100 14.7349 14.9780
1.30 0.4698 0.0157 16.2959 16.7025
1.40 0.6354 0.0212 17.6460 18.2281
1.50 0.8019 0.0267 18.8784 19.6511
1.60 0.9698 0.0323 20.0278 21.0062
1.70 1.1385 0.0380 21.1123 22.3103
1.80 1.3077 0.0436 22.1426 23.5737
1.90 1.4767 0.0492 23.1263 24.8029
2.00 1.6452 0.0548 24.0688 26.0026
2.10 1.8129 0.0604 24.9745 27.1763
2.20 1.9795 0.0660 25.8469 28.3269
2.30 2.1448 0.0715 26.6887 29.4566
2.40 2.3086 0.0770 27.5025 30.5673
2.50 2.4709 0.0824 28.2904 31.6606
G4(t) =

√
t

1.10 0.0000 0.0000 11.7700 11.7700
1.20 0.2130 0.0071 13.8243 13.9894
1.30 0.3101 0.0103 14.8256 15.0771
1.40 0.4003 0.0133 15.6800 16.0172
1.50 0.4890 0.0163 16.4605 16.8867
1.60 0.5779 0.0193 17.1943 17.7139
1.70 0.6678 0.0223 17.8948 18.5129
1.80 0.7589 0.0253 18.5698 19.2920
1.90 0.8512 0.0284 19.2245 20.0562
2.00 0.9449 0.0315 19.8622 20.8092
2.10 1.0398 0.0347 20.4856 21.5535
2.20 1.1360 0.0379 21.0964 22.2910
2.30 1.2333 0.0411 21.6961 23.0232
2.40 1.3318 0.0444 22.2859 23.7513
2.50 1.4314 0.0477 22.8668 24.4764

Hence

�4 ≥ �4 + h∗
0O4

1 – LO4
=

22.866749 + 0.308608 × 1.43141
1 – 0.047713

= 24.476352. (66)

Table 2 shows the numerical values of Oj, �j, and �j, j = 2, 3, 4, for t ∈ [1.1, 2.6]. These
values are also shown in Fig. 2. Figure 3 shows a 3D-graph of the numerical values of �j

based on Oj and �j, j = 2, 3, 4, for t ∈ [1.1, 2.6].
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Figure 2 Graphical representation ofOj , �j , and �j for t ∈ [1.1, 2.6] and j = 2, 3, 4 in Example 6.1 where
G2(t) = t,G3(t) = ln t, andG4(t) =

√
t

In all four cases for the function G, we saw that all requirements of Theorem 3.2 are
fulfilled. Therefore this guarantees that for all four different cases in terms of the function
G, the fractional G-snap system (56) admits a unique solution on the interval [1.1, 2.6].

In the next example, we examine the correctness of the results caused by Theorem 3.3.
In that example, we consider the case G(t) = t (Caputo type) for three different orders q1,
q2, and q3 and show the obtained results computationally and graphically.

Example 6.2 Based on the given system (4) for G(t) = t (Caputo type), we consider the
nonlinear fractional G-snap BVP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDq;G
0.02+ v(t) = u(t), 0.02 ≤ t ≤ 0.99, v(0.02) = –1.07,

cD0.37;G
0.02+ u(t) = w(t), u(0.02) = 4.46,

cD0.27;G
0.02+ w(t) = x(t), w(0.02) = –3.8,

cD0.83;G
0.02+ x(t) = h(t, v, u, w, x), x(1.1) = –2.15,

(67)
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Figure 3 3D-graph of � ≥ �+h∗0O
1–LO for t ∈ [1.1, 2.6] in Example 6.1

where

h(t, v, u, w, x) =
sin(v(t))

10(25 + sin(v(t)))
+

tan–1(u(t))
15(32 + t2)

+
t(w(t))2

14(17 + (w(t))2)
+

3t| sin–1(x(t))|
(10 + 3t2)(13 + | sin–1(x(t))|) (68)

for t ∈ [0.02, 0.99]. Clearly, a = 0.02, b = 0.99, v(0) = v0 = –1.07, p = 0.37 ∈ (0, 1], u(0) = v1 =
4.46, r = 0.27 ∈ (0, 1], w(0) = v2 = –3.8, k = 0.8 ∈ (0, 1], x(0) = v3 = –2.15, and

h(t, v1, v2, v3, v3) =
sin(v1(t))

10(25 + sin(v1(t)))
+

tan–1(v2(t))
15(32 + t2)

+
t(v3(t))2

14(17 + (v3(t))2)
+

3t| sin–1(v4(t))|
(10 + 3t2)(13 + | sin–1(v4(t))|)

for t ∈ [0.02, 0.99]. Thus we can rewrite the above system as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD0.0.8;G
0.02+ (cD0.0.27;G

0.02+ (cD0.37;G
0.02+ (cDq;G

0.02+ v(t))))

= sin(v(t))
10(25+sin(v(t))) + tan–1(cDq;G

0.02+ v(t))
15(32+t2)

+ t(cD0.0.37;G
0.02+ (cDq;G

0.02+ v(t)))2

14(17+(cD0.0.37;G
0.02+ (cDq;G

0.02+ v(t)))2)

+ 3t| sin–1(cD0.27;G
0.02+ (cD0.37;G

0.02+ (cDq;G
0.02+ v(t))))|

(10+3t2)(13+| sin–1(cD0.27;G
0.02+ (cD0.37;G

0.02+ (cDq;G
0.02+ v(t))))|) ,

v(0.02) = –1.07, cDq;G
0.02+ v(0.02) = 4.46,

cD0.37;G
0.02+ (cDq;G

0.02+ v(0.02)) = –3.8,
cD0.27;G

0.02+ (cD0.37;G
0.02+ (cDq;G

0.02+ v(0.02))) = –2.15.

Now we have

∣
∣h(t, v1, v2, v3, v3)

∣
∣
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=
∣
∣
∣
∣

sin(v1(t))
10(25 + sin(v1(t)))

+
tan–1(v2(t))
15(32 + t2)

+
t(v3(t))2

14(17 + (v3(t))2)
+

3t| sin–1(v4(t))|
(10 + 3t2)(13 + | sin–1(v4(t))|)

∣
∣
∣
∣

≤ 1
10

∣
∣
∣
∣

sin(v1(t))
25 + sin(v1(t))

∣
∣
∣
∣ +

1
15

∣
∣
∣
∣
tan–1(v2(t))

32 + t2

∣
∣
∣
∣

+
|t|
14

∣
∣
∣
∣

(v3(t))2

17 + (v3(t))2

∣
∣
∣
∣ +

∣
∣
∣
∣

3t
10 + 3t2

∣
∣
∣
∣

∣
∣
∣
∣

| sin–1(v4(t))|
13 + | sin–1(v4(t))|

∣
∣
∣
∣

≤ t

10

(
1

15
∣
∣v1(t)

∣
∣ +

1
15

∣
∣v2(t)

∣
∣ +

1
15

∣
∣v3(t)

∣
∣ +

1
15

∣
∣v4(t)

∣
∣

)

=
1

10
t

4∑

j=1

1
15

∣
∣vj(t)

∣
∣.

So we can choose �(t) = 1
10 t and f (v) = 1

15 v. Thus for j = 1, 2, 3, 4,

∣
∣h

(
t, v1(t), v2(t), v3(t), v4(t)

)∣
∣ ≤ �(t)f

( 4∑

j=1

∣
∣vj(t)

∣
∣

)

,

and (C2) holds. In addition,

�∗
0 = sup

t∈[0.02,0.99]

∣
∣�(t)

∣
∣ = 0.099. (69)

Now we consider three cases for q ∈ {q1 = 0.28, q2 = 0.53, q3 = 0.89}. By equation (12), in
the first case q = q1 = 0.28, we have

O = O1 :=
(G(b) – G(a))q1+p+r+k

�(q1 + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

=
(G(0.99) – G(0.02))1.72

�(2.72)
+

(G(0.99) – G(0.02))1.44

�(2.44)

+
(G(0.99) – G(0.02))1.07

�(2.07)
+

(G(0.99) – G(0.02))0.8

�(1.8)

= 4.120828. (70)

Also, by equation (14) we obtain

� = �1 := |v0| + |v1|
(

1 +
(G(b) – G(a))q1

�(q1 + 1)

)

+ |v2|
(

1 +
(G(b) – G(a))p

�(p + 1)
+

(G(b) – G(a))q1+p

�(q1 + p + 1)

)

+ |v3|
(

1 +
(G(b) – G(a))r

�(r + 1)
+

(G(b) – G(a))r+p

�(r + p + 1)

+
(G(b) – G(a))q+p+r

�(q1 + p + r + 1)

)
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= | – 1.07| + |4.46|
(

1 +
(G(0.99) – G(0.2))0.28

�(1.28)

)

+ | – 3.8|
(

1 +
(G(0.99) – G(0.02))0.37

�(1.37)

+
(G(0.99) – G(0.02))0.65

�(1.65)

)

+ | – 2.15|
(

1 +
(G(0.99) – G(0.02))0.27

�(1.27)

+
(G(0.99) – G(0.02))0.55

�(1.55)

+
(G(0.99) – G(0.02))0.92

�(1.92)

)

= 31.920297. (71)

We consider B = 100. Then, substituting (69), (70), and (71) into inequality (24), we obtain

�1 + O1�
∗
0 f (B) = 31.920297 + 4.120828 × 0.099 × f (100)

= 34.640043 < 100 = B.

Hence (C3) holds for q = q1 = 0.28.
In the second case for q = q2 = 0.53, we get

O = O2 :=
(G(b) – G(a))q2+p+r+k

�(q2 + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

=
(G(0.99) – G(0.02))1.97

�(2.97)
+

(G(0.99) – G(0.02))1.44

�(2.44)

+
(G(0.99) – G(0.02))1.07

�(2.07)
+

(G(0.99) – G(0.02))0.8

�(1.8)

= 4.037502. (72)

Also, by equation (14) we obtain

� = �2 := |v0| + |v1|
(

1 +
(G(b) – G(a))q2

�(q2 + 1)

)

+ |v2|
(

1 +
(G(b) – G(a))p

�(p + 1)
+

(G(b) – G(a))q2+p

�(q2 + p + 1)

)

+ |v3|
(

1 +
(G(b) – G(a))r

�(r + 1)
+

(G(b) – G(a))r+p

�(r + p + 1)

+
(G(b) – G(a))q2+p+r

�(q2 + p + r + 1)

)

= | – 1.07| + |4.46|
(

1 +
(G(0.99) – G(0.2))0.53

�(1.53)

)

+ | – 3.8|
(

1 +
(G(0.99) – G(0.02))0.37

�(1.37)
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+
(G(0.99) – G(0.02))0.9

�(1.9)

)

+ | – 2.15|
(

1 +
(G(0.99) – G(0.02))0.27

�(1.27)

+
(G(0.99) – G(0.02))0.8

�(1.8)

+
(G(0.99) – G(0.02))1.33

�(2.33)

)

= 31.486714. (73)

We consider K = 100. Then, substituting (69), (72), and (73) into inequality (24), we obtain

�2 + O2�
∗
0 f (B) = 31.486714 + 4.037502 × 0.099 × f (100)

= 34.151466 < 100 = B.

Hence (C3) holds for q = q2 = 0.53.
In the third case for q = q3 = 0.89, we get

O = O3 :=
(G(b) – G(a))q3+p+r+k

�(q3 + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

=
(G(0.99) – G(0.02))2.33

�(3.33)
+

(G(0.99) – G(0.02))1.44

�(2.44)

+
(G(0.99) – G(0.02))1.07

�(2.07)
+

(G(0.99) – G(0.02))0.8

�(1.8)

= 3.866648. (74)

Also, using equation (14), we obtain

� = �3 := |v0| + |v1|
(

1 +
(G(b) – G(a))q3

�(q3 + 1)

)

+ |v2|
(

1 +
(G(b) – G(a))p

�(p + 1)
+

(G(b) – G(a))q3+p

�(q3 + p + 1)

)

+ |v3|
(

1 +
(G(b) – G(a))r

�(r + 1)
+

(G(b) – G(a))r+p

�(r + p + 1)

+
(G(b) – G(a))q3+p+r

�(q3 + p + r + 1)

)

= | – 1.07| + |4.46|
(

1 +
(G(0.99) – G(0.2))0.89

�(1.89)

)

+ | – 3.8|
(

1 +
(G(0.99) – G(0.02))0.37

�(1.37)

+
(G(0.99) – G(0.02))1.26

�(2.26)

)

+ | – 2.15|
(

1 +
(G(0.99) – G(0.02))0.27

�(1.27)
+

(G(0.99) – G(0.02))0.8

�(1.8)
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Table 3 Numerical results ofOi and �i , i = 1, 2, 3, for t ∈ [0.02, 0.99] in Example 6.2 when q1 = 0.28,
q2 = 0.53, and q3 = 0.89

q1 = 0.28

t O1 �1
B

�1+O1�
∗
0 f (B)

> 1

0.02 0.0000 11.4800 8.7108
0.07 0.1417 17.1867 5.7870
0.12 0.2863 18.9408 5.2275
0.17 0.4400 20.2643 4.8651
0.22 0.6024 21.3756 4.5928
0.27 0.7730 22.3552 4.3734
0.32 0.9514 23.2432 4.1892
0.37 1.1372 24.0628 4.0301
0.42 1.3301 24.8289 3.8900
0.47 1.5298 25.5518 3.7649
0.52 1.7361 26.2387 3.6517
0.57 1.9487 26.8952 3.5485
0.62 2.1674 27.5254 3.4535
0.67 2.3921 28.1328 3.3657
0.72 2.6226 28.7200 3.2840
0.77 2.8588 29.2892 3.2076
0.82 3.1006 29.8422 3.1359
0.87 3.3478 30.3806 3.0684
0.92 3.6003 30.9057 3.0046
0.97 3.8580 31.4186 2.9442

+
(G(0.99) – G(0.02))1.53

�(2.53)

)

= 30.099324. (75)

We consider B = 100. Then, substituting (69), (74), and (75) into inequality (24), we obtain

�3 + O3�
∗
0 f (B) = 30.099324 + 3.866648 × 0.099 × f (100)

= 32.651312 < 100 = B.

Hence (C3) holds for q = q3 = 0.89. Tables 3, 4, and 5 show the numerical values of Oj, �j,
and B

�j+Oj�∗
0 f (B) for t ∈ [0.02, 0.99] and qj ∈ {0.28, 0.53, 0.89}, j = 1, 2, 3.

These results are also plotted in Fig. 4. In all three cases for the order qi, we see that
all requirements of Theorem 3.3 are fulfilled. Therefore this guarantees that for all three
different cases by terms of the order q, the fractional G-snap system (67) admits at least
one solution on the interval [0.02, 0.99].

Example 6.3 Based on system (46), we consider the nonlinear fractional inclusion system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD0.73;G
0.2+ (cD0.35;G

0.2+ (cD0.49;G
0.2+ (cD0.61;G

0.2+ v(t))))

∈ [0, t| sin2(v(t))
23(2+t2) + | tan–1(cD0.61;G

0.2+ v(t))|
15(3+| tan–1(cD0.61;G

0.2+ v(t))|)

+ t sin–1(cD0.49;G
0.2+ (cD0.61;G

0.2+ v(t)))

(18+t2)(2+sin–1(cD0.49;G
0.2+ (cD0.61;G

0.2+ v(t))))

+ (cD0.35;G
0.2+ (cD0.49;G

0.2+ (cD0.61;G
0.2+ v(t))))2

(3+t)(2+(cD0.35;G
0.2+ (cD0.49;G

0.2+ (cD0.61;G
0.2+ v(t))))2)

]

v(0.2) = 3.92, cD0.61;G
0.2+ v(0.2) = –5.23,

cD0.49;G
0.2+ (cD0.61;G

0.2+ v(0.2)) = 4.08,
cD0.35;G

0.2+ (cD0.49;G
0.2+ (cD0.61;G

0.2+ v(0.2))) = –1.15

(76)
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Table 4 Numerical results ofOi and �i , i = 1, 2, 3, for t ∈ [0.02, 0.99] in Example 6.2 when q1 = 0.28,
q2 = 0.53, and q3 = 0.89

q1 = 0.28

t O1 �1
B

�1+O1�
∗
0 f (B)

> 1

0.02 0.000000 11.480000 8.710801
0.07 0.138112 15.656301 6.350232
0.12 0.276248 17.244645 5.738232
0.17 0.422128 18.506034 5.323499
0.22 0.576067 19.603570 5.004060
0.27 0.737980 20.598497 4.742581
0.32 0.907712 21.521621 4.520650
0.37 1.085108 22.390979 4.327665
0.42 1.270020 23.218193 4.156897
0.47 1.462316 24.011259 4.003782
0.52 1.661876 24.775955 3.865064
0.57 1.868592 25.516610 3.738334
0.62 2.082367 26.236568 3.621754
0.67 2.303113 26.938475 3.513885
0.72 2.530749 27.624462 3.413580
0.77 2.765202 28.296281 3.319908
0.82 3.006403 28.955388 3.232102
0.87 3.254289 29.603011 3.149523
0.92 3.508804 30.240193 3.071630
0.97 3.769892 30.867835 2.997965

Table 5 Numerical results ofOi and �i , i = 1, 2, 3, for t ∈ [0.02, 0.99] in Example 6.2 when q1 = 0.28,
q2 = 0.53, and q3 = 0.89

q1 = 0.28

t O1 �1
B

�1+O1�
∗
0 f (B)

> 1

0.02 0.000000 11.480000 8.710801
0.07 0.136126 14.719326 6.752573
0.12 0.269336 15.959688 6.196766
0.17 0.408139 16.987999 5.794625
0.22 0.553358 17.917221 5.469730
0.27 0.705303 18.788358 5.193764
0.32 0.864149 19.621462 4.952505
0.37 1.030023 20.427978 4.737587
0.42 1.203031 21.215104 4.543574
0.47 1.383268 21.987675 4.366692
0.52 1.570824 22.749106 4.204180
0.57 1.765784 23.501897 4.053948
0.62 1.968230 24.247935 3.914359
0.67 2.178243 24.988679 3.784106
0.72 2.395902 25.725280 3.662122
0.77 2.621284 26.458658 3.547520
0.82 2.854465 27.189562 3.439557
0.87 3.095519 27.918608 3.337600
0.92 3.344520 28.646309 3.241103
0.97 3.601540 29.373093 3.149595
1.02 3.866649 30.099324 3.062664

for t ∈ [0.2, 0.85]. It is clear that a = 0.2, b = 0.85, q = 0.61 ∈ (0, 1], v(0.2) = v0 = 3.92, p =
0.49 ∈ (0, 1], u(0.2) = v1 = –5.23, r = 0.35 ∈ (0, 1], w(0.2) = v2 = 4.08, k = 0.73 ∈ (0, 1], x(0) =
v3 = –1.15, and

Ĥv(t) = H(t, v1, v2, v3, v4))
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Figure 4 Graphical representation of �j , �j , and K
�j+�jφ

∗
0ϕ(K)

for t ∈ [0.05, 0.95], j = 1, 2, 3, in Example 6.2

where q1 = 0.28, q2 = 0.53, and q3 = 0.89

=
[

0,
t| sin2(v1(t))

23(2 + t2)
+

| tan–1((v2(t)))|
15(3 + | tan–1((v2(t)))|)

+
t sin–1((v3(t)))

(18 + t2)(2 + sin–1((v3(t))))
+

((v4(t)))2

(3 + t)(2 + ((v4(t)))2)

]

.

For, vj, v́j ∈ C (j = 1, 2, 3, 4), we have

Hd
(
H(t, v1, v2, v3, v4),H(t, v́1, v́2, v́3, v́4)

)

≤ t

4

(
1
2
∣
∣sin

(
v1(t)

)
– sin(v́1t)

∣
∣ +

1
2
∣
∣tan–1(v2(t)

)
– tan–1(v́2(t)

)∣
∣

+
1
2
∣
∣– sin–1(v3(t)

)
sin–1(v́3(t)

)∣
∣ +

1
2
∣
∣v4(t) – v́4(t)

∣
∣

)
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≤ φ(t)O∗ψ

( 4∑

j=1

|vj – v́j|
)

.

Now we consider four cases for G:

G1(t) = 2t, G2(t) = t, G3(t) = ln t, G4(t) =
√
t.

Note that G2, G3, and G4 give the Caputo, Caputo–Hadamard, and Katugampola (for
ρ = 0.5) derivatives in this example. By equation (12) we have

O∗ = O–1 :=
[

(G(b) – G(a))q+p+r+k

�(q + p + r + k + 1)
+

(G(b) – G(a))p+r+k

�(p + r + k + 1)

+
(G(b) – G(a))r+k

�(r + k + 1)
+

(G(b) – G(a))k

�(k + 1)

]–1

=
[

(G(0.85) – G(0.2))2.18

�(3.18)
+

(G(0.85) – G(0.2))1.57

�(2.57)

+
(G(0.85) – G(0.2))1.08

�(2.08)
+

(G(0.85) – G(0.2))0.73

�(1.73)

]–1

.

Therefore

O∗ = 0.458030, 0.461510, 0.150228, 0.685475

for Gj(t) (j = 1, 2, 3, 4), respectively. Choose the nonnegative function φ ∈ C([a, b], [0,∞))
defined by φ(t) = t

4 for t ∈ [a, b]. Then ‖φ‖ = 0.2125. Also, we consider the nonnegative
nondecreasing u.s.c map ψ : R≥0 →R≥0 defined by ψ(t) = t

2 for almost all t > 0. Note that
limt→∞ inf(t – ψ(t)) > 0 with ψ(t) < t(∀t > 0). Finally, consider U : C →P(C) by

U(v) :=
{
p ∈ C : there exists℘ ∈SH,vs.t.p(t) = ϒ(t) ∀t ∈ [a, b]

}
,

where we have

ϒ(t) = v0 +
v1(G(t) – G(a))q

�(q + 1)
+

v2(G(t) – G(a))q+p

�(q + p + 1)

+
v3(G(t) – G(a))q+p+r

�(q + p + r + 1)

+
∫ t

a
G

′(ξ )
(G(t) – G(ξ ))q+p+r+k–1

�(q + p + r + k)
℘(ξ ) dξ

= 3.92 +
(–5.23)(G(t) – G(0.2))0.61

�(1.61)
+

4.08(G(t) – G(0.2))1.1

�(2.1)

+
(–1.15)(G(t) – G(0.2))1.45

�(2.45)

+
∫ t

0.2
G

′(ξ )
(G(t) – G(ξ ))1.18

�(2.18)
℘(ξ ) dξ . (77)

Considering ℘ = t

10 , we can see the results of ϒ(t) in Table 6. These results are plotted in
Fig. 5. Since the operator U has the (AEP)-property, by Theorem 5.2 system (76) has at
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Table 6 Numerical results ofO∗
j and ϒj , j = 1, 2, 3, 4, for t ∈ [0.2, 0.85] in Example 6.3 whenG1(t) = 2t ,

G2(t) = t,G3(t) = ln t,G4(t) =
√
t

G1(t) G2(t) G3(t) G4(t)

O∗(t) ϒ (t) O∗(t) ϒ (t) O∗(t) ϒ (t) O∗(t) ϒ (t)

0.30 4.4298 0.0000 3.6823 2.7630 0.8289 2.7643 3.6643 2.7630
0.40 2.1565 0.0002 1.8284 2.3073 0.4244 2.3117 1.9820 2.3072
0.50 1.3460 0.0007 1.1746 1.9969 0.2912 2.0055 1.3782 1.9967
0.60 0.9321 0.0016 0.8424 1.7650 0.2254 1.7782 1.0636 1.7643
0.70 0.6836 0.0031 0.6432 1.5843 0.1863 1.6023 0.8694 1.5828
0.80 0.5200 0.0055 0.5116 1.4406 0.1602 1.4632 0.7371 1.4378
0.81 0.5067 0.0058 0.5009 1.4279 0.1581 1.4509 0.7261 1.4249
0.82 0.4939 0.0061 0.4905 1.4154 0.1560 1.4389 0.7155 1.4123
0.83 0.4815 0.0065 0.4805 1.4033 0.1540 1.4272 0.7052 1.4000
0.84 0.4696 0.0068 0.4709 1.3913 0.1521 1.4157 0.6952 1.3879
0.85 0.4580 0.0072 0.4615 1.3797 0.1502 1.4045 0.6855 1.3761

Figure 5 Graphical representation ofOj and ϒj for
t ∈ [0.2, 0.85], j = 1, 2, 3, 4, in Example 6.3 whereG1(t) = 2t ,
G2(t) = t,G3(t) = ln t,G4(t) =

√
t

least one solution.

7 Conclusion
In this paper, we defined a new fractional mathematical model of a BVP consisting of the
snap equation in the framework of the generalized sequential G-operators and turned
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Algorithm 1 MATLAB function for calculating the fractional integral
∫ t

a G
′(ξ ) (G(t)–G(ξ ))q+p+r+k–1

�(q+p+r+k) ℘(ξ ) dξ in Example 6.3 for t ∈ [a, b]

to the investigation of the qualitative behaviors of its solutions including the existence,
uniqueness, stability, and inclusion version. To obtain an existence criterion, we used the
Leray–Schauder theorem, and to obtain a uniqueness criterion, we utilized the Banach
theorem. We studied different kinds of stability criteria based on the standard definitions
of these notions. With the help of some special contractions, we established some theo-
rems regarding the inclusion structure of the G-snap problem. In the final step, we de-
signed three examples, and considering different cases of the function G and order q,
we obtained numerical results of these two suggested fractional G-snap systems in Ca-
puto, Caputo–Hadamard, and Katugampola versions. Note that in this paper, by assuming
G(t) = t and q = p = r = k = 1 we derived the standard 4th-order ODE of snap equation.
Therefore we will be able to review other properties of this extended fractional G-snap
BVP by designing new generalized models based on nonsingular operators in the future
works.
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Supporting information
Algorithm 2 MATLAB lines for calculating values of O, LO, �, and � in Example 6.1

for t ∈ [1.1, 2.6] and G(t) := {2t, t, ln t,
√
t}
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Algorithm 2 (Continued)
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Algorithm 3 MATLAB lines for calculating values of O, �, and B
�+O�∗

0 f (B) in Example 6.2
for t ∈ [0.02, 0.99] and q ∈ {0.28, 0.53, 89}
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Algorithm 3 (Continued)
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Algorithm 4 MATLAB lines for calculating values of O∗ and ϒ in Example 6.3 for t ∈
[0.2, 0.85] and G(t) := {2t, t, ln t,

√
t}
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Algorithm 4 (Continued)
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