Skip to main content

Advertisement

Log in

Bokashi as an Amendment and Source of Nitrogen in Sustainable Agricultural Systems: a Review.

  • Review Article
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Integral soil fertility is managed by practices that contribute to organic matter, which improves its properties. Bokashi is an organic amendment that can be part of the tools used in sustainable soil management. This review systematizes existing information regarding the production and use of bokashi. In addition to discussing guidelines for the production and use of good-quality bokashi, it also focuses on the availability of N and microbial aspects, using compost as a reference amendment. Through this review, it was also found that (1) in order to obtain bokashi with a high N content, raw materials with a high N content must be used and, the dose of the initial C source of easy microbial assimilation should be increased. (2) Regarding the acceleration of the mineralization of the organic matter produced by the microbial inoculum, contradictory results have been obtained. Therefore, a better understanding of the interactions between the microorganisms that constitute the inoculum and the principle native microbial groups is required. (3) Few studies have evaluated the relationships between the N availability of bokashi, yield, and crop characteristics, as well as how bokashi could contribute to the fertility and availability of N when included in combination with other cultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • [CET] (2016) 10 Centro de Educación y Tecnología. Manual de Producción Agroecológica, Publicación Serie Manuales y Cursos N° 8 INDAP, BíoBío, 204p

  • [FAO] (2011a) Organización de las Naciones Unidas para la Alimentación y la Agricultura. Aboneras tipo bocashi. Colección “Buenas Prácticas”. Programa Extraordinario de Apoyo a la Seguridad Alimentaria y Nutricional (Food Facility) FAO/Unión Europea, ciudad de Guatemala, 13p

  • [FAO] (2011b) Organización de las Naciones Unidas para la Alimentación y la Agricultura. Elaboración y uso del Bocashi, San Salvador, 16p

  • [SAG]. Servicio Agrícola y Ganadero (2014) Agricultura Orgánica, Bases técnicas y situación Actual. Ministerio de Agricultura. División de Recursos Naturales Renovables, Subdepartamento de Agricultura Orgánica, Chile 257 p

    Google Scholar 

  • [TMECC] (2002) Test Methods for the Examination of Composting and Compost. In: Test Methods for the Examination of Composting and Compost. US Composting Council, Bethesda, MD

    Google Scholar 

  • Amlinger F, Gotz B, Dreher P, Geszti J, Weissteiner C (2003) Nitrogen in biowaste and yard waste compost, dynamics of mobilisation and availability, a review. Eur J Soil Biol 39:109–116

    Article  CAS  Google Scholar 

  • Aulinas M, Bonmati A (2008) Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua. Bioresour Technol 99:5120–5124

    Article  CAS  Google Scholar 

  • Badaruddin M, Meyer DW (1990) Green-manure legume effects on soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci 30:819–825

    Article  CAS  Google Scholar 

  • Badaruddin M, Meyer DW (1994) Grain legume effects in soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci 34:1304–1309

    Article  Google Scholar 

  • Balogun RB, Ogbu JU, Umeokechukwu EC, Kalejaiye-Matti RB (2016) Effective micro-organisms (EM) as sustainable components in organic farming, principles, applications and validity. In: Nandwani D (ed) Organic farming for sustainable agriculture. Springer International Publishing, Switzerland, pp 259–291

    Chapter  Google Scholar 

  • Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. Rev Bioresour Technol 100:5444–5453

    Article  CAS  Google Scholar 

  • Bertolí M, Terry E, Ramos D (2015) Producción y uso del abono orgánico tipo Bocashi. Una alternativa para la producción de los cultivos y la calidad de los suelos. Ediciones INCA, Mayabeque, 50p

    Google Scholar 

  • Bhatt SM, Srivastava S (2008) Lactic acid production from cane molasses by Lactobacillus delbrueckii NCIM 2025 in submerged condition, Optimization of medium component by Taguchi DOE methodology. Food Biotechnol 22:115–139

    Article  CAS  Google Scholar 

  • Bock E, Wagner M (2006) Oxidation of inorganic nitrogen compounds as an energy source. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes. Springer Science + Business Media, LLC, New York (NY), pp 457–495

    Chapter  Google Scholar 

  • Cerrato ME, Leblanc HA, Kameko C (2007) Potencial de mineralización de nitrógeno de Bokashi, compost y lombricompost producidos en la Universidad Earth. Tierra Tropical 3:183–197

  • Chen B, Liu E, Tian Q, Yang C, Zhang Y (2014) Soil nitrogen dynamics and crop residues. A review. Agron Sustain Develop 34:429–442

    Article  CAS  Google Scholar 

  • Christel DM (2017) The use of bokashi as a soil fertility amendment in organic spinach cultivation. Magister thesis, University of Vermont, USA 162p

  • Daly MJ, Stewart DPC (1999) Influence of “effective microorganisms” (EM) on vegetable production and carbon mineralization—a preliminary investigation. J Sustain Agric 14:15–25

    Article  Google Scholar 

  • De Vuyst L, Neysens P (2005) The sourdough microflora, biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56

    Article  CAS  Google Scholar 

  • Deacon JW (2006) Fungal Biology. Blacwell Publishing, Oxford 380p

    Google Scholar 

  • Dehghani R, Asadi MA, Charkhloo E, Mostafaie G, Saffari M, Mousavi GA, Pourbabaei M (2012) Identification of fungal communities in producing compost by windrow method. J Environ Prot 3:61–67

    Article  Google Scholar 

  • Dumbrepatil A, Adsul M, Chaudhari S (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74:333–335

    Article  CAS  PubMed  Google Scholar 

  • Emino ER, Warman PR (2004) Biological assay for compost quality. Compost Sci Util 12:342–348

    Article  Google Scholar 

  • Faria-Oliveir F, Diniz RHS, Godoy-Santos F, Piló FB, Mezadri H, Castro IM, Brandão RL (2015) The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In: Amer A (ed) Food production and industry. InTech, CC BY, pp 107–135

    Google Scholar 

  • Formowitz B, Elango F, Okumoto S, Müller T, Buerkert A (2007) The role of “effective microorganisms” in the composting of banana (Musa ssp.) residues. J. Plant Nutr Soil Sci 170:649–656

    Article  CAS  Google Scholar 

  • Giri B, Giang P, Kumari R, Varma A (2005) Microbial diversity in soils. In: Buscott F, Varma A (eds) Microorganisms in soils, roles in genesis and functions. Berlín, Springer Science + Business Media, pp 19–55

    Chapter  Google Scholar 

  • Gobbetti M, Corsetti A, Rossi J (1994a) The sourdough microflora. Interactions between lactic acid bacteria and yeasts, metabolism of carbohydrates. Appl Microbiol Biotechnol 41:456–460

    Article  CAS  Google Scholar 

  • Gobbetti M, Corsetti A, Rossi J (1994b) The sourdough microflora. Interactions between lactic acid bacteria and yeasts, metabolism of amino acid. World J Microbiol Biotechnol 10:275–279

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Yan X, Wang J, Hu T, Gong Y (2009) Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat–maize cropping system in northern China. Geoderma 149:318–324

    Article  CAS  Google Scholar 

  • Guerrero C, Moral R, Gómez I, Zornoza R, Arcenegui V (2007) Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries. Bioresour Technol 98:3259–3264

    Article  CAS  PubMed  Google Scholar 

  • Hädicke O, Grammel H, Klamt S (2011) Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst Biol 5:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higa T, Parr J (1995) Beneficial and effective microorganisms in a sustainable agriculture and environment. Technol Trends 9:1–5

    Google Scholar 

  • Ikeda D, Weinert E, Chang K, McGinn JM, Miller SA, Keliihoomalu C, DuPonte MW (2013) Natural farming, lactic acid bacteria. College of tropical Agricultural and Human Resources. The University of Hawai’i. SA-8, Honolulu

    Google Scholar 

  • Imhof J (2006) The phototrophic alpha-ptroteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes. Springer science + business media, LLC, New York (NY), pp 41–64

    Chapter  Google Scholar 

  • Jensen ES, Peoples MB, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crop Res 115:203–216

    Article  Google Scholar 

  • Jirout J, Simek M, Elhottová D (2011) Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol Biochem 43:647–656

    Article  CAS  Google Scholar 

  • Jusoh ML, Manaf LA, Latiff PA (2013) Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. JEnviron Health Sci Eng 10:17

    Article  CAS  Google Scholar 

  • Kämpfer P, Glaeser S, Parkes L, van Keulen G, Dyson P (2014) The family streptomycetaceae. In: Kämpfer P, Glaeser SP, Parkes L, Van Keulen G, Dyson P (eds) Prokaryotes. Springer-Verlag, Berlin, pp 889–1010

    Google Scholar 

  • Kato S, Yamada K, Fujita M, Xu HL, Katase K, Umemura H (1997) Applications of effective microorganisms in nature farming. IX. Soil fertility and plant nutrient uptake of sweet corn as affected by applications of organic fertilizer with effective microorganisms added. Annual meeting of Japanese Society of Soil Science and Plant Nutrition, April 24, Sizuoka, proceedings 43,164

  • Kyan T, Shintani M, Kanda S (1999) In: Sangakkara R (ed) Kyusei nature farming and the technology of effective microorganisms, guidelines for practical use. APNAN (Asia Pacific natural agriculture network, Bangkok, Thailand) and INFRC (international nature farming research center), Atami, Japan

    Google Scholar 

  • Larimer F, Chain P, Auser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnol 22:55–61

    Article  CAS  Google Scholar 

  • Leblanc H, Cerrato M, Vélex L (2005) Comparación del contenido de nutrientes de Bocashis elaborados con desechos de fincas del trópico húmedo de Costa Rica. Tierra Tropical 2:149–159

    Google Scholar 

  • Leblanc HA, Cerrato ME, Miranda A, Valle G (2006) Determinación de la calidad de abonos orgánicos a través de bioensayos. Tierra Tropical 3:97–107

    Google Scholar 

  • Liang Y, Leonard JJ, Feddes JJR, McGill WB (2006) Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresour Technol 97:748–761

    Article  CAS  PubMed  Google Scholar 

  • Maass V (2016) Bokashi mejorado con roca fosfórica y su efecto en un cultivo de perejil bajo manejo orgánico en invernadero. Universidad Mayor, Chile, Tesis Ingeniero Agrónomo 78p

    Google Scholar 

  • Madigan M, Martinko J, Bender K, Buckley DH, Stahl DA, Brock T (2015) Brock. Biology of microorganisms. Pearson education, Boston (MA) 1030p

    Google Scholar 

  • Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T (2011) Microbiology of nitrogen cycle in animal manure compost. Minireview Microbial Biotechnol 6:700–709

    Article  Google Scholar 

  • Masunga R, Usokwe V, Melay P, Odeh I, Singh A, Buchan D, DeNeve S (2016) Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol 101:185–193

    Article  Google Scholar 

  • Mayer J, Scheid S, Widmer F, Fließbach A, Oberholzer HR (2010) How effective are ‘effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl Soil Ecol 46:230–239

    Article  Google Scholar 

  • McNeill AM, Fillery IRP (2008) Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate. Plant Soil 30:297–316

    Article  CAS  Google Scholar 

  • Meng L, Li W, Zhang S, Wu C, Wang K (2016a) Effects of sucrose amendment on ammonia assimilation during sewage sludge composting. Bioresour Technol 210:160–166

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Li W, Zhang S, Wu C, Jiang W, Sha C (2016b) Effect of different extra carbon sources on nitrogen loss control and the change of bacterial populations in sewage sludge composting. Ecol Eng 94:238–243

    Article  Google Scholar 

  • Moreno J, Mormeneo M (2011) Microbiología y bioquímica del proceso de compostaje. In: Moreno J, Moral R (eds) Compostaje. Ediciones Mundi-Prensa, Madrid, pp 111–140

    Google Scholar 

  • Murillo-Amador B, Morales-Prado LE, Troyo-Diéguez E, Córdoba-Matson MV, Hernández-Montiel LG, Rueda-Puente EO, Nieto-Garibay A (2015) Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Front Plant Sci 6:549

    Article  PubMed  PubMed Central  Google Scholar 

  • Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8(11):e79512. https://doi.org/10.1371/journal.pone.0079512

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen DJR, Endelman JB, Jacobson AR, Reeve JR (2015) Compost carryover, nitrogen, phosphorus and FT-IR analysis of soil organic matter. Nutr Cycl Agroecosyst 101:317–331

    Article  CAS  Google Scholar 

  • Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3 Biotech 2:127–134

    Article  Google Scholar 

  • Pérez A, Céspedes C, Núñez, P (2008) Physical, chemical and biological characterization of applied organic amendments in crop production in Dominican Republic. J Soil Sci Plant Nutr 4:10–29

  • Pugh GJF (1974) Terrestrial fungi. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition. Academic Press, London, pp 303–336

    Chapter  Google Scholar 

  • Quiroz M, Flores F (2018) Nitrogen availability, maturity and stability of bokashi-type fertilizers elaborated with different feedstocks of animal origin. Arch Agron Soil Sci:1–9. https://doi.org/10.1080/03650340.2018.1524138

  • Quiroz M, Varnero MT (2015) Microbiological activity and N transformations in a soil subjected to aggregate extraction amended with pig slurry. Chilean J Agric Res 75:350–356

    Article  Google Scholar 

  • Ramos D, Terry E, Soto F, Cabrera JA (2014) Bocashi, organic manure elaborated starting from residuals of bananas production in Bocas del Toro, Panama. Cultivos Tropicales 35:90–97

    Google Scholar 

  • Restrepo J, Hensel J (2015) El A, B, C de la agricultura orgánica, fosfitos y panes de piedra. Manual práctico, Santiago de Cali 399p

    Google Scholar 

  • Robertson GP, Groffman MP (2015) Nitrogen transformations. In: Paul E (ed) Soil microbiology, ecology, and biochemistry. Elsevier Inc., Amsterdam, pp 435–446

    Google Scholar 

  • Ryals R, Kaiser M, Torn MS, Berhe AA, Silver WL (2014) Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biol Biochem 68:52–61

    Article  CAS  Google Scholar 

  • Sasikala C, Ramana CV (1998) Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv Microb Physiol 39:339–377

    Article  CAS  PubMed  Google Scholar 

  • Schenck zu Schweinsberg-Mickan M, Müller T (2009) Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic-matter decomposition, and plant growth. J Plant Nutr Soil Sci 172:704–712

    Article  CAS  Google Scholar 

  • Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57:413–420

    Article  PubMed  Google Scholar 

  • Schröder J (2005) Revisiting the agronomic benefits of manure, a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour Technol 96:253–261

    Article  CAS  PubMed  Google Scholar 

  • Scotti R, Bonanomi G, Scelza R, Zoina A, Rao MA (2015) Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr 15:333–352

    CAS  Google Scholar 

  • Sharma A, Sharma R, Arora A, Shah R, Singh A, Pranaw K, Nain L (2014) Insights into rapid composting of paddy straw augmented with efficient microorganism consortium. Int J Recycl Org Waste Agric 3:54

    Article  Google Scholar 

  • Shindo H, Nishio T (2005) Immobilization and remineralization of N following addition of wheat straw into soil, determination of gross N transformation rates by 15N-ammonium isotope dilution technique. Soil Biol Biochem 37:425–432

    Article  CAS  Google Scholar 

  • Silva JW, Rodríguez W, Rosas G (2014) Caracterización física y química de bokashi y lombricompost y su evaluación agronómica en plantas de maíz. Ingenierías Amazonia 7:5–16

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms, a new dimension for sustainable agriculture and environmental development. Review Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh S, Singh B, Kumar B, Kumar A, Nain L (2012) Microbes in agrowaste management for sustainable agriculture. In: Satyanarayana T, Narain B, Prakash A (eds) Microorganisms in sustainable agriculture and biotechnology. Springer Science + Business Media BV, Dordrecht, pp 127–151

    Chapter  Google Scholar 

  • Stadie J, Gulitz A, Ehrmann M, Vogel RF (2013) Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol 35:92–98

    Article  CAS  PubMed  Google Scholar 

  • Sutton M, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161

    Article  CAS  PubMed  Google Scholar 

  • Tian W, Sun Q, Xu D (2013) Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis. Int Biodeterior Biodegradation 78:58–66

    Article  CAS  Google Scholar 

  • Tiquia SM (2002) Microbial transformation of nitrogen during composting. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, New York (NY), pp 237–246

    Chapter  Google Scholar 

  • Tiquia SM (2005a) Microbial community dynamics in manure compost based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM (2005b) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99:816–828

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Nagao N, Toda T, Kurosawa N (2009) The dominant bacteria shifted from the order “Lactobacillales” to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent. World J Microbiol Biotechnol 25:803–811

    Article  CAS  Google Scholar 

  • Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247

    Article  Google Scholar 

  • Wezel A, Casagrande M, Celette F (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Develop 34:1–20

    Article  Google Scholar 

  • Xu H (2001) Effects of a microbial inoculant and organic fertilizers on the growth, photosynthesis and yield of sweet corn. J Crop Prod 3:183–214

    Article  Google Scholar 

  • Xu H, Wang R, Mridha A (2001) Effects of organic fertilizers and a microbial inoculant on leaf photosynthesis and fruit yield and quality of tomato plants. J Crop Prod 3:173–182

    Article  Google Scholar 

  • Yamada K, Xu HL (2001) Properties and applications of an organic fertilizer inoculated with effective microorganisms. J Crop Prod 3:255–268

    Article  Google Scholar 

  • Yamamoto N, Otawa K, Nakai Y (2010) Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting. Microb Ecol 60:807–815

    Article  CAS  PubMed  Google Scholar 

  • Zaman A, Ahmed M, Gogoi P (2010) Effect of bokashi on plant growth, yield and essential oil quantity and quality in patchouli (Pogostemon Cablin Benth.). Biosci Biotech Res Asia 7(1):383–387

    Google Scholar 

  • Zebarth BJ, Drury CF, Tremblay N, Cambouris AN (2009) Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada, a review. Can J Soil Sci 89:113–132

    Article  CAS  Google Scholar 

  • Zucco MA, Walters SA, Chong SK, Klubek BP, Masabni JG (2015) Effect of soil type and vermicompost applications on tomato growth. Int J Recyc Org Waste Agric 4:135–141

    Article  Google Scholar 

  • Zucconi F, Monaco A, Forte A, Bertoldi M (1985) Phytotoxins during the stabilization of organic matter. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier, London, pp 73–85

    Google Scholar 

Download references

Acknowledgments

This work was supported by Dicyt Project N° 091675QE, University of Santiago de Chile, Usach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madelaine Quiroz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiroz, M., Céspedes, C. Bokashi as an Amendment and Source of Nitrogen in Sustainable Agricultural Systems: a Review.. J Soil Sci Plant Nutr 19, 237–248 (2019). https://doi.org/10.1007/s42729-019-0009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-0009-9

Keywords

Navigation