Skip to main content

Advertisement

Log in

A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This research work presents a comparative performance of geographic information system (GIS)-based statistical models for landslide susceptibility mapping (LSM) of the Himalayan watershed in India. A total of 190 landslide locations covering an area of 14.63 km2 were identified in the watershed, using high-resolution linear imaging self-scanning (LISS IV) data. The causative factors used for LSM of the study area are slope, aspect, lithology, curvature, lineament density, land cover and drainage buffer. The spatial database has been prepared using remote sensing data along with ancillary data like geological maps. LSMs were prepared using information value (InV), frequency ratio (FR) and analytical hierarchy process (AHP) models. The validation results using the prediction rate curve technique show 89.61%, 87.12% and 88.26% area under curve values for FR, AHP and InV models, respectively. Therefore, the frequency ratio (FR) model could be used for LSM in other parts of this hilly terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10 (194). https://doi.org/10.1007/s12517-017-2980-6

  • Aleotti P, Chowdhary R (1999) Landslide hazard assessment: summary, review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Ambraseys N, Bilham R (2000) A note on the Kangra M s= 7.8 earthquake of 4 April 1905. Curr Sci 79(1):45–50

    Google Scholar 

  • Anabalgan R, Singh B (1996) Landslide hazard and risk assessment mapping of mountainous terrains- a case study from Kumaun Himalaya, India. Eng Geol 43:237–246. https://doi.org/10.1016/S0013-7952(96)00033-6

    Article  Google Scholar 

  • Anabalgan R, Chakraborty D, Kohli A (2008) Landslide hazard zonation mapping on meso scale for systematic planning in mountainous terrain. J Sci Ind Res 67:486–497

    Google Scholar 

  • Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenviron Disasters 2(1):1–17. https://doi.org/10.1186/s40677-014-0009-y

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains Central Japan. Geomorphology 65(1):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS based weighted linear combination, the case in Tsugawa area of Agano river, Niigata Perfecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Bijukchhen P, Kayastha P, Dhital MR (2013) A comparative evaluation of heuristic and bivariate statistical modelling for landslide susceptibility mappings in Ghumri-Dhad Khola, East Nepal. Arab J Geosci 6:2727–2743. https://doi.org/10.1007/s12517-0569-7

    Article  Google Scholar 

  • Cardinali M, Galli M, Guzzetti F, Ardizzone F, Reichenbach P, Bartoccini P (2006) Rainfall induced landslide in December 2004 in South-Western Umbria, Italy: types, extent, damage and risk assessment. Nat Hazard Earth Syst Sci 6:237–260 http://www.nat-hazards-earth-syst-sci.net/6/237/2006

    Article  Google Scholar 

  • Chen T, Niu R, Jia X (2016) A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environ Earth Sci 75:867. https://doi.org/10.1007/s12665-016-5317-y

    Article  Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27–29

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008) Predictive modelling of rainfall induced landslide hazard in lesser Himalaya of Nepal based on weight of evidence. Geomorphology 102:496–510

  • Dahal RK, Hasegawa S, Bhandary NP, Poudel PP, Nonomura A, Yatabe Y (2012) A replication of landslide hazard mapping at catchment scale. Geomat Nat Hazards Risk. https://doi.org/10.1080/19475705.2011.629007

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–238

    Article  Google Scholar 

  • Das I, Stein A, Kerle N, Dhadwal VK (2012) Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology 179:116–125. https://doi.org/10.1016/j.geomorph.2012.08.004

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3):99–111. https://doi.org/10.1016/j.enggeo.2008.03.014 Geomorphology 102:496–510. DOI 10.1016/j.geomorph.2008.05.041

    Article  Google Scholar 

  • Ghosh S, Carranza EJM, Van Westen CJ, Jetten V, Bhattacharya DN (2011) Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalaya (India). Geomorphology 131:35–56. https://doi.org/10.1016/j.geomorph.2011.04.019

    Article  Google Scholar 

  • Gupta RP, Saha AK, Arora MK, Kumar A (1999) Landslide hazard zonation in a part of Bhagirathi Valley, Gharwal Himalaya, using integrated remote sensing and GIS. J Him Geol 20:71–85

    Google Scholar 

  • Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs Geoinf 10:330–341. https://doi.org/10.1016/j.jag.2008.01.003

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299. https://doi.org/10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Hadji R, Errahmane Boumazbeur A, Limani Y, Baghem M, el Madjid Chouabi A, Demdoum A (2013) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302:224–237. https://doi.org/10.1016/j.quaint.2012.11.027

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2012) Evaluation of the consistency of landslide susceptibility mapping: a case study from the Kankai watershed in East Nepal. Landslides 10:785–799. https://doi.org/10.1007/s10346-012-0361-5

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from Tinau watershed, West Nepal. Comput Geosci 52:398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74:17–28. https://doi.org/10.1016/j.geomorph.2005.07.005

    Article  Google Scholar 

  • Kumar R, Anabalgan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India 87:271–286

    Article  Google Scholar 

  • Kumar S, Mahajan AK (1991) Dharamsala Seismotectonic zone-Neotectonics and state of stress in the area. J Himal Geol 2(1):53–57

    Google Scholar 

  • Kumar S, Mahajan AK (2001) Seismotectonics of the Kangra region, northwest Himalaya. Tectonophysics 331(4):359–371

    Article  Google Scholar 

  • Kumar KV, Nair RR, Lakhera RC (1993) Digital image enhancement for delineating active landslide areas. Asia-Pac Remote Sens J 6(1):63–66

    Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibilityat Yongin, Korea. Environ Geol 40:1095–1113

  • Lee S, Pradhan B (2006) Probabilistic landslide hazard and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–672

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41. https://doi.org/10.1007/s10346-006-0047-y

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. https://doi.org/10.1007/s00254-005-1228-z

    Article  Google Scholar 

  • Lee S, Ryu JH, Kim IS (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression and artificial neural network models: case study of Youngin, Korea. Landslides 4(4):327–338. https://doi.org/10.1007/s10346-007-0088-x

    Article  Google Scholar 

  • Lee S, Hwang J, Park I (2013) Application of data driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena 100:15–30. https://doi.org/10.1016/j.catena.2012.07.01

    Article  Google Scholar 

  • Mahajan AK, Kumar S (1994) Linear features registered on the Landsat Imagery in the Dharamsala-Palampur area NW Himalaya, vis-à-vis seismic status of the area. Geophysika II:15–25

    Google Scholar 

  • Mahajan AK, Virdi NS (2000) Preparation of landslides hazard zonation map of Dharamshala town & adjoining areas. District Kangra (H.P.): technical report, Wadia institute of Himalayan Geology, Dehradun, ref No. Endst/281/MA dt 27/2/99, pp 45

  • Mathew J, Jha VK, Rawat GS (2007) Weight of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr Sci 92(5):628–638

    Google Scholar 

  • Melo R, Vieira G, Caselli A, Ramos M (2012) Susceptibility modelling of hummocky terrain distribution using the information value method (Deception Island, Antarctic peninsula). Geomorphology 155:88–95. https://doi.org/10.1016/j.geomorph.2011.12.027

    Article  Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on the geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  • Pradhan B (2010) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intel Sys 3(3):370–381

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7(1):13–30. https://doi.org/10.1007/s10346-009-0183-2

    Article  Google Scholar 

  • Pradhan B, Sezer E, Gokceoglu C, Buchroithner MF (2010) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(12):4164–4177. https://doi.org/10.1109/TGRS.2010.2050328

    Article  Google Scholar 

  • Rai PK, Mohan K, Kumar VK (2014) Landslide hazard and its mapping using remote sensing and GIS. J Sci Res BHU 58 ISSN 0447-9483

  • Rasyid AR, Bhandary NP, Yatabe R (2016) Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron Disas 3:19. https://doi.org/10.1186/s40677-016-0053-x

    Article  Google Scholar 

  • Rawat MS, Uniyal DP, Dhobal R, Joshi B, Rawat BS, Bartwal A, Singh D, Aswal A (2015) Study of landslide hazard zonation in Mandakini valley, Rudraprayag district, Uttarakhand, using remote sensing and GIS. Curr Sci 109(1):158–170

    Google Scholar 

  • Rozos D, Bathrellos GD, Skilodimou HD (2011) Comparison of the implementation of rock engineering system and analytical hierarchy process methods, based on landslide susceptibility maps, compiled in GIS environment. A case study from eastern Achaia county of Peloponnesus, Greece. Environ Earth Sci 63(1):49–63. https://doi.org/10.1007/s12665-010-0687-z

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. McGraw Hill, Pittsburgh

    Google Scholar 

  • Saaty TL (1990) How to make a decision: analytical hierarchy process. Eur J Oper Res 48:9–26

    Article  Google Scholar 

  • Saaty TL (2005) Theory and application of the analytic network process. RWS, Pittsburg

    Google Scholar 

  • Saaty TL, Vargas LG (2001) Models, methods, concepts and application of analytical hierarchy process. Kluwer, Boston, p 333

    Book  Google Scholar 

  • Sah MP, Srivastava RAK (1992) Morphology and facies of the alluvial-fan sedimentation in the Kangra Valley, Himachal Himalaya. Sediment Geol 76(1):23–42

    Article  Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in a part of the Himalayas. Int J Rem Sens 23(2):357–369

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS based statistical landslide zonation with a case study in the Himalaya. Landslides 2:61–69. https://doi.org/10.1007/s10346-004-0039-8

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photo Eng. and remote sensing 70:617–625

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK, Kumar P (2008) GIS based landslide susceptibility mapping- a case study in Indian Himalaya. Proc Interpraevent Int Symp on Disaster mitigation of debris flows, slope failures and landslides: 617–624

  • Sarkar S, Roy AK, Martha TR (2013) Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas. J Geol Soc India 82:351–362

    Article  Google Scholar 

  • Shahabi H, Hashim M (2015) Landslide susceptibility mapping using GIS based statistical models and remote sensing data in tropical environment. Sci Rep 5:9899. https://doi.org/10.1038/srep09899

    Article  Google Scholar 

  • Sharma R, Sharma UK, Mahajan AK (2015) Rainfall and anthropologically accelerated mass movement in the outer Himalaya, north of Dharamshala town, Kangra district, Himachal Pradesh: a cause of concern. J Geol Soc India 86(5):563–569

    Article  Google Scholar 

  • Shirzadi A, Chapi K, Shahabi H, Solaimani K, Kavian A, Ahmad BB (2017) Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ Earth Sci 76(4):152. https://doi.org/10.1007/s12665-017-6471-6

    Article  Google Scholar 

  • Singh K, Kumar V (2017) Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio. Arab J Geosci 10(24):539

    Article  Google Scholar 

  • Singh TN, Gulati A, Dontha IK, Bhardwaj V (2008) Evaluating cut slope failure by numerical analysis- a case study. Nat Hazards 47:263–279. https://doi.org/10.1007/s11069-008-9219-5

    Article  Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. Doctoral dissertation, TU Delft, Delft University of Technology

  • Van Westen CJ (1994) GIS in landslide hazard zonation: a review with examples from the Colombian Andes. In: Price MF, Heywood DI (eds) Mountain environments and geographic information systems. Taylor and Francis, London, pp 135–165

    Google Scholar 

  • Van Westen CJ, Van Asch TW, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard and vulnerability assessment: an overview. Eng Geol 102:3–4. https://doi.org/10.1016/j.enggeo.2008.03.010

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Spec Rep 176:11–33

    Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice, natural hazard 3, commission on landslides of the IAEG. UNESCO, Paris

    Google Scholar 

  • Xu C, Xu X, Dai F, Wu Z, He H, Shi F, Wu X, Xu S (2013) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to may 12, 2008 Wenchuan earthquake of China. Nat Hazards 68:883–900. https://doi.org/10.1007/s11069-013-0661-7

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistic regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287. https://doi.org/10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  • Yin KL, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard, C (ed) Proceedings of the 5th international symposium on landslides, Lausanne Balkema, Rotterdam, pp 1269–1272

  • Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68(3):373–386. https://doi.org/10.1016/S0013-7952(02)00241-7

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Science and Technology (DST) for providing a research grant under project no. NRDMS/11/3023/013(G) for carrying out the studies. The authors also gratefully acknowledge the administrative and logistic support provided by the respective head of the Institutions. The suggestions from the reviewers for improvement of this research work is highly acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Mahajan, A.K. A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bull Eng Geol Environ 78, 2431–2448 (2019). https://doi.org/10.1007/s10064-018-1259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-018-1259-9

Keywords

Navigation