Skip to main content

Advertisement

Log in

GIS-based analysis of landslides susceptibility mapping: a case study of Lushoto district, north-eastern Tanzania

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Landslides are becoming increasingly widespread, claiming tens of thousands of fatalities, hundreds of thousands of injuries, and billions of dollars in economic losses each year. Thus, studies for geographically locating landslides, vulnerable areas have been increasingly relevant in recent decades. This research is aimed at integrating Geographical Information Systems (GIS) and Remote Sensing (RS) techniques to delineate landslides susceptibility areas of Lushoto district, Tanzania. RS assisted in providing remote datasets including; Digital Elevation Models (DEMs), Landsat 8 OLI imageries, and past spatially distributed landslides coordinate with the use of a handheld Global Position System (GPS) receiver, while various GIS analysis techniques were used in the preparation and analysis of landslides influencing factors hence, generating landslides susceptibility areas index values. However, rainfall, slope angle, elevation, soil type, lithology, proximity to roads, rivers, faults, and Normalized Difference Vegetation Index (NDVI) factors were found to have a direct influence on the occurrence of landslides in the study area. These factors were evaluated, weighted, and ranked using Analytical Hierarchy Process (AHP) technique in which a 0.086 (8.6%) Consistency Ratio (CR) was attained (highly accepted). Findings reveal that rainfall (29.97%), slopes’ angle (21.72%), elevation (15.68%), and soil types (11.77%) were found to have high influence on the occurrence of landslides, while proximity to faults (8.35%), lithology (4.94%), proximity to roads (3.41%), rivers (2.48%), and NDVI (1.69%) had very low influences, respectively. The overall results, obtained through Weighted Linear Combination (WLC) analysis techniques indicate that about 97669.65 Hectares (ha) of land are under very low levels of landslides susceptibility, which accounts for 24.03% of the total study area. Low susceptibility levels had 123105.84 ha (30.28%), moderate landslides susceptibility areas were found to have 140264.79 ha (34.50%), while high and very high susceptibility areas were found to cover about 45423.43 ha (11.17%) and 57.78 ha (0.01%), respectively. Furthermore, 81% overall model accuracy was obtained as computed from the Area Under the Curve (AUC) using Receiver Operating Characteristic (ROC) curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdo H (2022) Assessment of landslide susceptibility zonation using frequency ratio and statistical index: a case study of Al-Fawar basin, Tartous, Syria. Int J Environ Sci Technol 19(4):2599–2618

    Article  Google Scholar 

  • Abedini M, Ghasemian B, Shirzadi A, Shahabi H, Chapi K, Pham BT, Ahmad B, B., Bui T, D (2019) A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto Int 34(13):1427–1457. https://doi.org/10.1080/10106049.2018.1499820

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Frattini P (2012) 18 slow rock-slope deformation. Landslides: Types mechanisms modeling Earth Systems and Environment, 207

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1(1):73–81. https://doi.org/10.1007/s10346-003-0006-9

    Article  Google Scholar 

  • Baharvand S, Rahnamarad J, Soori S, Saadatkhah N (2020) Landslide susceptibility zoning in a catchment of Zagros mountains using fuzzy logic and GIS. Environ Earth Sci 79:1–10. https://doi.org/10.1007/s12665-020-08957-w

    Article  Google Scholar 

  • Bahrami Y, Hassani H, Maghsoudi A (2020) Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province. Iran Geoj 1–20. https://doi.org/10.1007/s10708-020-10162-y

  • Berhane G, Kebede M, Alfarah N, Hagos E, Grum B, Giday A, Abera T (2020) Landslide susceptibility zonation mapping using GIS-based frequency ratio model with multi-class spatial data-sets in the Adwa-Adigrat mountain chains, northern Ethiopia. J Afr Earth Sc 164:103795. https://doi.org/10.1016/j.jafrearsci.2020.103795

    Article  Google Scholar 

  • Biswas S, Mukhopadhyay BP, Bera A (2020) Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district, West Bengal. Environ Earth Sci 79(12):1–25

    Article  Google Scholar 

  • Bostjančić I, Filipović M, Gulam V, Pollak D (2021) Regional-Scale Landslide Susceptibility Mapping using limited LiDAR-Based landslide inventories for Sisak-Moslavina County, Croatia. Sustainability 13(8):4543. https://doi.org/10.3390/su13084543

    Article  Google Scholar 

  • Braslow J, Cordingley J (2016) Participatory mapping in Lushoto district, Tanzania. International Center for Tropical Agriculture (CIAT)

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5(6):853–862. https://doi.org/10.5194/nhess-5-853-2005

    Article  Google Scholar 

  • CRED (2018) The human cost of natural disasters, a global perspective. http://repo.floodalliance.net/jspui/44111/1165

  • Chalise D, Kumar L, Kristiansen P (2019) Land degradation by soil erosion in Nepal: a review. Soil Syst 3(1):12. https://doi.org/10.3390/soilsystems3010012

    Article  Google Scholar 

  • Chen X, Chen W (2021) GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA 196:104833. https://doi.org/10.1016/j.catena.2020.104833

    Article  Google Scholar 

  • Chen W, Pradhan B, Li S, Shahabi H, Rizeei HM, Hou E, Wang S (2019a) Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis. Nat Resour Res 28(4):1239–1258. https://doi.org/https://doi.org/10.1007/s11053-019-09465-w

    Article  Google Scholar 

  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu A, Li S (2019b) Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Environ 78(6):4397–4419

    Article  Google Scholar 

  • Chen Z, Song D, Juliev M, Pourghasemi HR (2021) Landslide susceptibility mapping using statistical bivariate models and their hybrid with normalized spatial-correlated scale index and weighted calibrated landslide potential model. Environ Earth Sci 80(8):1–19. https://doi.org/10.1007/s12665-021-09603-9

    Article  Google Scholar 

  • Chen W, Sun Z, Han JJA (2019c) s. Landslideusceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Appliedciences, 9(1), 171

    Article  Google Scholar 

  • Collins BD, Jibson RW (2015) Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence (2331 – 1258)

  • Dang V-H, Dieu TB, Tran X-L, Hoang N-D (2019) Enhancing the accuracy of rainfall-induced landslide prediction along mountain roads with a GIS-based random forest classifier. Bull Eng Geol Environ 78(4):2835–2849. https://doi.org/10.1007/s10064-018-1273-y

    Article  Google Scholar 

  • Das G, Lepcha K (2019) Application of logistic regression (LR) and frequency ratio (FR) models for landslide susceptibility mapping in Relli Khola river basin of Darjeeling Himalaya, India. Appl Sci 1(11):1–22. https://doi.org/10.1007/s42452-019-1499-8

    Article  Google Scholar 

  • Das IC (2011) Spatial statistical modelling for assessing landslide hazard and vulnerability

  • Delcamp A, Kwelwa S, Macheyeki A, De Kervyn M (2013) Multiple collapses at Mt Meru volcano, Tanzania: remote sensing and field evidences from debris avalanche deposits. EGU General Assembly Conference Abstracts

  • Demir G, Aytekin M, Akgün A, Ikizler SB, Tatar O (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65(3):1481–1506. https://doi.org/10.1007/s11069-012-0418-8

    Article  Google Scholar 

  • Desalegn H, Mulu A, Damtew B (2022) Landslide susceptibility evaluation in the Chemoga watershed, upper Blue Nile, Ethiopia. Nat Hazards 113(2):1391–1417

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Dhamija S, Joshi H (2022) Prediction of Groundwater Arsenic Hazard employing Geostatistical Modelling for the Ganga Basin, India. Water 14(15):2440

    Article  Google Scholar 

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT (2019) Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ 662:332–346. https://doi.org/10.1016/j.scitotenv.2019.01.221

    Article  Google Scholar 

  • Díaz SR, Cadena E, Adame S, Dávila N (2020) Landslides in Mexico: their occurrence and social impact since 1935. Landslides 17(2):379–394. https://doi.org/10.1007/s10346-019-01285-6

    Article  Google Scholar 

  • Faber B (2003) Slope and aspect effect on evaporation as measured by atmometer. IV International Symposium on Irrigation of Horticultural Crops 664

  • Fontijn K, Williamson D, Mbede E, Ernst GG (2012) The rungwe volcanic province, Tanzania–a volcanological review. ournal of African Earth Sciences 63:12–31. https://doi.org/10.1016/j.jafrearsci.2011.11.005

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18(8):2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

    Article  Google Scholar 

  • Gheshlaghi HA, Feizizadeh B (2021) GIS-based ensemble modelling of fuzzy system and bivariate statistics as a tool to improve the accuracy of landslide susceptibility mapping. Nat Hazards https://doi.org/10.1007/s11069-021-04673-1

    Article  Google Scholar 

  • Guha-Sapir D, Below R, Hoyois P (2020) EM-DAT: international disaster database. Brussels, Belgium: Université Catholique de Louvain http://www.emdat.be

  • Gupta V, Paul A, Kumar S, Dash B (2021) Spatial distribution of landslides vis-à-vis epicentral distribution of earthquakes in the vicinity of the Main Central Thrust zone, Uttarakhand Himalaya. India Curr Sci 120(12):1927–1932

    Article  Google Scholar 

  • Hamzeh S, Amiri A (2020) Landslide hazard zoning using weighted overlay and Analytic Network process methods-case study: Nasrabad region in Golestan Province. Scientific-Research Q Geographical Data 29(114):117–132. https://doi.org/10.22131/SEPEHR.2020.44597

    Article  Google Scholar 

  • Haque U, Da Silva PF, Devoli G, Pilz J, Zhao B, Khaloua A, Wilopo W, Andersen P, Lu P, Lee J (2019) The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci Total Environ 682:673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415

    Article  Google Scholar 

  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu A-X, Chen W, Ahmad BB (2018) Landslide susceptibility mapping using J48 decision tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA 163:399–413. https://doi.org/10.1016/j.catena.2018.01.005

    Article  Google Scholar 

  • Hong H, Pourghasemi HR, Pourtaghi ZS (2016) Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 259:105–118. https://doi.org/10.1016/j.geomorph.2016.02.012

    Article  Google Scholar 

  • Igwe O (2018) The characteristics and mechanisms of the recent catastrophic landslides in Africa under IPL and WCoE projects. Landslides 15(12):2509–2519. https://doi.org/10.1007/s10346-018-1064-3

    Article  Google Scholar 

  • Iqbal J, Cui P, Hussain ML, Pourghasemi HR, Cheng D-Q, Shah SU, Pradhan B (2021) Landslide Susceptibility Assessment Along The Dubair-Dudishal Section of The Karakoram Higway, Northwestern Himalayas, Pakistan. Acta Geodyn. Geomater, Vol. 18, No. 2((202),), 137–155, 2021. https://doi.org/10.13168/AGG.2021.0010

    Article  Google Scholar 

  • Jam AS, Mosaffaie J, Sarfaraz F, Shadfar S, Akhtari R (2021) GIS-based landslide susceptibility mapping using hybrid MCDM models. Nat Hazards.https://doi.org/10.1007/s11069-021-04718-5

    Article  Google Scholar 

  • Jennifer JJ, Saravanan S, Abijith D (2021) Application of frequency ratio and logistic regression model in the Assessment of Landslide susceptibility mapping for Nilgiris District, Tamilnadu, India. Indian Geotech J. https://doi.org/10.1007/s40098-021-00520-z

    Article  Google Scholar 

  • Kamugisha M, Gesase S, Minja D, Mgema S, Mlwilo T, Mayala B (2007) Pattern and spatial distribution of plague in Lushoto, north-eastern Tanzania. Tanzan J Health Res 9(1):12–18

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439. https://doi.org/10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • Kawabata D, Bandibas J (2009) Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial neural network (ANN). Geomorphology 113(1–2):97–109. https://doi.org/10.1016/j.geomorph.2009.06.006

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Computers Geosci 52:398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Kervyn M, Ernst GG, Klaudius J, Keller J, Kervyn F, Mattsson HB, Belton F, Mbede E, Jacobs P (2008) Voluminous lava flows at Oldoinyo Lengai in 2006: chronology of events and insights into the shallow magmatic system. Bull Volcanol 70(9):1069–1086. https://doi.org/10.1007/s00445-007-0190-x

    Article  Google Scholar 

  • Kirschbaum D, Stanley T, Zhou Y (2015) Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4–15. https://doi.org/10.1016/j.geomorph.2015.03.016

    Article  Google Scholar 

  • Knapen A, Kitutu MG, Poesen J, Breugelmans W, Deckers J, Muwanga A (2006) Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73(1–2):149–165. https://doi.org/10.1016/j.geomorph.2005.07.004

    Article  Google Scholar 

  • Lai J-S, Tsai F (2019) Improving GIS-based landslide susceptibility assessments with multi-temporal remote sensing and machine learning. Sensors 19(17):3717. https://doi.org/10.3390/s19173717

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40(9):1095–1113

    Article  Google Scholar 

  • Lepore C, Kamal SA, Shanahan P, Bras RL (2012) Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environ Earth Sci 66(6):1667–1681. https://doi.org/10.1007/s12665-011-0976-1

    Article  Google Scholar 

  • Li Y, Chen W (2020) Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques. Water 12(1):113. https://doi.org/10.3390/w12010113

    Article  Google Scholar 

  • Löbmann MT, Geitner C, Wellstein C, Zerbe S (2020) The influence of herbaceous vegetation on slope stability–A review. Earth Sci Rev, 103328

  • Makonyo M, Msabi MM (2021a) Identification of Groundwater potential recharge zones using GIS-Based Multi-Criteria decision analysis: a Case Study of Semi-Arid Midlands Manyara fractured Aquifer, North-Eastern Tanzania. Remote Sens Appl Soc Environ Asia. https://doi.org/10.1016/j.rsase.2021.100544

    Article  Google Scholar 

  • Makonyo M, Msabi MM (2021b) Potential landfill sites selection using GIS-based multi-criteria decision analysis in Dodoma capital city, central Tanzania. GeoJournal. https://doi.org/10.1007/s10708-021-10414-5

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. John Wiley & Sons

  • Massawe HJB (2011) Landform and soil analysis for predicting distribution of plague reservoirs and vectors in Mavumo area, Lushoto District, Tanzania. Sokoine University of Agriculture]

  • Meena SR, Mishra BK, Tavakkoli Piralilou S (2019) A hybrid spatial multi-criteria evaluation method for mapping landslide susceptible areas in kullu valley, himalayas. Geosciences 9(4):156. https://doi.org/10.3390/geosciences9040156

    Article  Google Scholar 

  • Melese T, Belay T, Andemo A (2022) Application of analytical hierarchal process, frequency ratio, and Shannon entropy approaches for landslide susceptibility mapping using geospatial technology: the case of Dejen district, Ethiopia. Arab J Geosci 15(5):424

    Article  Google Scholar 

  • Meng Q, Miao F, Zhen J, Wang X, Wang A, Peng Y, Fan Q (2016) GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China. Bull Eng Geol Environ 75(3):923–944. https://doi.org/10.1007/s10064-015-0786-x

    Article  Google Scholar 

  • Michael EA, Samanta S (2016) Landslide vulnerability mapping (LVM) using weighted linear combination (WLC) model through remote sensing and GIS techniques. Model Earth Syst Environ 2(2):1–15

    Article  Google Scholar 

  • Moragues S, Lenzano MG, Lanfri M, Moreiras S, Lannutti E, Lenzano L (2021) Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina. Nat Hazards 105(1):915–941. https://doi.org/10.1007/s11069-020-04343-8

    Article  Google Scholar 

  • Morandi DT, de Jesus França LC, Menezes ES, Machado ELM, da Silva MD, Mucida DP (2020) Delimitation of ecological corridors between conservation units in the brazilian cerrado using a GIS and AHP approach. Ecol Ind 115:106440. https://doi.org/10.1016/j.ecolind.2020.106440

    Article  Google Scholar 

  • Moreiras SM (2009) Análisis estadístico probabilístico de las variables que condicionan la inestabilidad de las laderas en los valles de los ríos Las Cuevas y Mendoza. Revista de la Asociación Geológica Argentina 65(4):780–790

    Google Scholar 

  • Motamedi M (2013) Quantitative landslide Hazard Assessment in Regional Scale using statistical modeling techniques. University of Akron]

  • Msabi MM, Makonyo M (2021) Flood susceptibility mapping using GIS and multi-criteria decision analysis: a case of Dodoma region, central Tanzania. Remote Sens Applications: Soc Environ Asia 21:100445

    Article  Google Scholar 

  • Mugagga F, Kakembo V, Buyinza M (2012) Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. CATENA 90:39–46. https://doi.org/10.1016/j.catena.2011.11.004

    Article  Google Scholar 

  • Mücher CA (2009) Geo-spatial modelling and monitoring of european landscapes and habitats using remote sensing and field surveys. Wageningen University and Research

  • NBS NB, o. S (2012) Tanzania – Population and Housing Census 2012. Dar es Salaam: Ministry of Finance Office of Chief Government Statistician President’s Office – Finance, Economy and Development Planning

  • Nama E (2020) Modelling variables to predict landslides in the south west flank of the Cameroon volcanic line, Cameroon, West Africa. Unsaturated Soils for Asia. CRC Press, pp 813–817

  • Neerinckx S, Peterson AT, Gulinck H, Deckers J, Kimaro D, Leirs H (2010) Predicting potential risk areas of human plague for the western Usambara Mountains, Lushoto District, Tanzania. Am J Trop Med Hyg 82(3):492

    Article  Google Scholar 

  • Nguyen VV, Pham BT, Vu BT, Prakash I, Jha S, Shahabi H, Shirzadi A, Ba DN, Kumar R, Chatterjee JM (2019) Hybrid machine learning approaches for landslide susceptibility modeling. Forests 10(2):157. https://doi.org/10.3390/f10020157

    Article  Google Scholar 

  • Nyssen J, Moeyersons J, Poesen J, Deckers J, Haile M (2003) The environmental significance of the remobilisation of ancient mass movements in the atbara–tekeze headwaters, Northern Ethiopia. Geomorphology 49(3–4):303–322. https://doi.org/10.1016/S0169-555X(02)00192-7

    Article  Google Scholar 

  • Okuwaki R, Fan W, Yamada M, Osawa H, Wright TJ (2021) Identifying landslides from continuous seismic surface waves: a case study of multiple small-scale landslides triggered by Typhoon Talas, 2011. Geophys J Int 226(2):729–741

    Article  Google Scholar 

  • Ozioko O, Igwe O (2020) GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Environ Monit Assess 192(2):1–19. https://doi.org/10.1007/s10661-019-7951-9

    Article  Google Scholar 

  • Panchal S, Shrivastava AK (2020) Application of analytic hierarchy process in landslide susceptibility mapping at regional scale in GIS environment. J Stat Manage Syst 23(2):199–206. https://doi.org/10.1080/09720510.2020.1724620

    Article  Google Scholar 

  • Rahaman SA, Aruchamy (2017) Geoinformatics based landslide vulnerable zonation mapping using analytical hierarchy process (AHP), a study of Kallar river sub watershed, Kallar watershed, Bhavani basin, Tamil Nadu. Model Earth Syst Environ Asia 3(1):41. https://doi.org/10.1007/s40808-017-0298-8

    Article  Google Scholar 

  • Regmi AD, Dhital MR, Zhang J-q, Su L-j, Chen X-q (2016) Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal. J Mt Sci 13(11):1941–1957. https://doi.org/10.1007/s11629-015-3688-2

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001

    Article  Google Scholar 

  • Riaz MT, Basharat M, Hameed N, Shafique M, Luo J (2018) A data-driven approach to landslide-susceptibility mapping in mountainous terrain: case study from the Northwest Himalayas, Pakistan. Nat Hazards Rev 19(4):05018007

    Article  Google Scholar 

  • Roccati A, Paliaga G, Luino F, Faccini F, Turconi L (2021) GIS-Based landslide susceptibility mapping for Land Use Planning and Risk Assessment. Land 10(2):162. https://doi.org/10.3390/land10020162

    Article  Google Scholar 

  • Rossi M, Reichenbach P (2016) LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0. Geosci Model Dev 9(10):3533–3543. https://doi.org/10.5194/gmd-9-3533-2016

    Article  Google Scholar 

  • Saaty TL (1997) That is not the analytic hierarchy process: what the AHP is and what it is not. J Multi-Criteria Decis Anal 6(6):324–335

    Article  Google Scholar 

  • Saaty T (1980) The analytic Hierarchy Process. McGrawHill international. New York, NY, USA

  • Saaty TL, Vargas LG (2001) How to make a decision. In: Models, methods, concepts & applications of the analytic hierarchy process (pp. 1–25). Springer. https://doi.org/10.1007/978-1-4615-1665-1_1

  • Sarkar S, Kanungo DP (2017) GIS application in landslide susceptibility mapping of Indian Himalayas. In GIS Landslide (pp. 211–219). Springer. https://doi.org/10.1007/978-4-431-54391-6_12

  • Shano L, Raghuvanshi TK, Meten M (2021) Landslide susceptibility mapping using frequency ratio model: the case of Gamo highland, South Ethiopia. Arab J Geosci 14(7):1–18

    Article  Google Scholar 

  • Sharma A, Sur U, Singh P, Rai PK, Srivastava PK (2020) Probabilistic landslide hazard assessment using statistical information value (SIV) and GIS techniques: a case study of Himachal Pradesh, India. Tech Dis Risk Manag Mitigation 197:208. https://doi.org/10.1002/9781119359203.ch15

    Article  Google Scholar 

  • Silalahi FES, Arifianti Y, Hidayat F (2019) Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geoscience Lett 6(1):1–17. https://doi.org/10.1186/s40562-019-0140-4

    Article  Google Scholar 

  • Singh N, Chakrapani G (2015) ANN modelling of sediment concentration in the dynamic glacial environment of Gangotri in Himalaya. Environ Monit Assess 187(8):494

    Article  Google Scholar 

  • Singh P, Sharma A, Sur U, Rai PK (2021) Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India. Environ Dev Sustain 23(4):5233–5250. https://doi.org/10.1007/s10668-020-00811-0

    Article  Google Scholar 

  • Singh RG (2009) Landslide classification, characterization and susceptibility modeling in KwaZulu-Natal. University of the Witwatersrand]

  • Swetha T, Gopinath G (2020) Landslides susceptibility assessment by analytical network process: a case study for Kuttiyadi river basin (western ghats, southern India). SN Appl Sci 2(11):1–12. https://doi.org/10.1007/s42452-020-03574-5

    Article  Google Scholar 

  • Tegeje J (2017) Review of spatial and temporal distribution of Landslides in Tanzania. Ecosyst Ecography 7(243):2. https://doi.org/10.4172/2157-7625.1000243

    Article  Google Scholar 

  • Tian Y, Xu C, Hong H, Zhou Q, Wang D, Risk (2019) Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event. Geomatics Nat Hazards 10(1):1–25. https://doi.org/10.1080/19475705.2018.1487471

    Article  Google Scholar 

  • Tofelde S, Düsing W, Schildgen TF, Wittmann H, Alonso RN, Strecker MR (2017) Changes in denudation rates and erosion processes in the transition from a low-relief, arid orogen interior to a high-relief, humid mountain-front setting, Toro Basin, southern Central Andes. AGU Fall Meeting Abstracts

  • Torizin J (2011) Bivariate statistical method for landslide susceptibility analysis using ArcGis. Project of technical cooperation ‘mitigation of georisks’. BGR-Report publication, Hannover

  • Turconi L, Luino F, Gussoni M, Faccini F, Giardino M, Casazza M (2019) Intrinsic environmental vulnerability as shallow landslide susceptibility in Environmental Impact Assessment. Sustainability 11(22):6285. https://doi.org/10.3390/su11226285

    Article  Google Scholar 

  • Turner AK (2018) Social and environmental impacts of landslides. Innovative Infrastructure Solutions 3(1):1–25. https://doi.org/10.1007/s41062-018-0175-y

    Article  Google Scholar 

  • Wang L, Wei S, Horton R (2011) Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China. CATENA 87(1):90–100. https://doi.org/10.1016/j.catena.2011.05.010

    Article  Google Scholar 

  • Westerberg L-O, Christiansson C (1999) Highlands in East Africa: unstable slopes, unstable environments? Ambio, 419–429

  • Wubalem A, Meten M (2020) Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Appl Sci 2(5):1–19. https://doi.org/10.1007/s42452-020-2563-0

    Article  Google Scholar 

  • Youssef AMJE (2015) e. s. Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models. 73(12), 8499–8518

  • Zhu A-X, Miao Y, Yang L, Bai S, Liu J, Hong H (2018) Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping. Catena 171(222):233. https://doi.org/10.1016/j.catena.2018.07.012

    Article  Google Scholar 

Download references

Acknowledgements

We thank the University of Dodoma (UDOM) for providing financial support in facilitating this project.

Author information

Authors and Affiliations

Authors

Contributions

MM performed funding acquisition, collected and analysed data, as well as drafted this manuscript. ZZ guided the research procedures, reviewed, and edited the manuscript. Both authors read and approved the final manuscript

Corresponding author

Correspondence to Michael Makonyo.

Ethics declarations

Conflict of interest

There is no potential conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makonyo, M., Zahor, Z. GIS-based analysis of landslides susceptibility mapping: a case study of Lushoto district, north-eastern Tanzania. Nat Hazards 118, 1085–1115 (2023). https://doi.org/10.1007/s11069-023-06038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06038-2

Keywords

Navigation