Skip to main content
Log in

Smart Fibers for Self-Powered Electronic Skins

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Smart fibers are considered as promising materials for the fabrication of wearable electronic skins owing to their features such as superior flexibility, light weight, high specific area, and ease of modification. Besides, piezoelectric or triboelectric electronic skins can respond to mechanical stimulation and directly convert the mechanical energy into electrical power for self-use, thereby providing an attractive method for tactile sensing and motion perception. The incorporation of sensing capabilities into smart fibers could be a powerful approach to the development of self-powered electronic skins. Herein, we review several aspects of the recent advancements in the development of self-powered electronic skins constructed with smart fibers. The summarized aspects include functional material selection, structural design, pressure sensing mechanism, and proof-to-concept demonstration to practical application. In particular, various fabrication strategies and a wide range of practical applications have been systematically introduced. Finally, a critical assessment of the challenges and promising perspectives for the development of fiber-based electronic skins has been presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang JC, Mun J, Kwon SY, Park S, Bao ZN, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:1904765.

    Article  CAS  Google Scholar 

  2. Wang XD, Dong L, Zhang HL, Yu RM, Pan CF, Wang ZL. Recent progress in electronic skin. Adv Sci 2015;2:1500169.

    Article  Google Scholar 

  3. Chen HT, Song Y, Cheng XL, Zhang HX. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019;56:252.

    Article  CAS  Google Scholar 

  4. Chang T-H, Li KR, Yang HT, Chen P-Y. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities. Adv Mater 2018;30:1802418.

    Article  Google Scholar 

  5. Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao ZN. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 2013;25:5997.

    Article  CAS  Google Scholar 

  6. Pu X, Liu MM, Chen XY, Sun JM, Du CH, Zhang Y, Zhai JY, Hu WG, Wang ZL. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 2017;3:10.

    Article  Google Scholar 

  7. Cheng Y, Wu D, Hao SF, Jie Y, Cao X, Wang N, Wang ZL. Highly stretchable triboelectric tactile sensor for electronic skin. Nano Energy 2019;64:103907.

    Article  CAS  Google Scholar 

  8. Ahmed A, Guan Y-S, Hassan I, Ling C, Li Z, Mosa I, Phadke G, Selvaganapathy PR, Chang SQ, Ren SQ. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film. Nano Energy 2020;75:105044.

    Article  CAS  Google Scholar 

  9. Libanori A, Chen GR, Zhao X, Zhou YH, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5:142.

    Article  CAS  Google Scholar 

  10. Fang YS, Chen GR, Bick M, Chen J. Smart textiles for personalized thermoregulation. Chem Soc Rev 2021;50:9357.

    Article  CAS  Google Scholar 

  11. Chen GR, Fang YS, Zhao X, Tat T, Chen J. Textiles for learning tactile interactions. Nat Electron 2021;4:175.

    Article  CAS  Google Scholar 

  12. Zhou ZH, Chen K, Li XS, Zhang SL, Wu YF, Zhou YH, Meng KY, Sun CC, He Q, Fan WJ, Fan ED, Lin ZW, Tan XL, Deng WL, Yang J, Chen J. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571.

    Article  Google Scholar 

  13. Chen GR, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122:3259.

    Article  CAS  Google Scholar 

  14. Vu CC, Kim J. Highly elastic capacitive pressure sensor based on smart textiles for full-range human motion monitoring. Sens Actuator A Phys 2020;314:112029.

    Article  CAS  Google Scholar 

  15. Gao L, Zhu CX, Li L, Zhang CW, Liu JH, Yu H-D, Huang W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl Mater Interfaces 2019;11:25034.

    Article  CAS  Google Scholar 

  16. Zhu ML, Shi QF, He TYY, Yi ZR, Ma YM, Yang B, Chen T, Lee CK. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019;13:1940.

    CAS  Google Scholar 

  17. Lin ZM, Yang J, Li XS, Wu YF, Wei W, Liu J, Chen J, Yang J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater 2018;28:1704112.

    Article  Google Scholar 

  18. Li ZL, Zhu MM, Shen JL, Qiu Q, Yu JY, Ding B. All-fiber structured electronic skin with high elasticity and breathability. Adv Funct Mater 2019;30:1908411.

    Article  Google Scholar 

  19. García Núñez C, Manjakkal L, Dahiya R. Energy autonomous electronic skin. NPJ Fle Electron 2019;3:1.

    Article  Google Scholar 

  20. Zhu MM, Li JL, Yu JY, Li ZL, Ding B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Int Ed 2022;61:e202200226.

    CAS  Google Scholar 

  21. Qiu Q, Zhu MM, Li ZL, Qiu KL, Liu XY, Yu JY, Ding B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 2019;58:750.

    Article  CAS  Google Scholar 

  22. Zhu MM, Lou MN, Abdalla I, Yu JY, Li ZL, Ding B. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 2020;69:104429.

    Article  CAS  Google Scholar 

  23. Lou MN, Abdalla I, Zhu MM, Wei XD, Yu JY, Li ZL, Ding B. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl Mater Interfaces 2020;12:19965.

    Article  CAS  Google Scholar 

  24. Peng X, Dong K, Ning C, Cheng RW, Yi J, Zhang YH, Sheng FF, Wu ZY, Wang ZL. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv Funct Mater 2021;31:2103559.

    Article  CAS  Google Scholar 

  25. Yang T, Pan H, Tian G, Zhang BB, Xiong D, Gao YY, Yan C, Chu X, Chen NJ, Zhong S, Zhang L, Deng WL, Yang WQ. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020;72:104706.

    Article  Google Scholar 

  26. Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S-T, Kim JH, Choi SH, Hyeon T, Kim D-H. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 2014;5:5747.

    Article  CAS  Google Scholar 

  27. Rogers JA, Someya T, Huang YG. Materials and mechanics for stretchable electronics. Science 2010;327:1603.

    Article  CAS  Google Scholar 

  28. Qi DP, Zhang KY, Tian GW, Jiang B, Huang YD. Stretchable electronics based on PDMS substrates. Adv Mater 2021;33:2003155.

    Article  CAS  Google Scholar 

  29. Liu MM, Pu X, Jiang CY, Liu T, Huang X, Chen L, Du CH, Sun JM, Hu WG, Wang ZL. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 2017;29:1703700.

    Article  Google Scholar 

  30. Chen XX, Song Y, Su ZM, Chen HT, Cheng XL, Zhang JX, Han MD, Zhang HX. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 2017;38:43.

    Article  CAS  Google Scholar 

  31. Mokhtari F, Spinks GM, Fay C, Cheng ZX, Raad R, Xi JT, Foroughi J. Wearable electronic textiles from nanostructured piezoelectric fibers. Adv Mater Technol 2020;5:1900900.

    Article  CAS  Google Scholar 

  32. Chen YX, Wang Z, Xu R, Wang W, Yu D. A highly sensitive and wearable pressure sensor based on conductive polyacrylonitrile nanofibrous membrane via electroless silver plating. Chem Eng J 2020;394:124960.

    Article  CAS  Google Scholar 

  33. Sharma S, Chhetry A, Zhang SP, Yoon H, Park C, Kim H, Sharifuzzaman M, Hui X, Park JY. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 2021;15:4380.

    Article  CAS  Google Scholar 

  34. Someya T, Bao ZN, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379.

    Article  CAS  Google Scholar 

  35. Gao W, Ota H, Kiriya D, Takei K, Javey A. Flexible electronics toward wearable sensing. Acc Chem Res 2019;52:523.

    Article  CAS  Google Scholar 

  36. Ma ZH, Meng B, Wang ZY, Yuan CC, Liu ZW, Zhang WG, Peng ZC. A triboelectric-piezoresistive hybrid sensor for precisely distinguishing transient processes in mechanical stimuli. Nano Energy 2020;78:105216.

    Article  CAS  Google Scholar 

  37. Garcia C, Trendafilova I, de Guzman VR, del Sanchez RJ. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy 2018;50:401.

    Article  CAS  Google Scholar 

  38. Fukuda K, Someya T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv Mater 2017;29:1602736.

    Article  Google Scholar 

  39. Rim YS, Bae S-H, Chen HJ, De Marco N, Yang Y. Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 2016;28:4415.

    Article  CAS  Google Scholar 

  40. MacDonald WA. Engineered films for display technologies. J Mater Chem 2004;14:4.

    Article  CAS  Google Scholar 

  41. Ni H-j, Liu J-g, Wang Z-h, Yang S-y. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J Ind Eng Chem 2015;28:16.

    Article  CAS  Google Scholar 

  42. Park K-I, Son JH, Hwang G-T, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 2014;26:2514.

    Article  CAS  Google Scholar 

  43. Liu QJ, Jin L, Zhang P, Zhang BB, Li YX, Xie S, Li XH. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors. ACS Appl Mater Interfaces 2021;13:10623.

    Article  CAS  Google Scholar 

  44. Qi DP, Liu ZY, Leow WR, Chen X. Elastic substrates for stretchable devices. MRS Bull 2017;42:103.

    Article  Google Scholar 

  45. Janik H, Marzec M. A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 2015;48:586.

    Article  CAS  Google Scholar 

  46. Yang W, Li N-W, Zhao SY, Yuan ZQ, Wang JN, Du XY, Wang B, Cao R, Li XY, Xu WH, Wang ZL, Li CJ. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv Mater Technol 2018;3:1700241.

    Article  Google Scholar 

  47. Peng X, Dong K, Ye CY, Jiang Y, Zhai SY, Cheng RW, Liu D, Gao XP, Wang J, Wang ZL. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 2020;6:10.

    Article  Google Scholar 

  48. Deng WL, Yang T, Jin L, Yan C, Huang HC, Chu X, Wang ZX, Xiong D, Tian G, Gao Y, Zhang HT, Yang WQ. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019;55:516.

    Article  CAS  Google Scholar 

  49. Tobjörk D, Österbacka R. Paper electronics. Adv Mater 2011;23:1935.

    Article  Google Scholar 

  50. Zhu HL, Fang ZQ, Preston C, Li YY, Hu LB. Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 2014;7:269.

    Article  CAS  Google Scholar 

  51. Matsuhisa N, Chen XD, Bao ZN, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 2019;48:2946.

    Article  CAS  Google Scholar 

  52. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 2020;32:1902549.

    Article  CAS  Google Scholar 

  53. Wang Y, Zhu CX, Pfattner R, Yan HP, Jin LH, Chen SC, Molina-Lopez F, Lissel F, Liu J, Rabiah NI, Chen Z, Chung JW, Linder C, Toney MF, Murmann B, Bao ZN. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.

    Article  Google Scholar 

  54. Wu S, Yao SS, Liu YX, Hu XG, Huang HH, Zhu Y. Buckle-delamination-enabled stretchable silver nanowire conductors. ACS Appl Mater Interfaces 2020;12:41696.

    Article  CAS  Google Scholar 

  55. Wang ZW, Cui HJ, Li S, Feng XW, Aghassi-Hagmann J, Azizian S, Levkin PA. Facile approach to conductive polymer microelectrodes for flexible electronics. ACS Appl Mater Interfaces 2021;13:21661.

    Article  CAS  Google Scholar 

  56. Kwon G, Kim S-H, Kim D, Lee K, Jeon Y, Park C-S, You J. Vapor phase polymerization for electronically conductive nanopaper based on bacterial cellulose/poly(3,4-ethylenedioxythiophene). Carbohydr Polym 2021;257:117658.

    Article  CAS  Google Scholar 

  57. Lo L-W, Zhao JY, Wan HC, Wang Y, Chakrabartty S, Wang C. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl Mater Interfaces 2021;13:21693.

    Article  CAS  Google Scholar 

  58. Zhou J, Hsieh Y-L. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Appl Mater Interfaces 2018;10:27902.

    Article  CAS  Google Scholar 

  59. Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28:4203.

    Article  CAS  Google Scholar 

  60. Ma MY, Zhang Z, Zhao ZN, Liao QL, Kang Z, Gao FF, Zhao X, Zhang Y. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy 2019;66:104105.

    Article  CAS  Google Scholar 

  61. Zhang C, Chen H, Ding X, Lorestani F, Huang C, Zhang B, Zheng B, Wang J, Cheng H, Xu Y. Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams. Appl Phys Rev 2022;9:011413.

    Article  CAS  Google Scholar 

  62. Stanford MG, Li JT, Chyan Y, Wang Z, Wang W, Tour JM. Laser-induced graphene triboelectric nanogenerators. ACS Nano 2019;13:7166.

    Article  CAS  Google Scholar 

  63. Le TSD, Phan HP, Kwon S, Park S, Jung Y, Min J, Chun BJ, Yoon H, Ko SH, Kim SW, Kim YJ. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv Funct Mater 2022;220:5158.

    Google Scholar 

  64. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.

    Article  Google Scholar 

  65. Yang YQ, Sun N, Wen Z, Cheng P, Zheng HC, Shao HY, Xia YJ, Chen C, Lan HW, Xie XK, Zhou CJ, Zhong J, Sun XH, Lee S-T. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018;12:2027.

    Article  CAS  Google Scholar 

  66. Markvicka EJ, Bartlett MD, Huang XN, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater 2018;17:618.

    Article  CAS  Google Scholar 

  67. Ladd C, So J-H, Muth J, Dickey MD. 3D printing of free standing liquid metal microstructures. Adv Mater 2013;25:5081.

    Article  CAS  Google Scholar 

  68. Wang XL, Liu J. Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines 2016;7:206.

    Article  Google Scholar 

  69. Zhu MM, Wang YB, Lou MN, Yu JY, Li ZL, Ding B. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 2021;81:105669.

    Article  CAS  Google Scholar 

  70. Liao QL, Mohr M, Zhang XH, Zhang Z, Zhang Y, Fecht H-J. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale 2013;5:12350.

    Article  CAS  Google Scholar 

  71. Yu JB, Hou XJ, Cui M, Zhang N, Zhang SN, He J, Chou XJ. Skin-conformal BaTiO3/ecoflex-based piezoelectric nanogenerator for self-powered human motion monitoring. Mater Lett 2020;269:127686.

    Article  CAS  Google Scholar 

  72. Zhang Y, Liu Ch, Liu J, Xiong J, Liu J, Zhang K, Liu Y, Peng M, Yu A, Zhang Ah, Zhang Y, Wang Z, Zhai J, Wang ZL. Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Appl Mater Interfaces 2016;8:1381.

    Article  CAS  Google Scholar 

  73. Wang X, Huan Y, Ji S, Zhu Y, Wei T, Cheng Z. Ultra-high piezoelectric performance by rational tuning of heterovalent-ion doping in lead-free piezoelectric ceramics. Nano Energy 2022;101:107580.

    Article  CAS  Google Scholar 

  74. Shin S-H, Kim Y-H, Lee MH, Jung J-Y, Seol JH, Nah J. Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator. ACS Nano 2014;8:10844.

    Article  CAS  Google Scholar 

  75. Chang JY, Dommer M, Chang C, Lin LW. Piezoelectric nanofibers for energy scavenging applications. Nano Energy 2012;1:356.

    Article  CAS  Google Scholar 

  76. Kanik M, Aktas O, Sen HS, Durgun E, Bayindir M. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique. ACS Nano 2014;8:9311.

    Article  CAS  Google Scholar 

  77. Ahmed A, Jia YM, Huang Y, Khoso NA, Deb H, Fan QG, Shao JZ. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor. J Mater Sci-Mater El 2019;30:14007.

    Article  CAS  Google Scholar 

  78. Siddiqui S, Kim D-I, Roh E, Duy LT, Trung TQ, Nguyen MT, Lee N-E. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 2016;30:434.

    Article  CAS  Google Scholar 

  79. Wang A, Hu M, Zhou LW, Qiang XY. Self-powered wearable pressure sensors with enhanced piezoelectric properties of aligned P(VDF-TrFE)/MWCNT composites for monitoring human physiological and muscle motion signs. Nanomaterials 2018;8:1021.

    Article  Google Scholar 

  80. Dong K, Deng JN, Zi YL, Wang Y-C, Xu C, Zou HY, Ding WB, Dai YJ, Gu BH, Sun BZ, Wang ZL. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 2017;29:1702648.

    Article  Google Scholar 

  81. Zou HY, Zhang Y, Guo LT, Wang PH, He X, Dai GZ, Zheng HW, Chen CY, Wang AC, Xu C, Wang ZL. Quantifying the triboelectric series. Nat Commun 2019;10:1427.

    Article  Google Scholar 

  82. Yu AF, Zhu YX, Wang W, Zhai JY. Progress in triboelectric materials: toward high performance and widespread applications. Adv Funct Mater 2019;29:1900098.

    Article  CAS  Google Scholar 

  83. Liu Z, Ma Y, Ouyang H, Shi BJ, Li N, Jiang DJ, Xie F, Qu D, Zou Y, Huang Y, Li H, Zhao CC, Tan PC, Yu M, Fan YB, Zhang H, Wang ZL, Li Z. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv Funct Mater 2019;29:1807560.

    Article  Google Scholar 

  84. Zhang YY, Zhang TY, Huang ZD, Yang J. A new class of electronic devices based on flexible porous substrates. Adv Sci 2022;9:e2105084.

    Article  Google Scholar 

  85. Wang QW, Peng X, Zu Y, Jiang LL, Dong K. Scalable and washable 3D warp-knitted spacer power fabrics for energy harvesting and pressure sensing. J Phys D Appl Phys 2021;54:424006.

    Article  CAS  Google Scholar 

  86. Yang TT, Xie D, Li ZH, Zhu HW. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater Sci Eng R Rep 2017;115:1.

    Article  Google Scholar 

  87. Cheng M, Zhu GT, Zhang F, Tang W-L, Jianping S, Yang J-Q, Zhu L-Y. A review of flexible force sensors for human health monitoring. J Adv Res 2020;26:53.

    Article  CAS  Google Scholar 

  88. Tuloup C, Harizi W, Aboura Z, Meyer Y, Khellil K, Lachat R. On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: a literature review. Compos Struct 2019;215:127.

    Article  Google Scholar 

  89. Zhang DZ, Wang DY, Xu ZY, Zhang XX, Yang Y, Guo JY, Zhang B, Zhao WH. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord Chem Rev 2021;427:213597.

    Article  CAS  Google Scholar 

  90. Li ZL, Shen JL, Abdalla I, Yu JY, Ding B. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017;36:341.

    Article  CAS  Google Scholar 

  91. Feng Z, Yang S, Jia SX, Zhang YJ, Jiang S, Yu L, Li R, Song GW, Wang A, Martin T, Zuo L, Jia XT. Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving. Nano Energy 2020;74:104805.

    Article  CAS  Google Scholar 

  92. Zhao ZZ, Huang QY, Yan C, Liu YD, Zeng XW, Wei XD, Hu YF, Zheng ZJ. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020;70:104528.

    Article  CAS  Google Scholar 

  93. Bu TZ, Xiao TX, Yang ZW, Liu GX, Fu XP, Nie JH, Guo T, Pang YK, Zhao JQ, Xi FB, Zhang C, Wang ZL. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing. Adv Mater 2018;30:1800066.

    Article  Google Scholar 

  94. Xu ZW, Wu CX, Li FS, Chen W, Guo TL, Kim TW. Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers. Nano Energy 2018;49:274.

    Article  CAS  Google Scholar 

  95. Maharjan P, Bhatta T, Salauddin M, Rasel MS, Rahman MT, Rana SMS, Park JY. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy 2020;76:105071.

    Article  CAS  Google Scholar 

  96. Fan WJ, He Q, Meng KY, Tan XL, Zhou ZH, Zhang GQ, Yang J, Wang ZL. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 2020;6:2840.

    Article  Google Scholar 

  97. Zhao J, Wei Z, Li ZY, Yu JR, Tang J, Zhang GY, Wang ZL. Skin-inspired high-performance active-matrix circuitry for multimodal user-interaction. Adv Funct Mater 2021;31:2105480.

    Article  CAS  Google Scholar 

  98. Zhu MM, Lou MN, Yu JY, Li ZL, Ding B. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 2020;78:105208.

    Article  CAS  Google Scholar 

  99. Wang YB, Zhu MM, Wei XD, Yu JY, Li ZL, Ding B. A dual-mode electronic skin textile for pressure and temperature sensing. Chem Eng J 2021;425:130599.

    Article  CAS  Google Scholar 

  100. Bi SY, Hou L, Dong WW, Lu Y. Multifunctional and ultrasensitive-reduced graphene oxide and pen ink/polyvinyl alcohol-decorated Modal/Spandex fabric for high-performance wearable sensors. ACS Appl Mater Interfaces 2021;13:2100.

    Article  CAS  Google Scholar 

  101. Kim MO, Pyo S, Song G, Kim W, Oh Y, Park C, Park C, Kim J. Humidity-resistant, fabric-based, wearable triboelectric energy harvester by treatment of hydrophobic self-assembled monolayers. Adv Mater Technol 2018;3:1800048.

    Article  Google Scholar 

  102. Liu B-H, Xie G-Z, Li C-Z, Wang S, Yuan Z, Duan Z-H, Jiang Y-D, Tai H-L. A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect. Rare Met 2021;40:1995.

    Article  CAS  Google Scholar 

  103. Yang L, Ji HD, Meng CZ, Li YH, Zheng GH, Chen X, Niu GY, Yan JY, Xue Y, Guo SJ, Cheng HY. Intrinsically breathable and flexible NO2 gas sensors produced by laser direct writing of self-assembled block copolymers. ACS Appl Mater Interfaces 2022;14:17818.

    Article  CAS  Google Scholar 

  104. He HX, Fu YM, Zang WL, Wang Q, Xing LL, Zhang Y, Xue XY. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy 2017;31:37.

    Article  CAS  Google Scholar 

  105. Cui SW, Zheng YB, Zhang TT, Wang DA, Zhou F, Liu WM. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018;49:31.

    Article  CAS  Google Scholar 

  106. Bhuvaneswari HB, Reddy N. A review on dielectric properties of biofiber-based composites. Adv Compos Hybrid Ma 2018;1:635.

    Article  CAS  Google Scholar 

  107. Wang RX, Gao SJ, Yang Z, Li YL, Chen WN, Wu BX, Wu WZ. Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv Mater 2018;30:1706267.

    Article  Google Scholar 

  108. Kim H-J, Kim J-H, Jun K-W, Kim J-H, Seung W-C, Kwon OH, Park J-Y, Kim S-W, Oh I-K. Silk nanofiber-networked bio-triboelectric generator: silk Bio-TEG. Adv Energy Mater 2016;6:1502329.

    Article  Google Scholar 

  109. Wang CY, Li X, Gao EL, Jian MQ, Xia KL, Wang Q, Xu ZP, Ren TL, Zhang YY. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 2016;28:6640.

    Article  CAS  Google Scholar 

  110. Chao MY, He LZ, Gong M, Li N, Li XB, Peng LF, Shi F, Zhang LQ, Wan PB. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021;15:9746.

    Article  CAS  Google Scholar 

  111. Zhang JT, Hu SM, Shi ZJ, Wang YF, Lei YQ, Han J, Xiong Y, Sun J, Zheng L, Sun QJ, Yang G, Wang ZL. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 2021;89:106354.

    Article  CAS  Google Scholar 

  112. Jung M, Kim K, Kim B, Cheong H, Shin K, Kwon O-S, Park J-J, Jeon S. Paper-based bimodal sensor for electronic skin applications. ACS Appl Mater Interfaces 2017;9:26974.

    Article  CAS  Google Scholar 

  113. Wu RH, Ma LY, Hou C, Meng ZH, Guo WX, Yu WD, Yu R, Hu F, Liu XY. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019;15:1901558.

    Article  Google Scholar 

  114. Hu SM, Han J, Shi ZJ, Chen K, Xu N, Wang YF, Zheng RZ, Tao YZ, Sun QJ, Wang ZL, Yang G. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nanomicro Lett 2022;14:2.

    Google Scholar 

  115. Chiong JA, Tran H, Lin YJ, Zheng Y, Bao ZN. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv Sci 2018;8:2101233.

    Article  Google Scholar 

  116. Pan RZ, Xuan WP, Chen JK, Dong SR, Jin H, Wang XZ, Li HL, Luo JK. Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 2018;45:193.

    Article  CAS  Google Scholar 

  117. Shi YP, Wei XL, Wang KM, He DD, Yuan ZH, Xu JH, Wu ZY, Wang ZL. Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS Appl Mater Interfaces 2021;13:50329.

    Article  CAS  Google Scholar 

  118. Zheng SJ, Li WZ, Ren YY, Liu ZY, Zou XY, Hu Y, Guo JN, Sun Z, Yan F. Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv Mater 2022;34:2106570.

    Article  CAS  Google Scholar 

  119. Kang J, Tok JBH, Bao ZN. Self-healing soft electronics. Nat Electron 2019;2:144.

    Article  Google Scholar 

  120. Zhu MM, Yu JY, Li ZL, Ding B. Self-healing fibrous membranes. Angew Chem Int Ed 2022;61:e202208949.

    Article  CAS  Google Scholar 

  121. Habault D, Zhang H, Zhao Y. Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 2013;42:7244.

    Article  CAS  Google Scholar 

  122. Choi S, Eom Y, Kim S-M, Jeong D-W, Han J, Koo JM, Hwang SY, Park J, Oh DX. A self-healing nanofiber-based self-responsive time-temperature indicator for securing a cold-supply chain. Adv Mater 2020;32:1907064.

    Article  CAS  Google Scholar 

  123. Mule AR, Dudem B, Graham SA, Yu JS. Humidity sustained wearable pouch-type triboelectric nanogenerator for harvesting mechanical energy from human activities. Adv Funct Mater 2019;29:1807779.

    Article  Google Scholar 

  124. Wang Y, Yang E, Chen TY, Wang JY, Hu ZY, Mi JC, Pan XX, Xu MY. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 2020;78:105279.

    Article  CAS  Google Scholar 

  125. Wang XF, Liu YCY, Cheng HY, Ouyang XP. Surface wettability for skin-interfaced sensors and devices. Adv Funct Mater 2022;32:2200260.

    Article  CAS  Google Scholar 

  126. Xiong JQ, Cui P, Chen XL, Wang JX, Parida K, Lin M-F, Lee PS. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat Commun 2018;9:4280.

    Article  Google Scholar 

  127. Lee KY, Chun J, Lee J-H, Kim KN, Kang N-R, Kim J-Y, Kim MH, Shin K-S, Gupta MK, Baik JM, Kim S-W. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv Mater 2014;26:5037.

    Article  CAS  Google Scholar 

  128. Chen GR, Li YZ, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev 2020;120:3668.

    Article  CAS  Google Scholar 

  129. Liu D, Liu JM, Yang MS, Cui NY, Wang HY, Gu L, Wang LF, Qin Y. Performance enhanced triboelectric nanogenerator by taking advantage of water in humid environments. Nano Energy 2021;88:106303.

    Article  CAS  Google Scholar 

  130. Shen JL, Li ZL, Yu JY, Ding B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017;40:282.

    Article  CAS  Google Scholar 

  131. Liu H, Li QM, Bu YB, Zhang N, Wang CF, Pan CF, Mi LW, Guo ZH, Liu CT, Shen CY. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 2019;66:104143.

    Article  CAS  Google Scholar 

  132. Trung TQ, Lee N-E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 2016;28:4338.

    Article  CAS  Google Scholar 

  133. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao ZN. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 2010;9:859.

    Article  CAS  Google Scholar 

  134. Li W, Torres D, Díaz R, Wang ZJ, Wu CS, Wang C, Wang LZ, Sepúlveda N. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nat Commun 2017;8:15310.

    Article  CAS  Google Scholar 

  135. Yi N, Gao YY, Lo Verso A, Zhu J, Erdely D, Xue CL, Lavelle R, Cheng HY. Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. Mater Today 2021;50:24.

    Article  CAS  Google Scholar 

  136. Yang RX, Zhang WQ, Tiwari N, Yan H, Li TJ, Cheng HY. Multimodal sensors with decoupled sensing mechanisms. Adv Sci 2022;9:2202470.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (52073051, 51925302, and 51873030), Fundamental Research Funds for the Central Universities (2232022 A-04), Shanghai Frontier Science Research Center for Modern Textiles, International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (21130750100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoling Li or Bin Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Liu, Y., Yu, J. et al. Smart Fibers for Self-Powered Electronic Skins. Adv. Fiber Mater. 5, 401–428 (2023). https://doi.org/10.1007/s42765-022-00236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00236-6

Keywords

Navigation