Skip to main content

Advertisement

Log in

Soil nitrogen dynamics and crop residues. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Nitrogen (N) is a major fertiliser for agriculture and food production. About 67.84 million tons of N are annually applied to agricultural fields, without which nearly half of the world’s population would not be alive today. Returning plant residues to the soil is an alternative and sustainable way of N fertilisation. Although impacts of returning plant residues on plant available N in soil have been widely studied, there is still no systematic review of their mechanisms and models. In this review we highlight the following advances: (1) When plant residues are returned to the soil, N undergoes biotic immobilisation–remineralisation, abiotic immobilisation, soil organic N mineralisation and plant residue organic N mineralisation. (2) Plant residues modify inorganic N fate using three mechanism mineralisation, immobilisation–mineralisation and immobilisation, depending on plant residue nature and soil properties. (3) The use of plant residue C/N ratio is not always effective to predict the effect of plant residues. Instead, soil properties and the forms of carbon and nitrogen should be considered. (4) Mineralisation always promotes N uptake by crops and increases the risk of N loss. In addition, although net immobilisation is involved in immobilisation–mineralisation and immobilisation, it does not necessarily induce lower crop nitrogen uptake. Results also depend on the synchronism between the changing soil inorganic N and the crop N uptake. (5) N loss during mineralisation can be reduced by an immobiliser. Net N immobilisation during immobilisation–mineralisation and immobilisation can be reduced by changing the timing of ploughing and fertilising or by changing the plant residues placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Alexander M (1985) Biodegradation of organic chemicals. Environ Sci Technol 19(2):106–111. doi:10.1021/es00132a602

    Article  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration. Springer.

  • Bird JA, Horwath WR, Eagle AJ, van Kessel C (2001) Immobilization of fertilizer nitrogen in rice. Soil Sci Soc Am J 65:1143–1152. doi:10.2136/sssaj2001.6541143x

    Article  CAS  Google Scholar 

  • Bradford J, Peterson G (2000) Conservation tillage. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton, pp 247–269

    Google Scholar 

  • Bradley RL, Grenon F (2006) Evidence that straw does not increase the mobilization of N from decomposing salal (Gaultheria shallon Pursh.) leaf litter. Soil Biol Biochem 38:191–194. doi:10.1016/j.soilbio.2005.04.029

    Article  CAS  Google Scholar 

  • Bussière F, Cellier P (1994) Modification of the soil temperature and water content regimes by a crop residue mulch: experiment and modelling. Agr Forest Meteorol 68:1–28. doi:10.1016/0168-1923(94)90066-3

    Article  Google Scholar 

  • Carefoot J, Janzen H (1997) Effect of straw management, tillage timing and timing of fertilizer nitrogen application on the crop utilization of fertilizer and soil nitrogen in an irrigated cereal rotation. Soil Till Res 44:195–210. doi:10.1016/S0167-1987(97)00053-6

    Article  Google Scholar 

  • Carefoot J, Janzen H, Lindwall C (1994) Crop residue management for irrigated cereals on the semi-arid Canadian prairies. Soil Till Res 32:1–20. doi:10.1016/0167-1987(94)90029-9

    Article  Google Scholar 

  • Cassel D, Raczkowski C, Denton H (1995) Tillage effects on corn production and soil physical conditions. Soil Sci Soc Am J 59:1436–1443. doi:10.2136/sssaj1995.03615995005900050033x

    Article  CAS  Google Scholar 

  • Chaves B, De Neve S, Hofman G et al (2004) Nitrogen mineralization of vegetable root residues and green manures as related to their (bio) chemical composition. Eur J Agron 21:161–170. doi:10.1016/j.eja.2003.07.001

    Article  Google Scholar 

  • Chaves B, De Neve S, Boeckx P et al (2005) Screening organic biological wastes for their potential to manipulate the N release from N-rich vegetable crop residues in soil. Agr Ecosyst Environ 111:81–92. doi:10.1016/j.agee.2005.03.018

    Article  CAS  Google Scholar 

  • Chaves B, De Neve S, Boeckx P et al (2006) Manipulating the N release from 15N labelled celery residues by using straw and vinasses. Soil Biol Biochem 38:2244–2254. doi:10.1016/j.soilbio.2006.01.023

    Article  CAS  Google Scholar 

  • Chen J, Ferris H (1999) The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol Biochem 31:1265–1279. doi:10.1016/S0038-0717(99)00042-5

    Article  CAS  Google Scholar 

  • Compton JE, Boone RD (2002) Soil nitrogen transformations and the role of light fraction organic matter in forest soils. Soil Biol Biochem 34:933–943. doi:10.1016/S0038-0717(02)00025-1

    Article  CAS  Google Scholar 

  • Coppens F, Garnier P, Findeling A, Merckx R, Recous S (2007) Decomposition of mulched versus incorporated crop residues: modelling with PASTIS clarifies interactions between residue quality and location. Soil Biol Biochem 39:2339–2350. doi:10.1016/j.soilbio.2007.04.005

    Article  CAS  Google Scholar 

  • Cui XZ, Wu GC (2000) Study on nutrient mechanism of NPK fertilizer and its absorbed law of winter wheat with high yield. Chin Agric Sci Bull 16(02):8–11. doi:10.3969/j.issn.1000-6850.2000.02.003 (in Chinese)

    Google Scholar 

  • Dail DB, Davidson EA, Chorover J (2001) Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54:131–146. doi:10.1023/A:1010627431722

    Article  CAS  Google Scholar 

  • Davidson EA, Chorover J, Dail DB (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Glob Change Biol 9:228–236. doi:10.1046/j.1365-2486.2003.00592.x

    Article  Google Scholar 

  • De Neve S, Hofman G (1996) Modelling N mineralization of vegetable crop residues during laboratory incubations. Soil Biol Biochem 28:1451–1457. doi:10.1016/S0038-0717(96)00154-X

    Article  Google Scholar 

  • De Neve S, Gaona Sáez S, Chaves Daguilar B, Sleutel S, Hofman G (2004) Manipulating N mineralization from high N crop residues using on- and off-farm organic materials. Soil Biol Biochem 36:127–134. doi:10.1016/j.soilbio.2003.08.023

    Article  Google Scholar 

  • Dossa E, Khouma M, Diedhiou I, Sene M, Kizito F, Badiane A, Samba S, Dick R (2009) Carbon, nitrogen and phosphorus mineralization potential of semiarid Sahelian soils amended with native shrub residues. Geoderma 148:251–260. doi:10.1016/j.geoderma.2008.10.009

    Article  CAS  Google Scholar 

  • Edwards L, Burney J, Richter G, MacRae A (2000) Evaluation of compost and straw mulching on soil-loss characteristics in erosion plots of potatoes in Prince Edward Island, Canada. Agr Ecosyst Environ 81:217–222. doi:10.1016/S0167-8809(00)00162-6

    Article  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639. doi:10.1038/ngeo325

    Article  CAS  Google Scholar 

  • Fang S, Xie B, Zhang H (2007) Nitrogen dynamics and mineralization in degraded agricultural soil mulched with fresh grass. Plant Soil 300:269–280. doi:10.1007/s11104-007-9414-2

    Article  CAS  Google Scholar 

  • Ferris H, Venette R, Lau S (1997) Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biol Biochem 29:1183–1194. doi:10.1016/S0038-0717(97)00035-7

    Article  CAS  Google Scholar 

  • Ferris H, Venette R, Van Der Meulen H, Lau S (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203:159–171. doi:10.1023/A:1004318318307

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi:10.1016/S0038-0717(03)00123-8

    Article  CAS  Google Scholar 

  • Francis G (1995) Management practices for minimising nitrate leaching after ploughing temporary leguminous pastures in Canterbury, New Zealand. J Contam Hydrol 20:313–327. doi:10.1016/0169-7722(95)00076-3

    Article  CAS  Google Scholar 

  • Freebairn D, Boughton W (1985) Hydrologic effects of crop residue management practices. Aust J Soil Res 23:23–35. doi:10.1071/SR9850023

    Article  Google Scholar 

  • Frey S, Elliott E, Paustian K, Peterson G (2000) Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biol Biochem 32:689–698. doi:10.1016/S0038-0717(99)00205-9

    Article  CAS  Google Scholar 

  • Gentile R, Vanlauwe B, Van Kessel C, Six J (2009) Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agr Ecosyst Environ 131:308–314. doi:10.1016/j.agee.2009.02.003

    Article  CAS  Google Scholar 

  • Gill B, Jalota S (1996) Evaporation from soil in relation to residue rate, mixing depth, soil texture and evaporativity. Soil Technol 8:293–301. doi:10.1016/0933-3630(95)00026-7

    Article  Google Scholar 

  • Griffin DM (1972) Ecology of soil fungi. Chapman & Hall, London

    Google Scholar 

  • Hadas A, Kautsky L, Goek M, Erman Kara E (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266. doi:10.1016/j.soilbio.2003.09.012

    Article  CAS  Google Scholar 

  • Havlin J, Kissel D, Maddux L, Claassen M, Long J (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54:448–452. doi:10.2136/sssaj1990.03615995005400020026x

    Article  Google Scholar 

  • Heal O, Anderson J, Swift M (1997) Plant litter quality and decomposition: an historical overview. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 3–30

    Google Scholar 

  • Hemwong S, Cadisch G, Toomsan B, Limpinuntana V, Vityakon P, Patanothai A (2008) Dynamics of residue decomposition and N2 fixation of grain legumes upon sugarcane residue retention as an alternative to burning. Soil Till Res 99:84–97. doi:10.1016/j.still.2008.01.003

    Article  Google Scholar 

  • Ichir LL, Ismaili M (2002) Decomposition and nitrogen dynamics of wheat residues and impact on the wheat growth stages. C R Biol 325:597–604. doi:10.1016/S1631-0691(02)01467-1

    Article  CAS  PubMed  Google Scholar 

  • Ji S, Unger PW (2001) Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Sci Soc Am J 65:442–448. doi:10.2136/sssaj2001.652442x

    Article  CAS  Google Scholar 

  • Khalil M, Hossain M, Schmidhalter U (2005) Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol Biochem 37:1507–1518. doi:10.1016/j.soilbio.2005.01.014

    Article  CAS  Google Scholar 

  • Kindler R, Miltner A, Thullner M, Richnow HH, Kästner M (2009) Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org Geochem 40:29–37. doi:10.1016/j.orggeochem.2008.09.005

    Article  CAS  Google Scholar 

  • Kirchner MJ, Wollum A, King L (1993) Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Sci Soc Am J 57:1289–1295. doi:10.2136/sssaj1993.03615995005700050021x

    Article  CAS  Google Scholar 

  • Kumar K, Goh KM (2002) Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. Eur J Agron 16:295–308. doi:10.1016/S1161-0301(01)00133-2

    Article  CAS  Google Scholar 

  • Kumar K, Goh KM (2003) Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun Soil Sci Plan 34:2441–2460. doi:10.1081/CSS-120024778

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel J, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi:10.1016/S0038-0717(00)00084-5

    Article  CAS  Google Scholar 

  • Lal R (1994) Sustainable land use systems and soil resilience. In: Greenland DJ, Szaboles I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, pp 41–46

    Google Scholar 

  • Liu J, You L, Amini M, Obersteiner M, Herrero M, Zehnder AJ, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci U S A 107(17):8035–8040. doi:10.1073/pnas.0913658107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mafongoya P, Nair P, Dzowela B (1998) Mineralization of nitrogen from decomposing leaves of multipurpose trees as affected by their chemical composition. Biol Fert Soils 27:143–148. doi:10.1007/s003740050412

    Article  CAS  Google Scholar 

  • Magid J, Mueller T, Jensen LS, Nielsen NE (1997) Modelling the measurable: interpretation of field-scale CO2 and N-mineralization, soil microbial biomass and light fractions as indicators of oilseed rape, maize and barley straw decomposition. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 349–362

    Google Scholar 

  • Mando A, Stroosnijder L (1999) The biological and physical role of mulch in the rehabilitation of crusted soil in the Sahel. Soil Use Manage 15:123–127. doi:10.1111/j.1475-2743.1999.tb00075.x

    Article  Google Scholar 

  • Mando A, Brussaard L, Stroosnijder L (1999) Termite‐ and mulch‐mediated rehabilitation of vegetation on crusted soil in west Africa. Restor Ecol 7:33–41. doi:10.1046/j.1526-100X.1999.07104.x

    Article  Google Scholar 

  • Manzoni S, Porporato A (2007) A theoretical analysis of nonlinearities and feedbacks in soil carbon and nitrogen cycles. Soil Biol Biochem 39:1542–1556. doi:10.1016/j.soilbio.2007.01.006

    Article  CAS  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686. doi:10.1126/science.1159792

    Article  CAS  PubMed  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. New Phytol 196:79–91. doi:10.1111/j.1469-8137.2012.04225.x

    Article  CAS  PubMed  Google Scholar 

  • Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant soil 181:71–82. doi:10.1007/BF00011294

    Article  CAS  Google Scholar 

  • McGregor K, Bengtson R, Mutchler C (1990) Surface and incorporated wheat straw effects on interrill runoff and soil erosion. Trans ASAE 33:469–474

    Article  Google Scholar 

  • Mohanty M, Probert ME, Reddy KS, Dalal RC, Rao AS, Menzies NW (2010) Modelling N mineralization from high C:N rice and wheat crop residues. In: 19th World Congress of Soil Science.

  • Mueller T, Jensen L, Nielsen N, Magid J (1998) Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biol Biochem 30:561–571. doi:10.1016/S0038-0717(97)00178-8

    Article  CAS  Google Scholar 

  • Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol Biochem 39:1479–1492. doi:10.1016/j.soilbio.2006.12.036

    Article  CAS  Google Scholar 

  • Myers RJK, Palm CA, Cuevas E, Gunatilleke IUN, Brossard M (1994) The synchronisation of nutrient mineralisation and plant nutrient demand. In: Woomer PL, Swift MJ (eds) The biological management of tropical soil fertility. Wiley, Chichester, pp 81–116

    Google Scholar 

  • Nishio T, Oka N (2003) Effect of organic matter application on the fate of 15N-labeled ammonium fertilizer in an upland soil. Soil Sci Plant Nutr 49:397–403. doi:10.1080/00380768.2003.10410025

    Article  Google Scholar 

  • Olk D, Cassman KG, Schmidt-Rohr K, Anders M, Mao JD, Deenik J (2006) Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biol Biochem 38:3303–3312. doi:10.1016/j.soilbio.2006.04.009

    Article  CAS  Google Scholar 

  • Paustian K, Agren GI, Bosatta E (1997) Modelling litter quality effects on decomposition and soil organic matter dynamics. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 313–335

    Google Scholar 

  • Perucci P, Bonciarelli U, Santilocchi R, Bianchi A (1997) Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil. Biol Fert Soils 24:311–316. doi:10.1007/s003740050249

    Article  CAS  Google Scholar 

  • Power J, Broadbent F, Follett R (1989) Proper accounting for N in cropping systems. In: Follett RF(ed) Nitrogen management and ground water protection. Elsevier Science Publishers, pp 159–181.

  • Rosell R, Galantini J, Iglesias J, Miranda R (1992) Effect of sorghum residues on wheat productivity in semi-arid Argentina. I. Stover decomposition and N distribution in the crop. Sci Total Environ 117:253–261. doi:10.1016/0048-9697(92)90092-7

    Article  Google Scholar 

  • Sakala WD, Cadisch G, Giller KE (2000) Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization. Soil Biol Biochem 32:679–688. doi:10.1016/S0038-0717(99)00204-7

    Article  CAS  Google Scholar 

  • Shindo H, Nishio T (2005) Immobilization and remineralization of N following addition of wheat straw into soil: determination of gross N transformation rates by 15N-ammonium isotope dilution technique. Soil Biol Biochem 37:425–432. doi:10.1016/j.soilbio.2004.07.027

    Article  CAS  Google Scholar 

  • Smith JL, Papendick RI, Bezdicek DF et al. (1992) Soil organic matter dynamics and crop residue management. In: Metting Jr FB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker Inc., pp 65–94.

  • Soon YK, Lupwayi NZ (2012) Straw management in a cold semi-arid region: impact on soil quality and crop productivity. Field Crop Res 139:39–46. doi:10.1016/j.fcr.2012.10.010

    Article  Google Scholar 

  • Stroo HF, Alexander M (1986) Role of soil organic matter in the effect of acid rain on nitrogen mineralization. Soil Sci Soc Am J 50(5):1219–1223. doi:10.2136/sssaj1986.03615995005000050026x

    Article  CAS  Google Scholar 

  • Sugihara S, Funakawa S, Kosaki T (2012) Effect of land management on soil microbial N supply to crop N uptake in a dry tropical cropland in Tanzania. Agr Ecosyst Environ 146:209–219. doi:10.1016/j.agee.2011.11.008

    Article  CAS  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472(7342):159–161. doi:10.1038/472159a

    Article  CAS  PubMed  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WF (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104. doi:10.2307/1938416

    Article  Google Scholar 

  • Thomas R, Asakawa N (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 25:1351–1361. doi:10.1016/0038-0717(93)90050-L

    Article  CAS  Google Scholar 

  • Thomsen IK (1993) Nitrogen uptake in barley after spring incorporation of 15N-labelled Italian ryegrass into sandy soils. Plant Soil 150:193–201. doi:10.1007/BF00013016

    Article  CAS  Google Scholar 

  • Thomsen IK, Christensen BT (1998) Cropping system and residue management effects on nitrate leaching and crop yields. Agr Ecosyst Environ 68:73–84. doi:10.1016/S0167-8809(97)00134-5

    Article  CAS  Google Scholar 

  • Tian G, Brussaard L, Kang B (1995) An index for assessing the quality of plant residues and evaluating their effects on soil and crop in the (sub-) humid tropics. Appl Soil Ecol 2:25–32. doi:10.1016/0929-1393(94)00033-4

    Article  Google Scholar 

  • Trinsoutrot I, Recous S, Bentz B, Lineres M, Cheneby D, Nicolardot B (2000) Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Sci Soc Am J 64(3):918–926. doi:10.2136/sssaj2000.643918x

    Article  CAS  Google Scholar 

  • Tu C, Ristaino JB, Hu S (2006) Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. Soil Biol Biochem 38:247–255. doi:10.1016/j.soilbio.2005.05.002

    Article  CAS  Google Scholar 

  • Vigil M, Kissel D (1991) Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci Soc Am J 55:757–761. doi:10.2136/sssaj1991.03615995005500030020x

    Article  CAS  Google Scholar 

  • Wang L, Jinghui L, Keli L et al (2004) The study on the law of nitrogen absorption in soybean. Chin Agric Sci Bull 20(06):162–165. doi:10.3969/j.issn.1000-6850.2004.06.052 (in Chinese)

    Google Scholar 

  • Wood C, Edwards J (1992) Agroecosystem management effects on soil carbon and nitrogen. Agr Ecosyst Environ 39:123–138. doi:10.1016/0167-8809(92)90048-G

    Article  CAS  Google Scholar 

  • Zelenev V, Van Bruggen A, Leffelaar P, Bloem J, Semenov A (2006) Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model ‘BACWAVE-WEB’. Soil Biol Biochem 38:1690–1711. doi:10.1016/j.soilbio.2005.11.024

    Article  CAS  Google Scholar 

  • Zhai L (2006). The dynamic study on the organism yield and nutrient absorb of corn in different yield treatments. Dissertation, Jilin Agriculture University (in Chinese)

  • Zhao J, Yu Z (2006) Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition. Acta Agron Sin 32:484–490. doi:10.3321/j.issn:0496-3490.2006.04.003 (in Chinese)

    CAS  Google Scholar 

  • Zou CM, Daozhu Q, Minggang X et al (2002) Nitrogen, phosphorous and potassium uptake characteristics of rice and its relationship with grain yield. J Nanjing Agric Univ 25(4):6–10. doi:10.3321/j.issn:1000-2030.2002.04.002 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers and chief editor Dr. Eric Lichtfouse for their valuable suggestions and comments, which led to substantial improvements of this paper, and we would like to thank Dr. Denis Angers for his suggestions for revision. This study was partially supported by the Chinese National Scientific Foundation (no. 31000253 and no.31170490) and the 12th Five-Year Plan of National Key Technologies R&D Program (no. 2012BAD09B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EnKe Liu.

About this article

Cite this article

Chen, B., Liu, E., Tian, Q. et al. Soil nitrogen dynamics and crop residues. A review. Agron. Sustain. Dev. 34, 429–442 (2014). https://doi.org/10.1007/s13593-014-0207-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0207-8

Keywords

Navigation