Skip to main content
Log in

A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, amido-graphene oxide (GO-NH2) loaded chitosan (CTS) composite material (CTS/GO-NH2) that acts as both the triboelectric and sensing film was prepared on rotary fan-shaped triboelectric nanogenerator for humidity detection. Compared with the pristine CTS-based triboelectric humidity sensor (CTS-THS) and GO-NH2-THS, the CTS/GO-NH2-based humidity sensor exhibited higher humidity response and better linearity in the relative humidity (RH) range of 18.7%RH–91.5%RH. The above results can be explained by the massive exposed and less concealed hydrophilic functional groups of CTS with the help of the wrinkle structure of GO-NH2. Meanwhile, the CTS/GO-NH2-THS possessed good repeatability and acceptable hysteresis (~ 6.2%RH). Finally, a humidity sensing mechanism coupling triboelectric contact charging effect with electrons transfer principle under moisture environment was established to interpret the enhanced humidity sensing performance of the composite film-based THS. This work demonstrates that CTS/GO-NH2 composite film can be utilized to fabricate humidity sensors based on the triboelectric effect.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng W, Xu Y, Zheng L, Yang C, Pinna N, Liu X, Zhang J. MoS2 Van der Waals p-n junctions enabling highly selective room-temperature NO2 sensor. Adv Func Mater. 2020;30(19):2000435.

    CAS  Google Scholar 

  2. Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Interfaces. 2020;12(18):20704.

    CAS  Google Scholar 

  3. Xu Y, Zheng W, Liu X, Zhang L, Zheng L, Yang C, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horiz. 2020;7(6):1519.

    CAS  Google Scholar 

  4. Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens Actuators B Chem. 2019;295:86.

    CAS  Google Scholar 

  5. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.

    CAS  Google Scholar 

  6. Duan Z, Jiang Y, Wang S, Yuan Z, Zhao Q, Xie G, Du X, Tai H. Inspiration from daily goods: a low-cost, facilely fabricated, and environment-friendly strain sensor based on common carbon ink and elastic core-spun yarn. ACS Sustain Chem Eng. 2019;7(20):17474.

    CAS  Google Scholar 

  7. Tai H, Duan Z, Wang Y, Wang S, Jiang Y. Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl Mater Interfaces. 2020;12(28):31037.

    CAS  Google Scholar 

  8. Liu B, Wang S, Yuan Z, Duan Z, Zhao Q, Zhang Y, Su Y, Jiang Y, Xie G, Tai H. Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy. 2020;78:105256.

    CAS  Google Scholar 

  9. Chen X, Wang X, Liu F, Zhang G, Song X, Tian J, Cui H. Fabrication of porous Zn2TiO4-ZnO microtubes and analysis of their acetone gas sensing properties. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01518-x.

    Article  Google Scholar 

  10. Lee K, Yoo YK, Chae MS, Hwang KS, Lee J, Kim H, Hur D, Lee JH. Highly selective reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives. Sci Rep. 2019;9(1):1.

    Google Scholar 

  11. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2020;298:126874.

    Google Scholar 

  12. Rasch F, Postica V, Schütt F, Mishra YK, Nia AS, Lohe MR, Feng X, Adelung R, Lupan O. Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens Actuators B Chem. 2020;320:128363.

    CAS  Google Scholar 

  13. Tu HL, Zhao HB, Wei F, Zhang QZ, Fan YY, Du J. Research progress in advanced sensing materials and related devices. Chin J Rare Met. 2019;43(1):1.

    Google Scholar 

  14. Zhou BY, Fan SJ, Fan YC, Zheng Q, Zhang X, Jiang W, Wang LJ. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 2019;39(5):513.

    Google Scholar 

  15. Duan Z, Zhao Q, Li C, Wang S, Jiang Y, Zhang Y, Liu B, Tai H. Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01524-z.

    Article  Google Scholar 

  16. Cheng Y, Wang J, Qiu Z, Zheng X, Leung NLC, Lam JWY, Tang B. Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv Mater. 2017;29(46):1703900.

    Google Scholar 

  17. Duan Z, Zhao Q, Wang S, Yuan Z, Zhang Y, Li X, Wu Y, Jiang Y, Tai H. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens Actuators B Chem. 2020;305:127534.

    CAS  Google Scholar 

  18. Duan Z, Jiang Y, Yan M, Wang S, Yuan Z, Zhao Q, Sun P, Xie G, Du X, Tai H. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl Mater Interfaces. 2019;11(24):21840.

    CAS  Google Scholar 

  19. Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens Actuators B Chem. 2020;318:128104.

    CAS  Google Scholar 

  20. Blank TA, Eksperiandova LP, Belikov KN. Recent trends of ceramic humidity sensors development: a review. Sens Actuators B Chem. 2016;228:416.

    CAS  Google Scholar 

  21. Zeng FW, Liu XX, Diamond D, Lau KT. Humidity sensors based on polyaniline nanofibres. Sens Actuators B Chem. 2010;143(2):530.

    CAS  Google Scholar 

  22. HarsaÂnyi G. Polymer films in sensor applications: a review of present uses and future possibilities. Sens Rev. 2000;20(2):98.

    Google Scholar 

  23. Zou J, Zhang K, Zhang Q. Giant humidity response using a chitosan-based protonic conductive sensor. IEEE Sens J. 2016;16(24):8884.

    CAS  Google Scholar 

  24. Qi P, Zhang T, Shao J, Yang B, Fei T, Wang R. A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sens Actuators A Phys. 2019;287:93.

    CAS  Google Scholar 

  25. Kim HS, Kim JH, Park SY, Kang JH, Kim SJ, Choi YB, Shin US. Carbon nanotubes immobilized on gold electrode as an electrochemical humidity sensor. Sens Actuators B Chem. 2019;300:127049.

    CAS  Google Scholar 

  26. Dai H, Feng N, Li J, Zhang J, Li W. Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens Actuators B Chem. 2019;283:786.

    CAS  Google Scholar 

  27. Liu Z, Duan X, Qian G, Zhou X, Yuan W. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups. Nanotechnology. 2013;24(4):045609.

    CAS  Google Scholar 

  28. Zhu W, Wu C, Chang Y, Cheng H, Yu C. Solvent-free preparation of hydrophilic fluorinated graphene oxide modified with amino-groups. Mater Lett. 2019;237:1.

    CAS  Google Scholar 

  29. Duan Z, Zhao Q, Wang S, Huang Q, Yuan Z, Zhang Y, Jiang Y, Tai H. Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens Actuators B Chem. 2020;317:128204.

    CAS  Google Scholar 

  30. Zhao Q, Yuan Z, Duan Z, Jiang Y, Li X, Li Z, Tai H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-l-lysine modification. Sens Actuators B Chem. 2019;289:182.

    CAS  Google Scholar 

  31. Wang S, Xie G, Su Y, Su L, Zhang Q, Du H, Tai H, Jiang Y. Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sens Actuators B Chem. 2018;255:2203.

    CAS  Google Scholar 

  32. Yuan Z, Tai H, Ye Z, Liu C, Xie G, Du X, Jiang Y. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly (ethyleneimine) layered film. Sens Actuators B Chem. 2016;234:145.

    CAS  Google Scholar 

  33. Li Y, Deng C, Yang M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly (vinyl alcohol) with a capability of detecting low humidity. Sens Actuators B Chem. 2012;165(1):7.

    CAS  Google Scholar 

  34. Harrey PM, Ramsey BJ, Evans PSA, Harrison DJ. Capacitive-type humidity sensors fabricated using the offset lithographic printing process. Sens Actuators B Chem. 2002;87(2):226.

    CAS  Google Scholar 

  35. Wang Z, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci. 2015;8(8):2250.

    CAS  Google Scholar 

  36. Garcia C, Trendafilova I, Villoria RG, Rio GS. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy. 2018;50:401.

    CAS  Google Scholar 

  37. Zou J, Zhang M, Huang J, Bian J, Jie Y, Willander M, Cao X, Wang N, Wang Z. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv Energy Mater. 2018;8(10):1702671.

    Google Scholar 

  38. Yang Y, Zhu G, Zhang H, Chen J, Zhong X, Lin Z, Su Y, Bai P, Wen X, Wang Z. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano. 2013;7(10):9461.

    CAS  Google Scholar 

  39. Wang J, Ding W, Pan L, Wu C, Yu H, Yang L, Liao R, Wang Z. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano. 2018;12(4):3954.

    CAS  Google Scholar 

  40. Wang S, Xie G, Tai H, Su Y, Yang B, Zhang Q, Du X, Jiang Y. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy. 2018;51:231.

    CAS  Google Scholar 

  41. Wang S, Jiang Y, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Xie G, Du X, Su Y. An integrated flexible self-powered wearable respiration sensor. Nano Energy. 2019;63:103829.

    CAS  Google Scholar 

  42. Wang S, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Su Y, Xie G, Du X, Jiang Y. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy. 2019;58:312.

    CAS  Google Scholar 

  43. Su Y, Wang J, Wang B, Yang T, Yang B, Xie G, Zhou Y, Zhang S, Tai H, Cai Z, Chen G, Jiang Y, Chen L, Chen J. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano. 2020;14(5):6067.

    CAS  Google Scholar 

  44. Lin Z, Zhu G, Zhou Y, Yang Y, Bai P, Chen J, Wang Z. A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem Int Edit. 2013;52:5065.

    CAS  Google Scholar 

  45. Su Y, Xie G, Wang S, Tai H, Zhang Q, Du H, Zhang H, Du X, Jiang Y. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens Actuators B Chem. 2017;251:144.

    CAS  Google Scholar 

  46. Zhang D, Xu Z, Yang Z, Song X. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy. 2020;67:104251.

    CAS  Google Scholar 

  47. Xia K, Zhu Z, Fu J, Chi Y, Xu Z. Multifunctional conductive copper tape-based triboelectric nanogenerator and as a self-powered humidity sensor. IEEE Trans Electron Dev. 2019;66(6):2741.

    CAS  Google Scholar 

  48. Chang T, Peng Y, Chen C, Chang T, Wu J, Hwang J, Gan J, Lin Z. Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting. Nano Energy. 2016;21:238.

    CAS  Google Scholar 

  49. Lin L, Wang S, Niu S, Liu C, Xie Y, Wang Z. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl Mater Interfaces. 2014;6(4):3031.

    CAS  Google Scholar 

  50. Li L, Deng J, Deng H, Liu Z, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994.

    CAS  Google Scholar 

  51. Zhang F, Liu W, Wang S, Jiang C, Xie Y, Yang M, Shi H. A novel and feasible approach for polymer amine modified graphene oxide to improve water resistance, thermal, and mechanical ability of waterborne polyurethane. Appl Surf Sci. 2019;491:301.

    CAS  Google Scholar 

  52. Reddy DHK, Lee SM. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci. 2013;201:68.

    Google Scholar 

  53. Dong Z, Du Y, Fan L, Wen Y, Liu H, Wang X. Preparation and properties of chitosan/gelatin/nano-TiO2 ternary composite films. J Funct Polym. 2004;17:61.

    CAS  Google Scholar 

  54. He H, Fu Y, Zang W, Wang Q, Xing L, Zhang Y, Xue X. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy. 2017;31:37.

    CAS  Google Scholar 

  55. Zhao T, Fu Y, Zhao Y, Xing L, Xue X. Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J Alloys Compd. 2015;648:571.

    CAS  Google Scholar 

  56. Zhu Y, Li Q, Wang P, Zang W, Xing L, Xue X. Enhanced piezo-humidity sensing of Sb-doped ZnO nanowire arrays as self-powered/active humidity sensor. Mater Lett. 2015;154:77.

    CAS  Google Scholar 

  57. Qian C, Li L, Gao M, Yang H, Cai Z, Chen B, Xiang Z, Zhang Z, Song Y. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy. 2019;63:103885.

    CAS  Google Scholar 

  58. Wang S, Xie Y, Niu S, Lin L, Wang Z. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater. 2014;26(18):2818.

    CAS  Google Scholar 

  59. Zhang X, Han M, Wang R, Meng B, Zhu F, Sun X, Hu W, Wang W, Li Z, Zhang H. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy. 2014;4:123.

    CAS  Google Scholar 

  60. Lacks DJ, Sankaran RM. Contact electrification of insulating materials. J Phys D Appl Phys. 2011;44(45):453001.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. U19A2070), the National Science Funds for Excellent Young Scholars of China (No. 61822106) and the National Science Funds for Creative Research Groups of China (No. 61421002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Tai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BH., Xie, GZ., Li, CZ. et al. A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect. Rare Met. 40, 1995–2003 (2021). https://doi.org/10.1007/s12598-020-01645-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01645-5

Keywords

Navigation