Skip to main content

Advertisement

Log in

A framework employing the AHP and FR methods to assess the landslide susceptibility of the Western Ghats region in Kollam district

  • Research Article
  • Published:
Safety in Extreme Environments Aims and scope Submit manuscript

Abstract

Landslides are the most frequently occurring geohazard in the Western Ghats due to the steep terrain and heavy rainfall the area receives. This research aims to develop a framework to demarcate the zones susceptible to landslides employing geographic information system (GIS) technique. The Western Ghats region in Kollam district is selected for the modelling. Landsat satellite images, digital elevation model, published topographic, soil and geological maps, Google Earth Pro are the sources used in the study. Ten major parameters that impact landslide susceptibility are used, which include slope angle, elevation, slope aspect, stream buffer, lithology, soil, road buffer, normalized difference vegetation index, land use and land cover, and lineament buffer. Analytical hierarchy process (AHP) and frequency ratio (FR) methods were used to determine the relative weights of each parameter on landslide susceptibility, and the maps were prepared using ArcGIS software. The study area was demarcated into five zones of susceptibility. According to the analysis, 33% and 23% of the area are classified as high and very high susceptible zones in maps generated using the AHP and FR methods, respectively. The landslide occurrence in this area can be attributed to both natural as well as anthropogenic activities (mainly due to road cuttings). To validate the result of this study, the landslide incidence data collected from the National Remote Sensing Centre has been utilized. The validation confirmed that the results are outstanding, with an AUC value of 0.906 and 0.926 for the AHP and FR methods, respectively. The outcome of the study is useful for land-use planners, policymakers, and the government in taking effective preventive and mitigation measures in the areas of higher susceptibility to minimize the loss of property and fatalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abrams W, Ghoneim E, Shew R, LaMaskin T, Al-Bloushi K, Hussein S, AbuBakr M, Al-Mulla E, Al-Awar M, El-Baz F (2018) Delineation of groundwater potential (GWP) in the northern United Arab Emirates and Oman using geospatial technologies in conjunction with Simple Additive Weight (SAW), Analytical Hierarchy Process (AHP), and Probabilistic Frequency Ratio (PFR) techniques. J Arid Environ 157:77–96. https://doi.org/10.1016/j.jaridenv.2018.05.005

    Article  Google Scholar 

  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10. https://doi.org/10.1007/s12517-017-2980-6

  • Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front 11(3):871–883. https://doi.org/10.1016/j.gsf.2019.10.001

    Article  Google Scholar 

  • Ajin RS, Loghin AM, Vinod PG, Jacob MK, Krishnamurthy RR (2016) Landslide susceptible zone mapping using ARS and GIS techniques in selected taluks of Kottayam district, Kerala, India. Int J Appl Remote Sens GIS 3(1):16–25

    Google Scholar 

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54:1127–1143. https://doi.org/10.1007/s00254-007-0882-8

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. https://doi.org/10.1007/s100640050066

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32(4):269–277. https://doi.org/10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  • Arce-Mojica Td, Nehren U, Sudmeier-Rieux K, Miranda PJ, Anhuf D (2019) Nature-based solutions (NbS) for reducing the risk of shallow landslides: Where do we stand? Int J Disaster Risk Reduct 41. https://doi.org/10.1016/j.ijdrr.2019.101293

  • Ballabio C, Sterlacchini S (2012) Support vector machines for landslide susceptibility mapping: The Staffora river basin case study, Italy. Math Geosci 44:47–70. https://doi.org/10.1007/s11004-011-9379-9

    Article  Google Scholar 

  • Beullens J, Van de Velde D, Nyssen J (2014) Impact of slope aspect on hydrological rainfall and on the magnitude of rill erosion in Belgium and northern France. Catena 114:129–139. https://doi.org/10.1016/j.catena.2013.10.016

  • Bui DT, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naïve Bayes models. Math Probl Eng. https://doi.org/10.1155/2012/974638

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831. https://doi.org/10.5194/nhess-13-2815-2013

    Article  Google Scholar 

  • Chausson A, Turner B, Seddon D, Chabaneix N, Girardin CAJ, Kapos V, Key I, Roe D, Smith A, Woroniecki S, Seddon N (2020) Mapping the effectiveness of Nature-based Solutions for climate change adaptation. Glob Change Biol 26:6134–6155. https://doi.org/10.1111/gcb.15310

    Article  Google Scholar 

  • Chawla A, Chawla S, Pasupuleti S, Rao ACS, Sarkar K, Dwivedi R (2018) Landslide susceptibility mapping in Darjeeling Himalayas, India. Adv Civil Eng. https://doi.org/10.1155/2018/6416492

    Article  Google Scholar 

  • Dahal BK, Dahal RK (2017) Landslide hazard map: tool for optimization of low-cost mitigation. Geoenviron Disasters 4(8). https://doi.org/10.1186/s40677-017-0071-3

  • Dai F, Lee C, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391. https://doi.org/10.1007/s002540000163

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008) GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54(2):311–324. https://doi.org/10.1007/s00254-007-0818-3

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • El Jazouli A, Barakat A, Khellouk R (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron Disasters 6(3). https://doi.org/10.1186/s40677-019-0119-7

  • Elmoulat M, Ait Brahim L (2018) Landslide susceptibility mapping using GIS and weights of evidence model in Tetouan-Ras-Mazari area (Northern Morocco). Geomatics Nat Hazards Risk 9(1):1306–1325. https://doi.org/10.1080/19475705.2018.1505666

    Article  Google Scholar 

  • Fatemi Aghda SM, Bagheri V, Razifard M (2018) Landslide susceptibility mapping using fuzzy logic system and its influences on mainlines in Lashgarak region, Tehran, Iran. Geotech Geol Eng 36:915–937. https://doi.org/10.1007/s10706-017-0365-y

    Article  Google Scholar 

  • García-Rodríguez MJ, Malpica JA, Benito B, Díaz M (2008) Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology 95(3–4):172–191. https://doi.org/10.1016/j.geomorph.2007.06.001

    Article  Google Scholar 

  • Getachew N, Meten M (2021) Weights of evidence modeling for landslide susceptibility mapping of Kabi-Gebro locality, Gundomeskel area, Central Ethiopia. Geoenviron Disasters 8. https://doi.org/10.1186/s40677-021-00177-z

  • Gobinath R, Ganapathy GP, Akinwumi II (2015) Evaluating the use of lemon grass roots for the reinforcement of a landslide-affected soil from Nilgris district, Tamil Nadu, India. J Mater Environ Sci 6(10):2681–2687

    Google Scholar 

  • Grimnes S, Martinsen ØG(2015) Chap. 9 - Data and models. In: Grimnes S, Martinsen ØG (eds) Bioimpedance and bioelectricity basics, 3rd edn. Academic, Cambridge, pp 329–404. https://doi.org/10.1016/B978-0-12-411470-8.00009-X

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study. Cent Italy Geomorphol 31(1–4):181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  Google Scholar 

  • Hemasinghe H, Rangali RSS, Deshapriya NL, Samarakoon L (2018) Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia Eng 212:1046–1053. https://doi.org/10.1016/j.proeng.2018.01.135

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Chapter 5, Wiley, New York, pp 160–164

  • Jana SK, Sekac T, Pal DK (2019) Geo-spatial approach with frequency ratio method in landslide susceptibility mapping in the Busu River catchment, Papua New Guinea. Spat Inform Res 27:49–62. https://doi.org/10.1007/s41324-018-0215-x

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366. https://doi.org/10.1016/j.enggeo.2006.03.004

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) Landslide susceptibility zonation (LSZ) mapping - a review. Journal of South Asia Disaster Studies 2(1):81–105

    Google Scholar 

  • Karsli F, Atasoy M, Yalcin A, Reis S, Demir O, Gokceoglu C (2009) Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Environ Monit Assess 156. https://doi.org/10.1007/s10661-008-0481-5

  • Lai C, Chen X, Wang Z, Xu CY, Yang B (2018) Rainfall-induced landslide susceptibility assessment using random forest weight at basin scale. Hydrol Res 49(5):1363–1378. https://doi.org/10.2166/nh.2017.044

    Article  Google Scholar 

  • Lee S (2007) Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea. Int J Remote Sens 28(21):4763–4783. https://doi.org/10.1080/01431160701264227

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25(11):2037–2052. https://doi.org/10.1080/01431160310001618734

    Article  Google Scholar 

  • Lee S, Hong SM, Jung HS (2017) A support vector machine for landslide susceptibility mapping in Gangwon Province. Korea Sustain 9(1). https://doi.org/10.3390/su9010048

  • Lee S, Lee MJ, Jung HS, Lee S (2019) Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea. Geocarto Int. https://doi.org/10.1080/10106049.2019.1585482

    Article  Google Scholar 

  • Lombardo L, Mai PM (2018) Presenting logistic regression-based landslide susceptibility results. Eng Geol 244:14–24. https://doi.org/10.1016/j.enggeo.2018.07.019

    Article  Google Scholar 

  • Mandal S, Maiti R (2014) Role of lithological composition and lineaments in landsliding: A case study of Shivkhola watershed, Darjeeling Himalaya. Int J Geol Earth Environ Sci 4(1):126–132

    Google Scholar 

  • Mohajane M, Essahlaoui A, Oudija F, Hafyani ME, Hmaidi AE, Ouali AE, Randazzo G, Teodoro AC(2018) Land use/land cover (LULC) using Landsat data series (MSS, TM, ETM + and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5(12). https://doi.org/10.3390/environments5120131

  • Mohammed A, Wennian X, Zhenyao X (2018) Ecological and bioengineering studies for stabilizing the Wad Medani-Sennar roadside slope linking the Gezira and Sennar States. Adv Civil Eng. https://doi.org/10.1155/2018/7430809

    Article  Google Scholar 

  • NDMA (2009) Management of landslides and snow avalanches. National Disaster Management Authority (NDMA), Government of India, New Delhi, p 144

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. https://doi.org/10.1155/2010/901095

    Article  Google Scholar 

  • Nguyen TTN, Liu CC (2019) A new approach using AHP to generate landslide susceptibility maps in the Chen-Yu-Lan Watershed, Taiwan. Sensors 19(3). https://doi.org/10.3390/s19030505

  • Nikhil S, Danumah JH, Saha S, Prasad MK, Rajaneesh A, Mammen PC, Ajin RS, Kuriakose SL (2021) Application of GIS and AHP method in forest fire risk zone mapping: A study of the Parambikulam Tiger Reserve, Kerala, India. J Geovisualization Spat Anal 5. https://doi.org/10.1007/s41651-021-00082-x

  • Oh HJ, Kadavi PR, Lee CW, Lee S (2018) Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomatics Nat Hazards Risk 9(1):1053–1070. https://doi.org/10.1080/19475705.2018.1481147

    Article  Google Scholar 

  • Oh HJ, Lee S, Hong SM (2017) Landslide susceptibility assessment using frequency ratio technique with Iterative random sampling. J Sens. https://doi.org/10.1155/2017/3730913

    Article  Google Scholar 

  • Ortiz JAV, Martínez-Graña AM (2018) A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia). Geomatics Nat Hazards Risk 9(1):1106–1128. https://doi.org/10.1080/19475705.2018.1513083

    Article  Google Scholar 

  • Panchal S, Shrivastava AK (2021) Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2021.10.021

    Article  Google Scholar 

  • Pascale S, Parisi S, Mancini A, Schiattarella M, Conforti M, Sole A, Murgante B, Sdao F (2013) Landslide susceptibility mapping using artificial neural network in the urban area of Senise and San Costantino Albanese (Basilicata, Southern Italy). In: Murgante B, Misra S, Carlini M, Torre CM, Nguyen HQ, Taniar D, Apduhan BO, Gervasi O (eds) Computational science and its applications – ICCSA 2013, vol 7974. Springer, Berlin, Heidelberg, pp 473–488. https://doi.org/10.1007/978-3-642-39649-6_34

  • Polykretis C, Chalkias C (2018) Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models. Nat Hazards 93:249–274. https://doi.org/10.1007/s11069-018-3299-7

    Article  Google Scholar 

  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci 122(2):349–369

    Article  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84. https://doi.org/10.1016/j.catena.2012.05.005

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996. https://doi.org/10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Pradhan B, Oh HJ, Buchroithner M (2010a) Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics Nat Hazards Risk 1(3):199–223. https://doi.org/10.1080/19475705.2010.498151

  • Pradhan B, Sezer EA, Gokceoglu C, Buchroithner MF (2010b) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans Geosci Remote Sens 48(12):4164–4177. https://doi.org/10.1109/TGRS.2010.2050328

  • Prasannakumar V, Vijith H (2012) Evaluation and validation of landslide spatial susceptibility in the Western Ghats of Kerala, through GIS-based weights of evidence model and area under curve technique. J Geol Soc India 80(4):515–523. https://doi.org/10.1007/s12594-012-0171-3

    Article  Google Scholar 

  • Quinn PE, Hutchinson DJ, Diederichs MS, Rowe RK (2010) Regional-scale landslide susceptibility mapping using the weights of evidence method: an example applied to linear infrastructure. Can Geotech J 47(8):905–927. https://doi.org/10.1139/T09-144

    Article  Google Scholar 

  • Rahardjo H, Satyanaga A, Leong EC, Santoso VA, Ng YS (2014) Performance of an instrumented slope covered with shrubs and deep-rooted grass. Soils Found 54(3):417–425. https://doi.org/10.1016/j.sandf.2014.04.010

    Article  Google Scholar 

  • Reguero BG, Beck MW, Bresch DN, Calil J, Meliane I (2018) Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 13(4). https://doi.org/10.1371/journal.pone.0192132

  • Roslee R, Jamaluddin TA, Talip MA(2012) Landslide susceptibility mapping (LSM) at Kota Kinabalu, Sabah Malaysia using Factor Analysis Model (FAM). J Adv Sci Eng Res 2:80–103

  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Freden SC, Mercanti EP, Becker M (eds) Third Earth Resources Technology Satellite–1 Symposium, vol I. Technical Presentations, NASA SP-351. NASA, Washington, D.C., pp 309–317

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New York

    Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based Landslide Hazard Zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 23(2):357–369. https://doi.org/10.1080/01431160010014260

    Article  Google Scholar 

  • Saravanan S, Jegankumar R, Selvaraj A, Jennifer JJ, Parthasarathy KSS (2019) Chapter 20 - Utility of Landsat data for assessing mangrove degradation in Muthupet Lagoon, South India. In: Ramkumar M, James RA, Menier D, Kumaraswamy K (eds) Coastal Zone Management. Elsevier, pp 471–484. https://doi.org/10.1016/B978-0-12-814350-6.00020-3

  • Sartohadi J, Pulungan NAHJ, Nurudin M, Wahyudi W (2018) The ecological perspective of landslides at soils with high clay content in the Middle Bogowonto watershed, Central Java, Indonesia. Appl Environ Soil Sci. https://doi.org/10.1155/2018/2648185

  • Semlali I, Ouadif L, Bahi L (2019) Landslide susceptibility mapping using the analytical hierarchy process and GIS. Curr Sci 116(5):773–779. https://doi.org/10.18520/cs/v116/i5/773-779

    Article  Google Scholar 

  • Setiawan I, Mahmud AR, Mansor S, Shariff ARM, Nuruddin AA(2004) GIS-grid-based and multi-criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang M. Disaster Prev Manag 13(5):379–386

  • Shahri AA, Spross J, Johansson F, Larsson S (2019) Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena 183. https://doi.org/10.1016/j.catena.2019.104225

  • Shao X, Ma S, Xu C, Shen L, Lu Y(2020) Inventory, distribution and geometric characteristics of landslides in Baoshan City, Yunnan Province, China. Sustainability 12(6). https://doi.org/10.3390/su12062433

  • Sharma LP, Patel N, Ghose MK, Debnath P (2012) Influence of Shannon’s entropy on landslide-causing parameters for vulnerability study and zonation-a case study in Sikkim, India. Arab J Geosci 5:421–431. https://doi.org/10.1007/s12517-010-0205-3

    Article  Google Scholar 

  • Sharma LP, Patel N, Ghose MK, Debnath P (2013) Synergistic application of fuzzy logic and geo-informatics for landslide vulnerability zonation—a case study in Sikkim Himalayas, India. Appl Geomatics 5:271–284. https://doi.org/10.1007/s12518-013-0115-7

    Article  Google Scholar 

  • Sharma LP, Patel N, Ghose MK, Debnath P (2014) Application of frequency ratio and likelihood ratio model for geo-spatial modelling of landslide hazard vulnerability assessment and zonation: a case study from the Sikkim Himalayas in India. Geocarto Int 29(2):128–146. https://doi.org/10.1080/10106049.2012.748830

    Article  Google Scholar 

  • Sharma LP, Patel N, Ghose MK, Debnath P (2015) Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat Hazards 75:1555–1576. https://doi.org/10.1007/s11069-014-1378-y

    Article  Google Scholar 

  • Sidle RC (2007) Using weather and climate information for landslide prevention and mitigation. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental Science and Engineering (Environmental Science) book series (ESE). Springer, Berlin, Heidelberg, pp 285–307. https://doi.org/10.1007/978-3-540-72438-4_15

  • Silalahi FES, Pamela, Arifianti Y, Hidayat F (2019) Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci Lett 6(10). https://doi.org/10.1186/s40562-019-0140-4

  • Singh A, Sarma AK, Hack J (2020) Cost-effective optimization of nature-based solutions for reducing urban floods considering limited space availability. Environ Processes 7:297–319. https://doi.org/10.1007/s40710-019-00420-8

    Article  Google Scholar 

  • Sujatha ER, Sridhar V(2021) Landslide susceptibility analysis: A logistic regression model case study in Coonoor, India. Hydrology 8(1). https://doi.org/10.3390/hydrology8010041

  • Sur U, Singh P, Meena SR (2020) Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomatics Nat Hazards Risk 11(1):2176–2209. https://doi.org/10.1080/19475705.2020.1836038

    Article  Google Scholar 

  • Taalab K, Cheng T, Zhang Y (2018) Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2(2):159–178. https://doi.org/10.1080/20964471.2018.1472392

    Article  Google Scholar 

  • Thomas AV, Saha S, Danumah JH, Raveendran S, Prasad MK, Ajin RS, Kuriakose SL (2021) Landslide susceptibility zonation of Idukki district using GIS in the aftermath of 2018 Kerala floods and landslides: A comparison of AHP and frequency ratio methods. J Geovisualization Spat Anal 5. https://doi.org/10.1007/s41651-021-00090-x

  • Tien PV, Luong LH, Nhat LM, Thanh NK, Cuong PV(2021) Landslides along Halong-Vandon expressway in Quang Ninh province, Vietnam. In: Guzzetti F, Arbanas SM, Reichenbach P, Sassa K, Bobrowsky PT, Takara K (eds) Understanding and reducing landslide disaster risk, Volume2 - From mapping to hazard and risk zonation. Springer Nature, Cham, pp 133–139. https://doi.org/10.1007/978-3-030-60227-7

  • Trianawati N, Rahmafitria F (2016) The mapping of landslide proneness in mountain-based tourist destinations: An overview of remote sensing and geographic information system (GIS) method. In: Radzi SM, Hanafiah MHM, Sumarjan N, Mohi Z, Sukyadi D, Suryadi K, Purnawarman P (eds) Heritage, Culture and Society: Research agenda and best practices in the hospitality and tourism industry. CRC Press, Boca Raton, pp 473–476

  • Turrini MC, Visintainer P (1998) Proposal of a method to define areas of landslide hazard and application to an area of the Dolomites, Italy. Eng Geol 50(3–4):255–265. https://doi.org/10.1016/S0013-7952(98)00022-2

    Article  Google Scholar 

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng Geol 102(3–4):112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

  • van Westen CJ, Jaiswal P, Ghosh S, Martha TR, Kuriakose SL (2012) Landslide inventory, hazard and risk assessment in India. In: Pradhan B, Buchroithner M (eds) Terrigenous Mass Movements. Springer, Berlin, Heidelberg, pp 239–282. https://doi.org/10.1007/978-3-642-25495-6_9

  • Viana CM, Oliveira S, Oliveira SC, Rocha J (2019) 29 - Land use/land cover change detection and urban sprawl analysis. In: Pourghasemi HR, Gokceoglu C (eds) Spatial Modeling in GIS and R for Earth and Environmental Sciences. Elsevier, pp 621–651. https://doi.org/10.1016/B978-0-12-815226-3.00029-6

  • Xu C, Dai F, Xu X, Lee YH (2012) GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145–146:70–80. https://doi.org/10.1016/j.geomorph.2011.12.040

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 72:1–12. https://doi.org/10.1016/j.catena.2007.01.003

  • Yang H, Wang F, Vilímek V, Araiba K, Asano S (2015) Investigation of rainfall-induced shallow landslides on the northeastern rim of Aso caldera, Japan, in July 2012. Geoenviron Disasters 2. https://doi.org/10.1186/s40677-015-0028-3

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138. https://doi.org/10.1016/j.cageo.2008.08.007

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13:839–856. https://doi.org/10.1007/s10346-015-0614-1

    Article  Google Scholar 

  • Zhang K, Wu X, Niu R, Yang K, Zhao L (2017) The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ Earth Sci 76. https://doi.org/10.1007/s12665-017-6731-5

  • Zhao Y, Huang Y, Liu H, Wei Y, Lin Q, Lu Y (2018) Use of the normalized difference road landside index (NDRLI)-based method for the quick delineation of road-induced landslides. Sci Rep 8. https://doi.org/10.1038/s41598-018-36202-9

Download references

Acknowledgements

Authors would like to thank the National Remote Sensing Centre (NRSC), Hyderabad, India for providing landslide incidence data. Authors are thankful to Dr. Paolo Tarolli, Associate Professor, Department of Land, Environment, Agriculture and Forestry, University of Padova, Italy for the constructive comments which helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Ajin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babitha, B.G., Danumah, J.H., Pradeep, G.S. et al. A framework employing the AHP and FR methods to assess the landslide susceptibility of the Western Ghats region in Kollam district. Saf. Extreme Environ. 4, 171–191 (2022). https://doi.org/10.1007/s42797-022-00061-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42797-022-00061-5

Keywords

Navigation