Skip to main content

Advertisement

Log in

Renal replacement therapy in acute kidney injury: controversy and consensus

  • Review
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

Renal replacement therapies (RRTs) represent a cornerstone in the management of severe acute kidney injury. This area of intensive care and nephrology has undergone significant improvement and evolution in recent years. Continuous RRTs have been a major focus of new technological and treatment strategies. RRT is being used increasingly in the intensive care unit, not only for renal indications but also for other organ-supportive strategies. Several aspects related to RRT are now well established, but others remain controversial. In this review, we review the available RRT modalities, covering technical and clinical aspects. We discuss several controversial issues, provide some practical recommendations, and where possible suggest a research agenda for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

ARDS:

Acute respiratory distress syndrome

ATN:

Acute Renal Failure Trial Network

BBB:

Blood–brain barrier

BUN:

Blood urea nitrogen

CARRESS:

Effectiveness of Ultrafiltration in Treating People With Acute Decompensated Heart Failure and Cardiorenal Syndrome

CPFA:

Couple plasma filtration and adsorption

CRRT:

Continuous renal replacement therapy

CVVH:

Continuous veno-venous hemofiltration

FF:

Filtration fraction

HCO:

High cutoff

HF:

Hemofiltration

HIT:

Heparin-induced thrombocytopenia

ICP:

Intracranial pressure

ICU:

Intensive care unit

IHD:

Intermittent hemodialysis

LMWH:

Low-molecular-weight heparin

NGAL:

Neutrophil gelatinase-associated lipocalin

POC:

Point-of-care

Qb:

Blood flow rate

RCA:

Regional citrate anticoagulation

RCT:

Randomized controlled trial

RRT:

Renal replacement therapy

SLED:

Sustained low-efficiency dialysis

UFH:

Unfractionated heparin

References

  1. Bellomo R, Ronco C. Continuous renal replacement therapy: hemofiltration, hemodiafiltration or hemodialysis. In: Ronco C, Bellomo R, Kellum JA, editors. Critcal Care Nephrology. 2nd ed. Philadelphia: Saunders Elsevier; 2009. p. 1354–8.

    Chapter  Google Scholar 

  2. Kidney Disease Outcomes Quality Initiative. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  3. Ward D. Principles of extracorporeal circulation. In: Ronco C, Bellomo R, Kellum JA, editors. Critical Care Nephrology. 2nd ed. Philadelphia: Elsevier Saunders; 2009. p. 1141–5.

    Chapter  Google Scholar 

  4. Baldwin I, Bellomo R, Koch B. Blood flow reductions during continuous renal replacement therapy and circuit life. Intensive Care Med. 2004;30:2074–9.

    Article  PubMed  Google Scholar 

  5. Vijayan A. Vascular access for continuous renal replacement therapy. Semin Dial. 2009;22:133–6.

    Article  PubMed  Google Scholar 

  6. Parienti JJ, Thirion M, Megarbane B, Souweine B, Ouchikhe A, Polito A, et al. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA. 2008;299:2413–22.

    Article  CAS  PubMed  Google Scholar 

  7. Parienti JJ, Megarbane B, Fischer MO, Lautrette A, Gazui N, Marin N, et al. Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med. 2010;38:1118–25.

    Article  PubMed  Google Scholar 

  8. Morgan D, Ho K, Murray C, Davies H, Louw J. A randomized trial of catheters of different lengths to achieve right atrium versus superior vena cava placement for continuous renal replacement therapy. Am J Kidney Dis. 2012;60:272–9.

    Article  PubMed  Google Scholar 

  9. Ricci Z, Ronco C. Pre- versus post-dilution CVVH. Blood Purif. 2005;23:338.

    Article  PubMed  Google Scholar 

  10. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12:R74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. House AA, Haapio M, Lentini P, Bobek I, de Cal M, Cruz DN, et al. Volume assessment in mechanically ventilated critical care patients using bioimpedance vectorial analysis, brain natriuretic peptide, and central venous pressure. Int J Nephrol. 2011;2011:413760.

    Google Scholar 

  12. Ronco C, Kaushik M, Valle R, Aspromonte N, Peacock WF. Diagnosis and management of fluid overload in heart failure and cardio-renal syndrome: the ‘5B’ approach. Semin Nephrol. 2012;32:129–41.

    Article  PubMed  Google Scholar 

  13. Hoste EA, Maitland K, Brudney CS, Mehta R, Vincent JL, Yates D, et al. Four phases of intravenous fluid therapy: a conceptual model. Br J Anaesth. 2014;113:740–7.

    Article  PubMed  Google Scholar 

  14. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.

    Article  PubMed  Google Scholar 

  15. Srisawat N, Murugan R, Lee M, Kong L, Carter M, Angus DC, et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 2011;80:545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srisawat N, Wen X, Lee M, Kong L, Elder M, Carter M, et al. Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol. 2011;6:1815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17:R207.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Honore PM, Jamez J, Wauthier M, Lee PA, Dugernier T, Pirenne B, et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med. 2000;28:3581–7.

    Article  CAS  PubMed  Google Scholar 

  19. Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009;37:803–10.

    Article  PubMed  Google Scholar 

  20. Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R, et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care. 2011;15:R72.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leite TT, Macedo E, Pereira SM, Bandeira SR, Pontes PH, Garcia AS, et al. Timing of renal replacement therapy initiation by AKIN classification system. Crit Care. 2013;17:R62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Clec’h C, Darmon M, Lautrette A, Chemouni F, Azoulay E, Schwebel C, et al. Efficacy of renal replacement therapy in critically ill patients: a propensity analysis. Crit Care. 2012;16:R236.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, et al. An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs Augmented Level of Replacement Therapy trial. Crit Care Med. 2012;40:1753–60.

    Article  PubMed  Google Scholar 

  24. Wu VC, Ko WJ, Chang HW, Chen YW, Lin YF, Shiao CC, et al. Risk factors of early redialysis after weaning from postoperative acute renal replacement therapy. Intensive Care Med. 2008;34:101–8.

    Article  CAS  PubMed  Google Scholar 

  25. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med. 2009;37:2576–82.

    Article  PubMed  Google Scholar 

  26. van der Voort PH, Boerma E, Pickkers P. The furosemide stress test to predict renal function after continuous renal replacement therapy. Crit Care. 2014;18:429.

    Article  PubMed  PubMed Central  Google Scholar 

  27. van der Voort PH, Boerma EC, Koopmans M, Zandberg M, de Ruiter J, Gerritsen RT, et al. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit Care Med. 2009;37:533–8.

    Article  PubMed  CAS  Google Scholar 

  28. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  CAS  PubMed  Google Scholar 

  29. de Geus HR, Betjes MG, Bakker J. Neutrophil gelatinase-associated lipocalin clearance during veno-venous continuous renal replacement therapy in critically ill patients. Intensive Care Med. 2010;36:2156–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39:987–97.

    Article  CAS  PubMed  Google Scholar 

  32. Srisawat N, Lawsin L, Uchino S, Bellomo R, Kellum JA. Cost of acute renal replacement therapy in the intensive care unit: results from The Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) study. Crit Care. 2010;14:R46.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manns B, Doig CJ, Lee H, Dean S, Tonelli M, Johnson D, et al. Cost of acute renal failure requiring dialysis in the intensive care unit: clinical and resource implications of renal recovery. Crit Care Med. 2003;31:449–55.

    Article  PubMed  Google Scholar 

  34. Wald R, Shariff SZ, Adhikari NK, Bagshaw SM, Burns KE, Friedrich JO, et al. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study. Crit Care Med. 2014;42:868–77.

    Article  CAS  PubMed  Google Scholar 

  35. Berbece AN, Richardson RM. Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal. Kidney Int. 2006;70:963–8.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar VA, Craig M, Depner TA, Yeun JY. Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis. 2000;36:294–300.

    Article  CAS  PubMed  Google Scholar 

  37. Wu VC, Wang CH, Wang WJ, Lin YF, Hu FC, Chen YW, et al. Sustained low-efficiency dialysis versus continuous veno-venous hemofiltration for postsurgical acute renal failure. Am J Surg. 2010;199:466–76.

    Article  PubMed  Google Scholar 

  38. Kielstein JT, Kretschmer U, Ernst T, Hafer C, Bahr MJ, Haller H, et al. Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis. 2004;43:342–9.

    Article  CAS  PubMed  Google Scholar 

  39. Schwenger V, Weigand MA, Hoffmann O, Dikow R, Kihm LP, Seckinger J, et al. Sustained low efficiency dialysis using a single-pass batch system in acute kidney injury - a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts. Crit Care. 2012;16:R140.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Faulhaber-Walter R, Hafer C, Jahr N, Vahlbruch J, Hoy L, Haller H, et al. The Hannover Dialysis Outcome study: comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant. 2009;24:2179–86.

    Article  PubMed  Google Scholar 

  41. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000;356:26–30.

    Article  CAS  PubMed  Google Scholar 

  42. Legrand M, Darmon M, Joannidis M, Payen D. Management of renal replacement therapy in ICU patients: an international survey. Intensive Care Med. 2013;39:101–8.

    Article  PubMed  Google Scholar 

  43. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.

    Article  PubMed  Google Scholar 

  44. Wen X, Murugan R, Kong L, Shan N, Lee MJ, Carter MJ, et al. Differential effects of renal replacement therapy on plasma inflammatory and apoptotic biomarkers in acute kidney injury [abstract]. J Am Soc Nephrol. 2011;22:206A.

    Google Scholar 

  45. Murugan R, Wen X, Shah N, Lee M, Kong L, Pike F, et al. Plasma inflammatory and apoptosis markers are associated with dialysis dependence and death among critically ill patients receiving renal replacement therapy. Nephrol Dial Transplant. 2014;29:1854–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Payen D, Lukaszewicz AC, Legrand M, Gayat E, Faivre V, Megarbane B, et al. A multicentre study of acute kidney injury in severe sepsis and septic shock: association with inflammatory phenotype and HLA genotype. PLoS One. 2012;7:e35838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Btaiche IF, Mohammad RA, Alaniz C, Mueller BA. Amino acid requirements in critically ill patients with acute kidney injury treated with continuous renal replacement therapy. Pharmacotherapy. 2008;28:600–13.

    Article  CAS  PubMed  Google Scholar 

  48. Geerse DA, Bindels AJ, Kuiper MA, Roos AN, Spronk PE, Schultz MJ. Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care. 2010;14:R147.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ricci Z, Salvatori G, Bonello M, Ratanarat R, Andrikos E, Dan M, et al. A new machine for continuous renal replacement therapy: from development to clinical testing. Expert Rev Med Devices. 2005;2:47–55.

    Article  PubMed  Google Scholar 

  50. Hiremath S, Slivar S, Magner P. Phosphate balance with continuous renal replacement therapy: a simple solution. Am J Kidney Dis. 2013;62:644.

    Article  PubMed  Google Scholar 

  51. Chua HR, Schneider AG, Baldwin I, Collins A, Ho L, Bellomo R. Phoxilium vs Hemosol-B0 for continuous renal replacement therapy in acute kidney injury. J Crit Care. 2013;884:e7–e14.

    Google Scholar 

  52. Weber CF, Gorlinger K, Meininger D, Herrmann E, Bingold T, Moritz A, et al. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012;117:531–47.

    Article  PubMed  Google Scholar 

  53. Holt AW, Bierer P, Glover P, Plummer JL, Bersten AD. Conventional coagulation and thromboelastograph parameters and longevity of continuous renal replacement circuits. Intensive Care Med. 2002;28:1649–55.

    Article  PubMed  Google Scholar 

  54. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119:64S–94S.

    Article  CAS  PubMed  Google Scholar 

  55. Joannidis M, Oudemans-van Straaten HM. Clinical review: Patency of the circuit in continuous renal replacement therapy. Crit Care. 2007;11:218.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oudemans-van Straaten HM, Wester JP, de Pont AC, Schetz MR. Anticoagulation strategies in continuous renal replacement therapy: can the choice be evidence based? Intensive Care Med. 2006;32:188–202.

    Article  CAS  PubMed  Google Scholar 

  57. van de Wetering J, Westendorp RG, van der Hoeven JG, Stolk B, Feuth JD, Chang PC. Heparin use in continuous renal replacement procedures: the struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol. 1996;7:145–50.

    Article  PubMed  Google Scholar 

  58. du Cheyron D, Bouchet B, Bruel C, Daubin C, Ramakers M, Charbonneau P. Antithrombin supplementation for anticoagulation during continuous hemofiltration in critically ill patients with septic shock: a case–control study. Crit Care. 2006;10:R45.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Joannidis M, Kountchev J, Rauchenzauner M, Schusterschitz N, Ulmer H, Mayr A, et al. Enoxaparin vs. unfractionated heparin for anticoagulation during continuous veno-venous hemofiltration: a randomized controlled crossover study. Intensive Care Med. 2007;33:1571–9.

    Article  CAS  PubMed  Google Scholar 

  60. Greaves M. Limitations of the laboratory monitoring of heparin therapy. Scientific and Standardization Committee Communications: on behalf of the Control of Anticoagulation Subcommittee of the Scientific and Standardization Committee of the International Society of Thrombosis and Haemostasis. Thromb Haemost. 2002;87:163–4.

    Article  CAS  PubMed  Google Scholar 

  61. Selleng K, Warkentin TE, Greinacher A. Heparin-induced thrombocytopenia in intensive care patients. Crit Care Med. 2007;35:1165–76.

    Article  CAS  PubMed  Google Scholar 

  62. Oudemans-van Straaten HM, Kellum JA, Bellomo R. Clinical review: anticoagulation for continuous renal replacement therapy - heparin or citrate? Crit Care. 2011;15:202.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lanckohr C, Hahnenkamp K, Boschin M. Continuous renal replacement therapy with regional citrate anticoagulation: do we really know the details? Curr Opin Anaesthesiol. 2013;26:428–37.

    Article  CAS  PubMed  Google Scholar 

  64. Tolwani A, Wille KM. Advances in continuous renal replacement therapy: citrate anticoagulation update. Blood Purif. 2012;34:88–93.

    Article  CAS  PubMed  Google Scholar 

  65. Hetzel GR, Schmitz M, Wissing H, Ries W, Schott G, Heering PJ, et al. Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: a prospective randomized multicentre trial. Nephrol Dial Transplant. 2011;26:232–9.

    Article  CAS  PubMed  Google Scholar 

  66. Oudemans-van Straaten HM, Bosman RJ, Koopmans M, van der Voort PH, Wester JP, van der Spoel JI, et al. Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med. 2009;37:545–52.

    Article  CAS  PubMed  Google Scholar 

  67. Morabito S, Pistolesi V, Tritapepe L, Zeppilli L, Polistena F, Strampelli E, et al. Regional citrate anticoagulation in cardiac surgery patients at high risk of bleeding: a continuous veno-venous hemofiltration protocol with a low concentration citrate solution. Crit Care. 2012;16:R111.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gritters M, Grooteman MP, Schoorl M, Schoorl M, Bartels PC, Scheffer PG, et al. Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol Dial Transplant. 2006;21:153–9.

    Article  CAS  PubMed  Google Scholar 

  69. Gabutti L, Ferrari N, Mombelli G, Keller F, Marone C. The favorable effect of regional citrate anticoagulation on interleukin-1beta release is dissociated from both coagulation and complement activation. J Nephrol. 2004;17:819–25.

    CAS  PubMed  Google Scholar 

  70. Bournazos S, Rennie J, Hart SP, Dransfield I. Choice of anticoagulant critically affects measurement of circulating platelet-leukocyte complexes. Arterioscler Thromb Vasc Biol. 2008;28:e2–3.

    CAS  PubMed  Google Scholar 

  71. Schilder L, Nurmohamed S, Bosch FH, Purmer IM, den Boer SS, Kleppe CG, et al. Citrate anticoagulation versus systemic heparinisation in continuous venovenous hemofiltration in critically ill patients with acute kidney injury: a multi-center randomized clinical trial. Crit Care. 2014;18:472.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lameire N, Kellum JA. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (Part 2). Crit Care. 2013;17:205.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Blot S, Lipman J, Roberts DM, Roberts JA. The influence of acute kidney injury on antimicrobial dosing in critically ill patients: are dose reductions always necessary? Diagn Microbiol Infect Dis. 2014;79:77–84.

    Article  CAS  PubMed  Google Scholar 

  74. Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, et al. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med. 2012;40:1523–8.

    Article  CAS  PubMed  Google Scholar 

  75. Hites M, Dell’Anna AM, Scolletta S, Taccone FS. The challenges of multiple organ dysfunction syndrome and extra-corporeal circuits for drug delivery in critically ill patients. Adv Drug Deliv Rev. 2014;77C:21.

    Google Scholar 

  76. Beumier M, Roberts JA, Kabtouri H, Hites M, Cotton F, Wolff F, et al. A new regimen for continuous infusion of vancomycin during continuous renal replacement therapy. J Antimicrob Chemother. 2013;68:2859–65.

    Article  CAS  PubMed  Google Scholar 

  77. Taccone FS, De Backer D, Laterre PF, Spapen H, Dugernier T, Delattre I, et al. Pharmacokinetics of a loading dose of amikacin in septic patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents. 2011;37:531–5.

    Article  CAS  PubMed  Google Scholar 

  78. Jamal JA, Udy AA, Lipman J, Roberts JA. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens. Crit Care Med. 2014;42:1640–50.

    Article  PubMed  Google Scholar 

  79. Seyler L, Cotton F, Taccone FS, De Backer D, Macours P, Vincent JL, et al. Recommended beta-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care. 2011;15:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Beumier M, Casu GS, Hites M, Seyler L, Cotton F, Vincent JL, et al. beta-lactam antibiotic concentrations during continuous renal replacement therapy. Crit Care. 2014;18:R105.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol. 2011;22:999–1006.

    Article  PubMed  Google Scholar 

  82. Joannes-Boyau O, Honore PM, Perez P, Bagshaw SM, Grand H, Canivet JL, et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39:1535–46.

    Article  PubMed  Google Scholar 

  83. Zhang P, Yang Y, Lv R, Zhang Y, Xie W, Chen J. Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury: a single-center randomized clinical trial. Nephrol Dial Transplant. 2012;27:967–73.

    Article  CAS  PubMed  Google Scholar 

  84. Lehner GF, Wiedermann CJ, Joannidis M. High-volume hemofiltration in critically ill patients: a systematic review and meta-analysis. Minerva Anestesiol. 2014;80:595–609.

    CAS  PubMed  Google Scholar 

  85. Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med. 2007;167:1655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Atan R, Crosbie D, Bellomo R. Techniques of extracorporeal cytokine removal: a systematic review of the literature. Blood Purif. 2012;33:88–100.

    Article  CAS  PubMed  Google Scholar 

  87. Atan R, Crosbie DC, Bellomo R. Techniques of extracorporeal cytokine removal: a systematic review of human studies. Ren Fail. 2013;35:1061–70.

    Article  CAS  PubMed  Google Scholar 

  88. Haase M, Bellomo R, Morgera S, Baldwin I, Boyce N. High cut-off point membranes in septic acute renal failure: a systematic review. Int J Artif Organs. 2007;30:1031–41.

    Article  CAS  PubMed  Google Scholar 

  89. Ronco C, Brendolan A, Lonnemann G, Bellomo R, Piccinni P, Digito A, et al. A pilot study of coupled plasma filtration with adsorption in septic shock. Crit Care Med. 2002;30:1250–5.

    Article  PubMed  Google Scholar 

  90. Livigni S, Bertolini G, Rossi C, Ferrari F, Giardino M, Pozzato M, et al. Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open. 2014;4:e003536.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kushi H, Miki T, Sakagami Y, Sato J, Saito T, Tanjoh K. Hemoperfusion with an immobilized polymyxin B fiber column decreases macrophage and monocyte activity. Ther Apher Dial. 2009;13:515–9.

    Article  CAS  PubMed  Google Scholar 

  92. Cantaluppi V, Assenzio B, Pasero D, Romanazzi GM, Pacitti A, Lanfranco G, et al. Polymyxin-B hemoperfusion inactivates circulating proapoptotic factors. Intensive Care Med. 2008;34:1638–45.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cruz DN, Perazella MA, Bellomo R, de Cal M, Polanco N, Corradi V, et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review. Crit Care. 2007;11:R47.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhou F, Peng Z, Murugan R, Kellum JA. Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit Care Med. 2013;41:2209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301:2445–52.

    Article  CAS  PubMed  Google Scholar 

  96. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

    Article  PubMed  Google Scholar 

  97. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675–83.

    Article  CAS  PubMed  Google Scholar 

  99. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Patarroyo M, Wehbe E, Hanna M, Taylor DO, Starling RC, Demirjian S, et al. Cardiorenal outcomes after slow continuous ultrafiltration therapy in refractory patients with advanced decompensated heart failure. J Am Coll Cardiol. 2012;60:1906–12.

    Article  PubMed  Google Scholar 

  101. Hemmer M, Viquerat CE, Suter PM, Vallotton MB. Urinary antidiuretic hormone excretion during mechanical ventilation and weaning in man. Anesthesiology. 1980;52:395–400.

    Article  CAS  PubMed  Google Scholar 

  102. Murugan R, Karajala-Subramanyam V, Lee M, Yende S, Kong L, Carter M, et al. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010;77:527–35.

    Article  CAS  PubMed  Google Scholar 

  103. Hoke TS, Douglas IS, Klein CL, He Z, Fang W, Thurman JM, et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol. 2007;18:155–64.

    Article  CAS  PubMed  Google Scholar 

  104. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Forster C, Schriewer J, John S, Eckardt KU, Willam C. Low-flow CO(2) removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements. Crit Care. 2013;17:R154.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Burki NK, Mani RK, Herth FJ, Schmidt W, Teschler H, Bonin F, et al. A novel extracorporeal CO(2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest. 2013;143:678–86.

    Article  CAS  PubMed  Google Scholar 

  107. Zacharia BE, Ducruet AF, Hickman ZL, Grobelny BT, Fernandez L, Schmidt JM, et al. Renal dysfunction as an independent predictor of outcome after aneurysmal subarachnoid hemorrhage: a single-center cohort study. Stroke. 2009;40:2375–81.

    Article  PubMed  Google Scholar 

  108. Corral L, Javierre CF, Ventura JL, Marcos P, Herrero JI, Manez R. Impact of non-neurological complications in severe traumatic brain injury outcome. Crit Care. 2012;16:R44.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Liu M, Liang Y, Chigurupati S, Lathia JD, Pletnikov M, Sun Z, et al. Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol. 2008;19:1360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ronco C, Bellomo R, Brendolan A, Pinna V, La Greca G. Brain density changes during renal replacement in critically ill patients with acute renal failure. Continuous hemofiltration versus intermittent hemodialysis. J Nephrol. 1999;12:173–8.

    CAS  PubMed  Google Scholar 

  111. Davenport A, Will EJ, Davison AM. Early changes in intracranial pressure during haemofiltration treatment in patients with grade 4 hepatic encephalopathy and acute oliguric renal failure. Nephrol Dial Transplant. 1990;5:192–8.

    Article  CAS  PubMed  Google Scholar 

  112. Ko SB, Choi HA, Gilmore E, Schmidt JM, Claassen J, Lee K, et al. Pearls & Oysters: the effects of renal replacement therapy on cerebral autoregulation. Neurology. 2012;78:e36–8.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Benz-Worner J, Haberthur C, Kothbauer K. Fluid and electrolyte management of acute traumatic brain injury using hemofiltration with regional citrate anticoagulation. J Neurosurg Anesthesiol. 2011;23:266–7.

    Article  PubMed  Google Scholar 

  114. Kelleher JA, Chan TY, Chan PH, Gregory GA. Protection of astrocytes by fructose 1,6-bisphosphate and citrate ameliorates neuronal injury under hypoxic conditions. Brain Res. 1996;726:167–73.

    Article  CAS  PubMed  Google Scholar 

  115. Lindhoff-Last E, Betz C, Bauersachs R. Use of a low-molecular-weight heparinoid (danaparoid sodium) for continuous renal replacement therapy in intensive care patients. Clin Appl Thromb Hemost. 2001;7:300–4.

    Article  CAS  PubMed  Google Scholar 

  116. de Pont AC, Hofstra JJ, Pik DR, Meijers JC, Schultz MJ. Pharmacokinetics and pharmacodynamics of danaparoid during continuous venovenous hemofiltration: a pilot study. Crit Care. 2007;11:R102.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Link A, Girndt M, Selejan S, Mathes A, Bohm M, Rensing H. Argatroban for anticoagulation in continuous renal replacement therapy. Crit Care Med. 2009;37:105–10.

    Article  CAS  PubMed  Google Scholar 

  118. Kiser TH, MacLaren R, Fish DN, Hassell KL, Teitelbaum I. Bivalirudin versus unfractionated heparin for prevention of hemofilter occlusion during continuous renal replacement therapy. Pharmacotherapy. 2010;30:1117–26.

    Article  CAS  PubMed  Google Scholar 

  119. Kiser TH, Fish DN. Evaluation of bivalirudin treatment for heparin-induced thrombocytopenia in critically ill patients with hepatic and/or renal dysfunction. Pharmacotherapy. 2006;26:452–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaccaria Ricci.

Additional information

Competing interests

DDB is a member of the Baxter-Gambro European Medical Advisory Board. JAK has received research funding and consulting fees from Gambro (a brand of Baxter, Deerfield, IL, USA) and Fresenius (Bad Homburg, Germany). MJ has received speaker or consulting fees from Frenenius and Gambro. FT has received honoraria from Bellco (North Amityville, NY, USA) for lectures. The other authors declare that they have no competing interests.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronco, C., Ricci, Z., De Backer, D. et al. Renal replacement therapy in acute kidney injury: controversy and consensus. Crit Care 19, 146 (2015). https://doi.org/10.1186/s13054-015-0850-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0850-8

Keywords

Navigation