1 Introduction

Impulsive differential equation is regarded as a critical mathematical tool to provide a natural description of observed evolution processes (see [1,2,3,4]). So the consideration of impulsive differential equations has gained prominence and many authors have begun to take a great interest in the subject of impulsive differential equations, for example, see [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] and the references cited therein.

Meanwhile, the p-Laplace operator equation is a typical quasilinear operator equation, which comes naturally from glaciology, nonlinear flow laws, and non-Newtonian mechanics (see [23, 24]). Recently, various existence, multiplicity, and uniqueness results of positive solutions for differential equations with one-dimensional p-Laplace operator have been considered [25,26,27,28,29,30,31,32,33]. Specially, Zhang and Ge [34] investigated the following second order one-dimensional p-Laplace operator equation

$$ \textstyle\begin{cases} -(\phi_{p}(u^{\prime}(t)))^{\prime}= f(t,u(t)), \quad t\neq t_{k}, t\in (0,1), \\ \triangle u|_{t= t_{k}}=I_{k}(u(t_{k})), \quad k=1,2,\ldots,n, \\ u(0)=\sum_{i=1}^{m-2}a_{i}u(\xi_{i}), \quad u^{\prime}(1)=0, \end{cases} $$
(1.1)

where \(\phi_{p}(s)\) is p-Laplace operator, i.e., \(\phi_{p}(s)=|s|^{p-2}s\), \(p>1\), \((\phi_{p})^{-1}=\phi_{q}\), \(\frac{1}{p}+ \frac{1}{q}=1\), \(t_{k}\) (\(k=1,2,\dots,n\), where n is a fixed positive integer) are fixed points with \(0< t_{1}< t_{2}<\cdots <t_{k}<\cdots <t _{n}<1\), \(\xi_{i}\) \((i=1,2,\ldots, m-2)\in (0,1)\) is given \(0<\xi_{1}< \xi_{2}<\cdots <\xi_{m-2}<1\) and \(\xi_{i}\neq t_{k}\), \(i=1,2,\dots,m-2\), \(k=1,2,\dots,n\), \(\Delta u|_{t=t_{k}}\) denotes the jump of \(u(t)\) at \(t=t_{k}\), i.e.,

$$ \Delta u|_{t=t_{k}}=u\bigl(t_{k}^{+}\bigr)-u \bigl(t_{k}^{-}\bigr), $$

where \(u(t_{k}^{+})\) and \(u(t_{k}^{-})\) represent the right-hand limit and left-hand limit of \(u(t)\) at \({t=t_{k}}\), respectively. Applying the classical fixed-point index theorem for compact maps, the authors got several new multiplicity results of positive solutions.

On the other hand, we observe that many authors (see [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]) have paid more attention to a class of boundary value problems involving integral boundary conditions, which contains two-point, three-point, and general multi-point boundary value problems as exceptional cases, see [50,51,52,53,54,55,56,57,58] and the references cited therein.

However, in literature there are almost no papers on multiple positive solutions for second order impulsive nonlocal indefinite boundary value problems with one-dimensional p-Laplace operator and multiple parameters. More precisely, the study of \(\lambda >0\), \(\mu >0\), \(p \not \equiv 2\), \(I_{k}\neq 0\) (\(k=1,2,\ldots,n\)) and ω changes sign is still open for the second order nonlocal boundary value problem

$$ \textstyle\begin{cases} -(\phi_{p}(u'))'=\lambda \omega (t)f(u), \quad 0< t< 1, \\ -\Delta u|_{t=t_{k}}=\mu I_{k}(u(t_{k})), \quad k=1,2,\ldots,n, \\ \Delta u'|_{t=t_{k}}=0, \quad k=1,2,\ldots,n, \\ u'(0)=0, \quad u(1)=\int_{0}^{1}g(t)u(t)\,dt, \end{cases} $$
(1.2)

where \(\lambda >0\) and \(\mu >0\) are two parameters, \(\omega (t)\) may change sign, \(\phi_{p}(s)\) is a p-Laplace operator, i.e., \(\phi _{p}(s)=|s|^{p-2}s\), \(p>1\), \((\phi_{p})^{-1}=\phi_{q}\), \(\frac{1}{p}+ \frac{1}{q}=1\). \(t_{k}\) (\(k=1,2,\ldots,n\)) (where n is a fixed positive integer) are fixed points with \(0=t_{0}< t_{1}< t_{2}<\cdots <t_{k}< \cdots <t_{n}<t_{n+1}=1\), \(\Delta u|_{t=t_{k}}\) denotes the jump of \(u(t)\) at \(t=t_{k}\), i.e., \(\Delta u|_{t=t_{k}}=u(t_{k}^{+})-u(t_{k} ^{-})\), where \(u(t_{k}^{+})\) and \(u(t_{k}^{-})\) represent the right-hand limit and left-hand limit of \(u(t)\) at \(t=t_{k}\), respectively.

In addition, set \(J=[0,1]\), \(R_{+}=[0,+\infty)\), \(R=(-\infty,+\infty)\), and let ω, f, \(I_{k}\), and g satisfy the following conditions:

(\(H_{1}\)):

\(\omega:J\rightarrow R\) is continuous, and there exists a constant \(\xi \in (0,1)\) such that

$$ \omega (t)\geq 0,\quad t\in [0,\xi ],\qquad \omega (t)\leq 0,\quad t\in [ \xi,1]. $$

Moreover, \(\omega (t)\) does not vanish identically on any subinterval of J.

(\(H_{2}\)):

\(f:R_{+}\rightarrow R_{+}\) is continuous, and \(f(u)>0\) for all \(u>0\), there exists \(0< c\leq 1\) such that

$$ f(x)\geq c\psi (x),\quad x\in R_{+}, $$

where \(\psi (x)=\max \{f(y):0\leq y\leq x\}\);

(\(H_{3}\)):

\(I_{k}\in C(R_{+},R_{+})\), and \(I_{k}(u)>0\) for all \(u>0\).

(\(H_{4}\)):

\(g\in L^{1}[0,1]\) is nonnegative and \(\eta \in [0,1)\), where

$$ \eta = \int_{0}^{1}g(s)\,ds. $$
(1.3)
(\(H_{5}\)):

There exist \(0<\theta_{1}\leq +\infty\), \(\theta_{1}\neq p-1\), \(0<\theta_{2}\leq +\infty\), \(\theta_{2}\neq 1\), and \(k_{1},k_{2},k _{3},k_{4}>0\) such that

$$ k_{1}u^{\theta_{1}}\leq f(u)\leq k_{2}u^{\theta_{1}}, \qquad k_{3}u^{\theta _{2}}\leq I_{k}(u)\leq k_{4}u^{\theta_{2}}. $$
(\(H_{6}\)):

There exists a number \(0<\sigma <\xi \) such that

$$ c^{2}k_{1}\sigma^{\theta_{1}} \int_{\sigma }^{\xi }\omega^{+}(t)\,dt \geq k_{2}\xi^{\theta_{1}} \int_{\xi }^{1}\omega^{-}(t)\,dt. $$

We define \(\omega^{+}(t)=\max \{\omega (t),0\}\), \(\omega^{-}(t)=- \min \{\omega (t),0\}\). Then \(\omega (t)=\omega^{+}(t)-\omega^{-}(t)\).

It is well accepted that the fixed point theorem in a cone is crucial in showing the existence of positive solutions of various boundary value problems for second order differential equations.

Lemma 1.1

(Theorem 2.3.4 of [59])

Let \(\varOmega_{1}\) and \(\varOmega_{2}\) be two bounded open sets in a real Banach space E such that \(0 \in \varOmega_{1}\) and \(\bar{\varOmega }_{1}\subset \varOmega_{2}\). Let the operator \(T: P\cap (\bar{\varOmega }_{2}\backslash \varOmega_{1})\rightarrow P\) be completely continuous, where P is a cone in E. Suppose that one of the two conditions

  1. (i)

    \(\|Tx\|\leq \|x\|\), \(\forall x\in P\cap \partial \varOmega_{1}\) and \(\|Tx\|\geq \|x\|\), \(\forall x\in P\cap \partial \varOmega_{2}\),

or

  1. (ii)

    \(\|Tx\|\geq \|x\|\), \(\forall x\in P\cap \partial \varOmega_{1}\), and \(\|Tx\|\leq \|x\|\), \(\forall x\in P\cap \partial \varOmega_{2}\),

is satisfied. Then T has at least one fixed point in \(P\cap (\bar{ \varOmega }_{2}\backslash \varOmega_{1})\).

This paper is organized in the following fashion. In Sect. 2, we present some lemmas to be used in the subsequent sections. Section 3 is devoted to proving the multiplicity of positive solutions for problem (1.2), and we give an example to illustrate the main results in the final section.

2 Preliminaries

Let \(J'=J\backslash \{t_{1},t_{2},\ldots,t_{n}\}\). The basic space used in this paper \(PC[0,1]=\{u|u:J\rightarrow R { }\mbox{is continuous at } t\neq t_{k}, \mbox{left continuous at }t=t_{k}, \mbox{and }u(t_{k}^{+})\mbox{ exists}, k=1,2,\ldots,n\}\). Then \(PC[0,1]\) is a real Banach space with the norm \(\|\cdot \|_{PC}\) defined by \(\|u\|_{PC}=\sup_{t\in J}|u(t)|\). By a solution of (1.2), we mean that a function \(u\in PC[0,1]\cap C ^{2}(J')\) which satisfies (1.2).

In these main results, we will make use of the following lemmas.

Lemma 2.1

Assume that (\(H_{1}\))(\(H_{4}\)) hold. Then \(u\in PC[0,1]\cap C^{2}(J')\) is a solution of problem (1.2) if and only if \(u\in PC[0,1]\) is a solution of the following impulsive integral equation:

$$\begin{aligned} u(t) =&\frac{1}{1-\eta }\biggl[ \int_{0}^{1}g(t) \int_{t}^{1}\phi_{q} \biggl( \int _{0}^{s}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr)\,ds\,dt \\ &{}+\mu \int _{0}^{1}g(t) \biggl( \sum _{t\leq t_{k}}I_{k}\bigl(u(t_{k})\bigr) \biggr)\,dt\biggr] \\ &{}+ \int_{t}^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u( \tau) \bigr)\,d\tau \biggr)\,ds+\mu \sum_{t\leq t_{k}}I_{k} \bigl(u(t_{k})\bigr). \end{aligned}$$
(2.1)

Proof

The proof is similar to that of Lemma 3.1 in [38]. □

To establish the existence of multiple positive solutions in \(PC[0,1]\cap C^{2}(J')\) of problem (1.2), we denote

$$ PC^{+}[0,1]= \Bigl\{ u\in PC[0,1]: \min_{t\in J}u(t) \geq 0 \Bigr\} , $$

and a cone K in \(PC[0,1]\) by

$$ K= \bigl\{ u\in PC^{+}[0,1]:u\mbox{ is concave on } [0,\xi ], \mbox{and } u \mbox{ is convex on }[\xi,1] \bigr\} . $$
(2.2)

Let \(R>r>0\), define \(K_{r}=\{u\in K:\|u\|< r\}\), \(K_{R,r}=\{u\in K:r<\|u \|<R\}\). Note that \(\partial K_{r}=\{u\in K:\|u\|=r\}\), \(\overline{K} _{R,r}=\{u\in K:r\leq \|u\|\leq R\}\).

We define a map \(T:K \rightarrow PC[0,1]\) by

$$\begin{aligned} (Tu) (t) =&\frac{1}{1-\eta }\biggl[ \int_{0}^{1}g(t) \int_{t}^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr)\,ds\,dt \\ &{}+ \mu \int_{0}^{1}g(t) \biggl( \sum _{t\leq t_{k}}I_{k}\bigl(u(t_{k})\bigr) \biggr)\,dt\biggr] \\ &{}+ \int_{t}^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u( \tau) \bigr)\,d\tau \biggr)\,ds+\mu \sum_{t\leq t_{k}}I_{k} \bigl(u(t_{k})\bigr), \end{aligned}$$
(2.3)

where η is defined in (1.3).

Lemma 2.2

From (2.1), we know that \(u\in PC[0,1]\) is a solution of problem (1.2) if and only if u is a fixed point of the map T.

Lemma 2.3

Assume that (\(H_{1}\))(\(H_{6}\)) hold. Then we have \(T(K)\subset K\), and \(T:K\rightarrow K\) is completely continuous.

Proof

From (2.3), we know that

$$ (Tu)'(t)=-\phi_{q} \biggl( \int_{0}^{t}\lambda \omega (s)f\bigl(u(s)\bigr)\,ds \biggr). $$
(2.4)

Define \(q(t):J\rightarrow J\) as follows:

$$ q(t)=\min \biggl\{ \frac{t}{\xi },\frac{1-t}{1-\xi } \biggr\} , $$

and \(\min_{\sigma \leq t\leq \xi }q(t)=\frac{\sigma }{\xi }\), \(\max_{\xi \leq t\leq 1}q(t)=1\).

Firstly, for any \(u\in K\), we have

$$ \int_{0}^{1}\omega (s)f\bigl(u(s)\bigr)\,ds\geq \int_{0}^{\sigma }\omega^{+}(s)f\bigl(u(s) \bigr)\,ds. $$
(2.5)

In fact, by (2.2), we know that \(u(t)\geq 0\). Since \(u\in K\), \(u(0) \geq 0\), and \(u(1)\geq 0\), we have

$$\begin{aligned}& \frac{u(t)-u(0)}{t-0}\geq \frac{u(\xi)-u(0)}{\xi -0},\quad t\in [0,\xi ] \quad \Rightarrow \quad u(t)\geq q(t)u(\xi),\quad t\in [0,\xi ], \\& \frac{u(t)-u(1)}{t-1}\geq \frac{u(\xi)-u(1)}{\xi -1},\quad t\in [\xi,1] \quad \Rightarrow \quad u(t)\leq q(t)u(\xi),\quad t\in [\xi,1]. \end{aligned}$$

As we all know, ψ is nondecreasing on J, so we have

$$ \psi \bigl(u(t)\bigr)\geq \psi \bigl(q(t)u(\xi)\bigr),\quad t\in [0,\xi ], \qquad \psi \bigl(u(t)\bigr) \leq \psi \bigl(q(t)u(\xi)\bigr),\quad t\in [\xi,1]. $$

So, it follows from (\(H_{5}\)) and (\(H_{6}\)) that

$$\begin{aligned}& \int_{0}^{1}\omega (s)f\bigl(u(s)\bigr)\,ds- \int_{0}^{\sigma }\omega^{+}(s)f\bigl(u(s) \bigr)\,ds \\& \quad = \int_{\sigma }^{\xi }\omega^{+}(s)f\bigl(u(s) \bigr)\,ds- \int_{\xi }^{1}\omega^{-}(s)f\bigl(u(s) \bigr)\,ds \\& \quad \geq c \int_{\sigma }^{\xi }\omega^{+}(s)\psi \bigl(u(s) \bigr)\,ds- \int_{\xi }^{1} \omega^{-}(s)\psi \bigl(u(s) \bigr)\,ds \\& \quad \geq c \int_{\sigma }^{\xi }\omega^{+}(s)\psi \bigl(q(s)u(\xi)\bigr)\,ds- \int_{ \xi }^{1}\omega^{-}(s)\psi \bigl(q(s)u( \xi)\bigr)\,ds \\& \quad \geq c \int_{\sigma }^{\xi }\omega^{+}(s)f\bigl(q(s)u( \xi)\bigr)\,ds-\frac{1}{c} \int_{\xi }^{1}\omega^{-}(s)f\bigl(q(s)u(\xi) \bigr)\,ds \\& \quad \geq ck_{1}u^{\theta }(\xi)\frac{\sigma^{\theta }}{\xi^{\theta }} \int_{\sigma }^{\xi }\omega^{+}(s)\,ds- \frac{1}{c}k_{2}u^{\theta }( \xi) \int_{\xi }^{1}\omega^{-}(s)\,ds \\& \quad \geq u^{\theta }(\xi) \biggl( ck_{1}\frac{\sigma^{\theta }}{\xi^{\theta }} \int_{\sigma }^{\xi }\omega^{+}(s)\,ds- \frac{1}{c}k_{2} \int_{\xi } ^{1}\omega^{-}(s)\,ds \biggr) \\& \quad \geq 0. \end{aligned}$$

Secondly, if \(t\in [0,\xi ]\), we have

$$ \int_{0}^{t}\omega (s)f\bigl(u(s)\bigr)\,ds= \int_{0}^{t}\omega^{+}(s)f\bigl(u(s) \bigr)\,ds \geq 0. $$

Since \(p, q>1\), we get

$$\begin{aligned} (Tu)''(t) =& \biggl( -\phi_{q} \biggl( \int_{0}^{t}\lambda \omega (s)f\bigl(u(s)\bigr)\,ds \biggr) \biggr) ' \\ =& \biggl( - \biggl( \int_{0}^{t}\lambda \omega^{+}(s)f \bigl(u(s)\bigr)\,ds \biggr) ^{q-1} \biggr) ' \\ =&-(q-1) \biggl( \int_{0}^{t}\lambda \omega^{+}(s)f \bigl(u(s)\bigr)\,ds \biggr) ^{q-2} \lambda \omega^{+}(t)f \bigl(u(t)\bigr) \\ \leq& 0. \end{aligned}$$

If \(t\in [\xi,1]\), then we have

$$\begin{aligned} \int_{0}^{t}\omega (s)f\bigl(u(s)\bigr)\,ds =& \int_{0}^{\xi }\omega^{+}(s)f\bigl(u(s) \bigr)\,ds- \int_{\xi }^{t}\omega^{-}(s)f\bigl(u(s) \bigr)\,ds \\ \geq& \int_{0}^{\xi }\omega^{+}(s)f\bigl(u(s) \bigr)\,ds- \int_{\xi }^{1}\omega^{-}(s)f\bigl(u(s) \bigr)\,ds \\ =& \int_{0}^{1}\omega (s)f\bigl(u(s)\bigr)\,ds \\ \geq& \int_{0}^{\sigma }\omega^{+}(s)f\bigl(u(s) \bigr)\,ds \\ \geq& 0. \end{aligned}$$

And then, for \(t\in [\xi,1]\), it follows from \(p,q>1\) that

$$\begin{aligned} (Tu)''(t) =& \biggl( -\phi_{q} \biggl( \int_{0}^{t}\lambda \omega (s)f\bigl(u(s)\bigr)\,ds \biggr) \biggr) ' \\ =& \biggl( -\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(s)f \bigl(u(s)\bigr)\,ds- \int_{\xi }^{t}\lambda \omega^{-}(s)f \bigl(u(s)\bigr) \biggr) \biggr) ' \\ =& \biggl( - \biggl( \int_{0}^{\xi }\lambda \omega^{+}(s)f \bigl(u(s)\bigr)\,ds- \int_{ \xi }^{t}\lambda \omega^{-}(s)f \bigl(u(s)\bigr) \biggr) ^{q-1} \biggr) ' \\ =&-(q-1) \biggl( \int_{0}^{\xi }\lambda \omega^{+}(s)f \bigl(u(s)\bigr)\,ds- \int_{ \xi }^{t}\lambda \omega^{-}(s)f \bigl(u(s)\bigr) \biggr) ^{q-2} \bigl( -\lambda \omega^{-}(t)f \bigl(u(t)\bigr) \bigr) \\ \geq& 0. \end{aligned}$$

Moreover, by direct calculating, we get \((Tu)(t)\geq 0\) for \(t\in J\), \((Tu)''(t)\leq 0\) for \(t\in [0,\xi ]\), and \((Tu)''(t)\geq 0\) for \(t\in [\xi,1]\). Thus, \(T(K)\subset K\).

Then it finally follows from the Arzelà–Ascoli theorem that the operator T is completely continuous. □

From Lemma 2.3, since \((Tu)'(t)\leq 0\), then T is nonincreasing for \(u\in K\). It is not difficult to see that

$$\begin{aligned} \Vert Tu \Vert _{PC} =&(Tu) (0) \\ =&\frac{1}{1-\eta }\biggl[ \int_{0}^{1}g(0) \int_{0} ^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr)\,ds\,dt \\ &{} +\mu \int_{0}^{1}g(0) \biggl( \sum _{t\leq t_{k}}I _{k}\bigl(u(t_{k})\bigr) \biggr)\,dt\biggr] \\ &{}+ \int_{0}^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u( \tau) \bigr)\,d\tau \biggr)\,ds+\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr). \end{aligned}$$
(2.6)

Lemma 2.4

If (\(H_{1}\))(\(H_{4}\)) hold, then for \(u\in K\) we get

$$\begin{aligned}& \Vert Tu \Vert _{PC}\leq \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) +\mu \frac{1}{1-\eta }\sum _{k=1}^{n}I_{k}\bigl(u(t_{k}) \bigr), \end{aligned}$$
(2.7)
$$\begin{aligned}& \Vert Tu \Vert _{PC}\geq \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi _{q} \biggl( \int_{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}(\tau)f \bigl(u( \tau)\bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr). \end{aligned}$$
(2.8)

Proof

By (2.6), for \(u\in K\), we have

$$\begin{aligned} \Vert Tu \Vert _{PC} =&\frac{1}{1-\eta }\biggl[ \int_{0}^{1}g(t) \int_{t}^{1}\phi _{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr)\,ds\,dt \\ &{}+ \mu \int_{0}^{1}g(t) \biggl( \sum _{t\leq t_{k}}I_{k}\bigl(u(t_{k})\bigr) \biggr)\,dt\biggr] \\ &{} + \int_{0}^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u( \tau) \bigr)\,d\tau \biggr)\,ds+\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ \leq& \frac{1}{1-\eta }\Biggl[ \int_{0}^{1}g(t) \int_{0}^{1}\phi_{q} \biggl( \int _{0}^{s}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr)\,ds\,dt \\ &{}+\mu \int _{0}^{1}g(t) \Biggl( \sum _{k=1}^{n}I_{k}\bigl(u(t_{k}) \bigr) \Biggr)\,dt\Biggr] \\ &{} + \int_{0}^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u( \tau) \bigr)\,d\tau \biggr)\,ds+\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ =&\frac{1}{1-\eta } \int_{0}^{1}\phi_{q} \biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr)\,ds+\mu \frac{1}{1-\eta }\sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ =&\frac{1}{1-\eta } \biggl[ \int_{0}^{\xi }\phi_{q} \biggl( \int_{0}^{s} \lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds+ \int_{\xi }^{1} \phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \\ &{}- \int_{\xi }^{s}\lambda \omega^{-}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) \biggr]\,ds+\mu \frac{1}{1-\eta }\sum _{k=1}^{n}I_{k}\bigl(u(t _{k}) \bigr) \\ \leq& \frac{1}{1-\eta }\biggl[ \int_{0}^{\xi }\phi_{q} \biggl( \int_{0}^{ \xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds \\ &{}+ \int_{\xi } ^{1}\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds\biggr] \\ &{} +\mu \frac{1}{1-\eta }\sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ =&\frac{1}{1-\eta } \int_{0}^{1}\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds+\mu \frac{1}{1-\eta } \sum _{k=1}^{n}I_{k}\bigl(u(t_{k}) \bigr) \\ =&\frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}( \tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) +\mu \frac{1}{1-\eta }\sum _{k=1} ^{n}I_{k}\bigl(u(t_{k}) \bigr). \end{aligned}$$

Then (2.7) holds.

From (2.5) and (2.6), we have

$$\begin{aligned} \Vert Tu \Vert _{PC} =&\frac{1}{1-\eta }\biggl[ \int_{0}^{1}g(t) \int_{t}^{1}\phi _{q}\biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr)\,ds\,dt \\ &{}+ \mu \int_{0}^{1}g(t) \biggl( \sum _{t\leq t_{k}}I_{k}\bigl(u(t_{k})\bigr)\biggr)\,dt \biggr] \\ &{}+ \int_{0}^{1}\phi_{q}\biggl( \int_{0}^{s}\lambda \omega (\tau)f\bigl(u( \tau) \bigr)\,d\tau \biggr)\,ds+\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ =&\frac{1}{1-\eta }\biggl\{ \int_{0}^{\xi }g(t)\biggl[ \int_{t}^{\xi }\phi _{q}\biggl( \int_{0}^{s}\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds \\ &{}+ \int_{\xi }^{1}\phi_{q}\biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u( \tau)\bigr)\,d\tau \\ &{} - \int_{\xi }^{s}\lambda \omega^{-}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds\biggr]\,dt+ \int_{\xi }^{1}g(t) \int_{t}^{1}\phi_{q}\biggl( \int _{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \\ &{} - \int_{\xi }^{s}\lambda \omega^{-}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds\,dt\biggr\} + \int_{0}^{\xi }\phi_{q}\biggl( \int_{0}^{s} \lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds \\ &{}+ \int_{\xi }^{1} \phi_{q}\biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \\ &{} - \int_{\xi }^{s}\lambda \omega^{-}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds+ \mu \frac{1}{1-\eta } \int_{0}^{1}g(t)\sum_{t\leq t_{k}}I_{k} \bigl(u(t _{k})\bigr)\,dt \\ &{}+\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ \geq& \frac{1}{1-\eta } \int_{0}^{\xi }g(t) \int_{\xi }^{1}\phi_{q}\biggl( \int _{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau - \int_{\xi }^{s} \lambda \omega^{-}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds\,dt \\ &{}+ \int_{\xi }^{1}\phi_{q}\biggl( \int_{0}^{\xi }\lambda \omega^{+}( \tau)f \bigl(u(\tau)\bigr)\,d\tau - \int_{\xi }^{s}\lambda \omega^{-}(\tau)f \bigl(u( \tau)\bigr)\,d\tau \biggr)\,ds \\ &{}+\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ =&\frac{1-\int_{\xi }^{1}g(t)\,dt}{1-\eta } \int_{\xi }^{1}\phi_{q}\biggl( \int _{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau - \int_{\xi }^{s} \lambda \omega^{-}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds \\ &{}+\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ \geq& \frac{1-\int_{\xi }^{1}g(t)\,dt}{1-\eta } \int_{\xi }^{1}\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau - \int_{\xi }^{1}\lambda \omega^{-}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr)\,ds \\ &{}+ \mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ =&\frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q}\biggl( \int _{0}^{1}\lambda \omega (\tau)f\bigl(u(\tau) \bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q}\biggl( \int _{0}^{\sigma }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) + \mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q}\biggl( \int _{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr). \end{aligned}$$

Then (2.8) holds. □

3 Main results

Based on the lemmas mentioned above, we give the following theorems and their proofs.

Theorem 3.1

Assume that (\(H_{1}\))(\(H_{6}\)) hold. If \(\theta_{1}>p-1\) and \(\theta_{2}>1\), there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.2) admits two positive solutions for \(\lambda \in [\lambda_{0},+\infty)\), \(\mu \in [\mu_{0},+\infty)\).

Proof

Denote

$$\begin{aligned}& A_{1}=\frac{1}{\int_{0}^{\xi }\lambda \omega^{+}(\tau)\,d\tau }\phi _{p}\biggl(\frac{1-\eta }{2} \biggr),\qquad A_{2}=\frac{1-\eta }{2\mu n}, \\& B_{1}=\frac{1}{\int_{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}( \tau)\,d\tau }\phi_{p}\biggl(\frac{1-\eta }{2\alpha (1-\xi)(1-\int_{\xi } ^{1}g(t)\,dt)} \biggr), \qquad B_{2}=\frac{1}{2n\mu \alpha }. \end{aligned}$$

On the one hand, since \(\theta_{1}>p-1\) and \(\theta_{2}>1\), by (\(H_{5}\)), we get

$$ \lim_{u\rightarrow 0}\frac{f(u)}{\phi_{p}(u)}\leq \lim_{u\rightarrow 0} \frac{k_{2}u^{\theta_{1}}}{u^{p-1}}=0, \qquad \lim_{u\rightarrow 0}\frac{I _{k}(u)}{u}\leq \lim_{u\rightarrow 0}\frac{k_{4}u^{\theta_{2}}}{u}=0. $$

Hence, there exists \(r>0\) such that

$$ f(u)< A_{1}\phi_{p}(u), \qquad I_{k}(u)< A_{2}u, \quad u\in [0,r]. $$

Then from (2.7), for \(u\in \partial K_{r}\), then \(\|u\|_{PC}=r\) and \(0\leq u(t)\leq \|u\|=r\) for all \(t\in J\). It is clear that \(f(u(t))< A_{1}\phi_{p}(u(t))\) and \(I_{k}(u(t))< A_{2}u(t)\) for all \(t\in J\). Then from (2.7), for \(u\in \partial K_{r}\), we get

$$\begin{aligned} \Vert Tu \Vert _{PC} \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) +\mu \frac{1}{1-\eta } \sum _{k=1}^{n}I_{k}\bigl(u(t_{k}) \bigr) \\ < &\frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}( \tau)A_{1}\phi_{p}\bigl(u(\tau)\bigr)\,d\tau \biggr) +\mu \frac{1}{1-\eta } \sum_{k=1}^{n}A_{2}u(t_{k}) \\ \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}( \tau)A_{1}\phi_{p}\bigl( \Vert u \Vert _{PC} \bigr)\,d\tau \biggr) +\mu \frac{1}{1-\eta } \sum_{k=1}^{n}A_{2} \Vert u \Vert _{PC} \\ =&\frac{ \Vert u \Vert _{PC}}{2}+\frac{ \Vert u \Vert _{PC}}{2} \\ =& \Vert u \Vert _{PC}. \end{aligned}$$

Consequently,

$$ \Vert Tu \Vert _{PC}< \Vert u \Vert _{PC}, \quad \forall u\in \partial K_{r}. $$
(3.1)

On the other hand, we denote \(\delta (t)=\min \{\frac{t}{\xi },\frac{ \xi -t}{\xi } \}\), \(t\in [0,\xi ]\). If \(u\in K\), then u is a nonnegative function on \([0,\xi ]\). So we get

$$ u(t)\geq \delta (t) \Vert u \Vert _{PC}, \quad t\in [0,\xi ]. $$

It follows that \(u(t)\geq \alpha \|u\|_{PC}\), \(t\in [\frac{\sigma }{2}, \sigma ]\), where \(\alpha =\min_{\frac{\sigma }{2}\leq t\leq \sigma }\delta (t)\).

Since \(\theta_{1}>p-1\) and \(\theta_{2}>1\), by (\(H_{5}\)), we have

$$ \lim_{u\rightarrow +\infty }\frac{f(u)}{\phi_{p}(u)}\geq \lim_{u\rightarrow +\infty } \frac{k_{1}u^{\theta_{1}}}{u^{p-1}}=+ \infty,\qquad \lim_{u\rightarrow +\infty }\frac{I_{k}(u)}{u} \geq \lim_{u\rightarrow +\infty }\frac{k_{3}u^{\theta_{2}}}{u}=+\infty. $$

Furthermore, there exists \(0< r< R'\) such that

$$ f(u)\geq B_{1}\phi_{p}(u),\qquad I_{k}(u)\geq B_{2}u,\quad u\in [R',+\infty), $$

Choose \(R\geq \frac{R'}{\alpha }\). Then, for any \(u\in \partial K_{R}\), we have \(\min_{\frac{\sigma }{2}\leq t\leq \sigma }u(t)\geq \min_{\frac{\sigma }{2}\leq t\leq \sigma }\delta (t)\|u\|_{PC}= \alpha R\geq R'\), and \(f(u(t))\geq B_{1}u^{p-1}(t)\), \(I_{k}(u(t)) \geq B_{2}u(t)\), \(t\in [\frac{\sigma }{2},\sigma ]\).

Then by (2.8), for \(u\in \partial K_{R}\), we have

$$\begin{aligned} \Vert Tu \Vert _{PC} \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi _{q} \biggl( \int_{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}(\tau)f \bigl(u( \tau)\bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q} \biggl( \int _{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}( \tau)B_{1}\phi_{p}\bigl(u( \tau)\bigr)\,d\tau \biggr) +\mu \sum _{k=1}^{n}B_{2}u(t_{k}) \\ \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q} \biggl( \int _{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}( \tau)B_{1}\phi_{p}\bigl( \alpha \Vert u \Vert _{PC}\bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}B_{2} \alpha \Vert u \Vert _{PC} \\ =&\frac{\alpha (1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta } \Vert u \Vert _{PC} \phi_{q} \biggl( \int_{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}( \tau)B_{1}\,d\tau \biggr) +\mu nB_{2}\alpha \Vert u \Vert _{PC} \\ \geq& \frac{1}{2} \Vert u \Vert _{PC}+\frac{1}{2} \Vert u \Vert _{PC} \\ =& \Vert u \Vert _{PC}. \end{aligned}$$

Consequently,

$$ \Vert Tu \Vert _{PC}\geq \Vert u \Vert _{PC}, \quad \forall u\in \partial K_{R}. $$
(3.2)

In addition, choose a number \(r'\in (0,r)\). Noticing that \(f(u)>0\) for all \(u>0\) and \(I_{k}(u)>0\) for all \(u>0\), we can define

$$\begin{aligned}& f_{r'}=\min \bigl\{ f(u):\alpha r'\leq u\leq r'\bigr\} , \qquad I_{kr'}=\min \bigl\{ I _{k}: \alpha r'\leq u \leq r'\bigr\} , \\& I_{r'}=\min \{I_{kr'}:k=1,2,\ldots,n\}. \end{aligned}$$

Let \(\lambda_{0}=\frac{1}{\int_{\frac{\sigma }{2}}^{\sigma }\omega ^{+}(\tau)f_{r'}\,d\tau }\phi_{p} ( \frac{r'(1-\eta)}{2(1-\int_{ \xi }^{1}g(t)\,dt)(1-\xi)} )\), \(\mu_{0}=\frac{r'}{2nI_{r'}}\). Thus we have

$$\begin{aligned}& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q} \biggl( \int_{\frac{ \sigma }{2}}^{\sigma }\lambda_{0} \omega^{+}(\tau)f_{r'}\,d\tau \biggr) = \frac{1}{2}r', \\& \mu_{0}nI_{r'}=\frac{1}{2}r'. \end{aligned}$$

If \(u\in \partial K_{r'}\), then \(\|u\|_{PC}=r'\) and \(\alpha r'= \min_{\frac{\sigma }{2}\leq t\leq \sigma }\delta (t)\|u\|_{PC} \leq u(t)\leq \|u\|_{PC}=r'\), \(t\in [\frac{\sigma }{2},\sigma ]\). It is clear that \(f(u(t))\geq f_{r'}\) and \(I_{k}(u(t))\geq I_{r'}\), \(t\in [\frac{ \sigma }{2},\sigma ]\).

Then from (2.8), for \(u\in \partial K_{r'}\), we have

$$\begin{aligned} \Vert Tu \Vert _{PC} \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi _{q} \biggl( \int_{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}(\tau)f \bigl(u( \tau)\bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}I_{k} \bigl(u(t_{k})\bigr) \\ \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q} \biggl( \int _{\frac{\sigma }{2}}^{\sigma }\lambda \omega^{+}( \tau)f_{r'}\,d\tau \biggr) + \mu \sum_{k=1}^{n}I_{r'} \\ \geq& \frac{(1-\int_{\xi }^{1}g(t)\,dt)(1-\xi)}{1-\eta }\phi_{q} \biggl( \int _{\frac{\sigma }{2}}^{\sigma }\lambda_{0} \omega^{+}(\tau)f_{r'}\,d\tau \biggr) +\mu_{0}nI_{r'} \\ =&\frac{1}{2}r'+\frac{1}{2}r' \\ =&r'= \Vert u \Vert _{PC}. \end{aligned}$$

Consequently,

$$ \Vert Tu \Vert _{PC}\geq \Vert u \Vert _{PC}, \quad \forall u\in \partial K_{r'}. $$
(3.3)

Therefore, applying Lemma 1.1 to (3.1), (3.2), and (3.3) yields that T has two fixed points \(u_{1}\in \overline{K}_{R}\setminus \overline{K}_{r}\) and \(u_{2}\in K_{r}\setminus K_{r'}\). Thus, if \(\theta_{1}>p-1\) and \(\theta_{2}>1\), there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.2) admits two positive solutions for \(\lambda \in [\lambda_{0},+\infty)\) and \(\mu \in [\mu_{0},+\infty)\). The proof of Theorem 3.1 is completed. □

Theorem 3.2

Assume that (\(H_{1}\))(\(H_{6}\)) hold. If \(0<\theta_{1}<p-1\) and \(0<\theta_{2}<1\), there exist \(\lambda^{0}>0\) and \(\mu^{0}>0\) such that problem (1.2) admits two positive solutions for \(\lambda \in (0,\lambda^{0}]\) and \(\mu \in (0,\mu^{0}]\).

Proof

On the one hand, since \(0<\theta_{1}<p-1\) and \(0<\theta _{2}<1\), by (\(H_{5}\)), we get

$$ \lim_{u\rightarrow 0}\frac{f(u)}{\phi_{p}(u)}\geq \lim_{u\rightarrow 0} \frac{k_{1}u^{\theta_{1}}}{u^{p-1}}=+\infty,\qquad \lim_{u\rightarrow 0}\frac{I _{k}(u)}{u} \geq \lim_{u\rightarrow 0}\frac{k_{3}u^{\theta_{2}}}{u}=+ \infty. $$

Hence, there exists \(r_{1}>0\) such that

$$ f(u)> B_{1} \phi_{p}(u),\qquad I_{k}(u)> B_{2}u,\quad u\in [0,r_{1}]. $$

Then we have \(\min \{f(u):\alpha r_{1}\leq u\leq r_{1}\}> B_{1}\phi _{p}(u)\) and \(\min \{I_{k}(u):\alpha r_{1}\leq u\leq r_{1}\}> B_{2}u\).

If \(u\in \partial K_{r_{1}}\), then \(\|u\|_{PC}=r_{1}\) and \(\alpha r _{1}=\min_{\frac{\sigma }{2}\leq t\leq \sigma }\delta (t)\|u\| _{PC}\leq u(t)\leq \|u\|_{PC}=r_{1}\), \(t\in [\frac{\sigma }{2},\sigma ]\). It is easy to see that \(f(u(t))> B_{3}\phi_{p}(u(t))\), \(I_{k}(u(t))> B_{4}u(t)\), \(t\in [\frac{\sigma }{2},\sigma ]\). Then from (2.8), for \(u\in \partial K_{r_{1}}\), similar to (3.2), we have

$$ \Vert Tu \Vert _{PC}> \Vert u \Vert _{PC}, \quad \forall u\in \partial K_{r_{1}}. $$
(3.4)

On the other hand, since \(0<\theta_{1}<p-1\) and \(0<\theta_{2}<1\), by (\(H_{5}\)), we have

$$ \lim_{u\rightarrow +\infty }\frac{f(u)}{\phi_{p}(u)}\leq \lim_{u\rightarrow +\infty } \frac{k_{2}u^{\theta }}{u^{p-1}}=0,\qquad \lim_{u\rightarrow +\infty }\frac{I_{k}(u)}{u}\leq \lim_{u\rightarrow +\infty }\frac{k_{4}u^{\theta }}{u}=0. $$

Furthermore, there exists \(0< r_{1}< R'_{1}<+\infty \) such that

$$ f(u)\leq \frac{A_{1}}{2}\phi_{p}(u),\qquad I_{k}(u)\leq \frac{A_{2}}{2}u, \quad u\in \bigl[R'_{1},+\infty\bigr). $$

Let \(M_{1}=\max \{f(u):0\leq u\leq R'_{1}\}\) and \(M_{2}=\max \{I_{k}:0 \leq u\leq R'_{1},k=1,2,\ldots,n\}\). It implies that

$$ f(u)\leq \frac{A_{1}}{2}\phi_{p}(u)+M_{1},\qquad I_{k}(u)\leq \frac{A_{2}}{2}u+M_{2}, \quad u\in [0,+ \infty). $$

Choose \(R_{1}\geq \{R'_{1},\frac{2\phi_{q}(2\int_{0}^{\xi }\lambda \omega^{+}(\tau)M_{1}\,d\tau)}{1-\eta },4\mu nM_{2}\}\). If \(u\in \partial K_{R_{1}}\), then \(\|u\|=R_{1}\) and \(0\leq u(t)\leq R_{1}\), \(t \in J\). It is easy to see that \(f(u(t))\leq \frac{A_{1}}{2}\phi_{p}(u(t))+M _{1}\), \(I_{k}(u(t))\leq \frac{A_{2}}{2}u(t)+M_{2}\), \(t\in J\). Then from (2.7), for \(u\in \partial K_{R_{1}}\), we have

$$\begin{aligned} \Vert Tu \Vert _{PC} \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}I _{k}\bigl(u(t_{k})\bigr) \\ \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}( \tau) \biggl(\frac{A_{1}}{2}\phi_{p}\bigl(u(\tau)\bigr)+M_{1} \biggr)\,d\tau \biggr) +\mu \sum_{k=1}^{n} \biggl(\frac{A_{2}}{2}u(t_{k})+M_{2}\biggr) \\ \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}( \tau) \frac{A_{1}}{2}\phi_{p}\bigl( \Vert u \Vert _{PC} \bigr)\,d\tau + \int_{0}^{\xi }\lambda \omega^{+}( \tau)M_{1}\,d\tau \biggr) \\ &{} +\mu \sum_{k=1}^{n}\frac{A _{2}}{2} \Vert u \Vert _{PC}+\mu nM_{2} \\ \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \frac{1}{2} \phi_{p}\biggl(\frac{ \Vert u \Vert _{PC}(1-\eta)}{2}\biggr)+\frac{1}{2} \phi_{p}\biggl(\frac{R_{1}(1-\eta)}{2}\biggr) \biggr) +\frac{ \Vert u \Vert _{PC}}{4}+ \frac{R_{1}}{4} \\ =&\frac{1}{2}R_{1}+\frac{1}{2}R_{1} \\ =&R_{1}= \Vert u \Vert _{PC}. \end{aligned}$$

Consequently,

$$ \Vert Tu \Vert _{PC}\leq \Vert u \Vert _{PC},\quad \forall u\in \partial K_{R_{1}}. $$
(3.5)

In addition, choosing a number \(r'_{1}\in (0,r_{1})\), we can define

$$\begin{aligned}& f^{r'_{1}}=\max \bigl\{ f(u):0< u\leq r'_{1}\bigr\} , \qquad I_{k}^{r'_{1}}=\max \bigl\{ I _{k}(u):0< u\leq r'_{1}\bigr\} , \\& I^{r'_{1}}=\max \bigl\{ I_{k}^{r'_{1}}:k=1,2,\ldots,n\bigr\} . \end{aligned}$$

Let \(\lambda^{0}=\frac{1}{\int_{0}^{\xi }\omega^{+}(\tau)f^{r'_{1}}\,d\tau }\phi_{p} ( \frac{r'_{1}(1-\eta)}{2} ) \) and \(\mu^{0}=\frac{r'_{1}}{2nI ^{r'_{1}}}\). It is clear that

$$ \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda^{0} \omega^{+}( \tau)f^{r'_{1}}\,d\tau \biggr) \leq \frac{1}{2}r'_{1}, \qquad \mu^{0}nI^{r'_{1}} \leq \frac{1}{2}r'_{1}. $$

If \(u\in \partial K_{r'_{1}}\), then \(\|u\|_{PC}=r'_{1}\) and \(0\leq u(t)\leq \|u\|_{PC}=r'_{1}\), \(t\in J\). It is clear that \(f(u(t))\leq f^{r'_{1}}\), \(I_{k}(u(t))\leq I^{r'_{1}}\), \(t\in J\). Then from (2.7), for \(u\in \partial K_{r'_{1}}\), we have

$$\begin{aligned} \Vert Tu \Vert _{PC} \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}(\tau)f \bigl(u(\tau)\bigr)\,d\tau \biggr) +\mu \sum_{k=1}^{n}I _{k}\bigl(u(t_{k})\bigr) \\ \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda \omega^{+}( \tau)f^{r'_{1}}\,d\tau \biggr) +\mu \sum_{k=1}^{n}I^{r'_{1}} \\ \leq& \frac{1}{1-\eta }\phi_{q} \biggl( \int_{0}^{\xi }\lambda^{0}\omega ^{+}(\tau)f^{r'_{1}}\,d\tau \biggr) +\mu^{0}nI^{r'_{1}} \\ =&\frac{1}{2}r'_{1}+\frac{1}{2}r'_{1} \\ =&r'_{1}= \Vert u \Vert _{PC}. \end{aligned}$$

Consequently,

$$ \Vert Tu \Vert _{PC}\leq \Vert u \Vert _{PC}, \quad \forall u\in \partial K_{r'_{1}}. $$
(3.6)

Therefore, applying Lemma 1.1 to (3.4), (3.5), and (3.6) yields that T has two fixed points \(u'_{1}\in \overline{K}_{R_{1}}\setminus \overline{K}_{r_{1}}\) and \(u'_{2}\in K_{r_{1}}\setminus K_{r'_{1}}\). Thus, if \(0<\theta_{1}<p-1\) and \(0<\theta_{2}<1\), there exist \(\lambda^{0}>0\) and \(\mu^{0}>0\) such that problem (1.2) admits two positive solutions for \(\lambda \in (0,\lambda^{0}]\) and \(\mu \in (0, \mu^{0}]\). The proof of Theorem 3.2 is finished. □

Remark 3.1

If \(I_{k}=0\) (\(k=1,2,\ldots,n\)), even for the case \(g(t)\equiv 0\) on J, the results of the present paper are still novel.

Remark 3.2

Comparing with Li, Feng, and Qin [60], the main features of this paper are as follows:

  1. (i)

    \(p> 1\) is considered, not only \(p\equiv 2\).

  2. (ii)

    \(I_{k}\neq 0\) (\(k=1,2,\ldots,n\)) is considered.

  3. (iii)

    The basic space \(PC[0,1]\) is available, not \(C[0,1]\).

4 An example

We give an example to illustrate our main conclusions.

Example 4.1

Let \(p=\frac{3}{2}\), \(n=1\), \(t_{1}=\frac{1}{2}\). Consider the following problem:

$$ \textstyle\begin{cases} -(\phi_{p}(u'))'=\lambda \omega (t)(u+\sin u), \quad 0< t< 1, \\ -\Delta u|_{t=t_{1}}=\mu I_{1}(u(t_{1})), \\ \Delta u'|_{t=t_{1}}=0, \\ u'(0)=0, \quad u(1)=\int_{0}^{1}g(t)u(t)\,dt, \end{cases} $$
(4.1)

where

$$ \omega (t)= \textstyle\begin{cases} 12(\frac{2}{3}-t), & t\in [0,\frac{2}{3}], \\ \frac{2}{3}-t, & t\in [\frac{2}{3},1], \end{cases}\displaystyle \qquad I_{1}(u)=u^{2}, \qquad g(t)=t. $$

From the definition of \(\omega (t)\) and \(g(t)\), we know that \(\xi =\frac{1}{2}\) and \(\eta =\int_{0}^{1}t\,dt=\frac{1}{2}\). From \(p=\frac{3}{2}\), we can get that \(q=3\).

Since f is nondecreasing, then \(c=1\). For fixed \(k_{1}=1\), \(k_{2}=2\), \(\theta_{1}=1\), \(k_{3}=k_{4}=1\), \(\theta_{2}=2\), \(\sigma =\frac{1}{4}\), we can prove that (\(H_{5}\)) holds.

In fact,

$$\begin{aligned} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{2}{3}}12\biggl(\frac{2}{3}-\tau \biggr)\,d\tau =&6 \int_{\frac{1}{2}}^{\frac{2}{3}}\biggl(\frac{2}{3}-\tau\biggr)\,d\tau \\ =&6\biggl(\frac{2}{3}\tau -\frac{\tau^{2}}{2}\biggr)\bigg|_{\frac{1}{2}}^{\frac{2}{3}}\,d\tau \\ =&\frac{1}{12}, \end{aligned}$$

and

$$ 2\times \frac{2}{3} \int_{\frac{2}{3}}^{1}\biggl(\tau -\frac{2}{3}\biggr)\,d\tau = \frac{4}{3}\biggl(\frac{\tau^{2}}{2}-\frac{2}{3}\tau \biggr)\bigg|_{\frac{2}{3}}^{1}= \frac{2}{27}. $$

Obviously, \(\frac{1}{12}>\frac{2}{27}\). Thus

$$ \frac{1}{2} \int_{\frac{1}{2}}^{\frac{2}{3}}12\biggl(\frac{2}{3}-\tau \biggr)\,d\tau \geq \frac{4}{3} \int_{\frac{2}{3}}^{1}\biggl(\tau -\frac{2}{3}\biggr)\,d\tau. $$

This shows that (\(H_{6}\)) holds.

Let \(\lambda_{0}=\frac{12}{7}\sqrt{\frac{3}{13}}(\frac{1}{8}+\sin \frac{1}{8})^{-1}\), \(\mu_{0}=16\). Then it follows from Theorem 3.1 that problem (4.1) admits two positive solutions for \(\lambda \in [ \frac{12}{7}\sqrt{\frac{3}{13}}(\frac{1}{8}+\sin \frac{1}{8})^{-1},+ \infty)\), \(\mu \in [16,\infty)\).