Skip to main content
Log in

Interactions among Sodalis, Glossina pallidipes salivary gland hypertrophy virus and trypanosomes in wild Glossina pallidipes

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The successful implementation of area-wide integrated tsetse control using the Sterile Insect Technique (SIT) relies on various factors. These include adapting and mass-producing the wild strain in the laboratory, suppressing the wild population in the target area, and releasing competent sterile male flies into the targeted area. Two important factors that can influence the effectiveness of this strategy are the presence of tsetse endosymbionts, specifically Sodalis glossinidius, and the infection of salivary gland hypertrophy virus (SGHV). SGHV infection directly hampers the expansion of Glossina pallidipes colonies in mass-rearing facilities by negatively impacting reproduction (fertility and fecundity), and overall growth. The viral infections in other tsetse species indirectly affect G. pallidipes by serving as a source of infection, as these species are less susceptible to clinical manifestations of the virus. The role of S. glossinidius in this context remains inconclusive despite previous laboratory and field studies, highlighting the need for further research. In addition to knowledge generation, it is crucial to introduce healthy fly populations from the wild into the insectary for sustainable mass-rearing production. In this study, our objective was to determine the prevalence of Sodalis, SGHV, and trypanosome infections in wild populations of tsetse fly G. pallidipes and investigate potential interactions among them. We analyzed 146 dissected midgut and mouthparts samples from non-teneral flies collected from the Makao Wildlife Management Area (WMA) interface. Our results revealed a prevalence of trypanosome infection at 12.3%, SGHV infection at 7.5%, and Sodalis at 51.4%. Co- existence of SGHV infection and Sodalis was observed in 9.6% of the flies. We did not find a statistically significant association of trypanosome infections occurrence with either SGHV infection or Sodalis. However, a significant association with trypanosome infection was observed when the both Sodalis and SGHV infection co-existed in the tsetse flies. Furthermore, we identified a negative correlation between Sodalis and SGHV infections. In conclusion, our study highlights the association between the co- existence of Sodalis and SGHV and the prevalence of trypanosome infections in wild populations of G. pallidipes. These findings contribute to our understanding of the interactions among these microbes, which is crucial for the development and implementation of effective tsetse control strategies using the Sterile Insect Technique (SIT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author DJM.

References

  • Abd-Alla A, Bossin H, Cousserans F, Parker A, Bergoin M, Robinson A (2007) Development of a non-destructive PCR method for detection of the salivary gland hypertrophy virus (SGHV) in tsetse flies. J Virol Methods 139:143–149

    Article  CAS  PubMed  Google Scholar 

  • Abd-Alla AM, Kariithi HM, Cousserans F, Parker NJ, Ince IA, Scully ED, Boeren S, Geib SM, Mekonnen S, Vlak JM (2016) Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: A proteogenomics approach. J Gen Virol 97:1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auty HK, Picozzi K, Malele I, Torr SJ, Cleaveland S, Welburn S (2012) Using molecular data for epidemiological inference: Assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania. PLoS Negl Trop Dis 6:e1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Balmand S, Lohs C, Aksoy S, Heddi A (2013) Tissue distribution and transmission routes for the tsetse fly endosymbionts. J Invertebr Pathol 112:S116–S122

    Article  PubMed  Google Scholar 

  • Brightwell R, Dransfield RD, Kyorku C, Golder TK, Tarimo SA, Mungai D (1987) A new trap for Glossina pallidipes. Trop Pest Manag 33:151–159

    Article  Google Scholar 

  • Bursell E (1981) Energetics of hematophagous arthropods: Influence of parasites. Parasitology 82:107–108

    Google Scholar 

  • Channumsin M, Ciosi M, Masiga D, Turner CMR, Mable BK (2018) Sodalis glossinidius presence in wild tsetse is only associated with presence of trypanosomes in complex interactions with other tsetse-specific factors. BMC Microbiol 18:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daffa J, Byamungu M, Nsengwa GRM, Mwambembe E, Mleche W (2013) Tsetse distribution in Tanzania: 2012 status. Tanzania Vet J 28:1–11

    Google Scholar 

  • Dale C, Welburn SC (2001) The endosymbionts of tsetse flies: manipulating host-parasite interactions. Int J Parasitol 31:628–631

    Article  CAS  PubMed  Google Scholar 

  • Darby AC, Lagnel J, Matthew CZ, Bourtzis K, Maudlin I, Welburn SC (2005) Extrachromosomal DNA of the symbiont Sodalis glossinidius. J Bacteriol 187:5003–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM (2021) Interactions between tsetse endosymbionts and Glossina pallidipes salivary gland hypertrophy virus in Glossina hosts. Front Microbiol 12

  • Dennis JW, Durkin SM, Horsley Downie JE, Hamill LC, Anderson NE, MacLeod ET (2014) Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasites Vectors 7:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieng MM, K-sM D, Moyaba P, Ouedraogo GMS, Demirbas-Uzel G, Gstöttenmayer F, Mulandane FC, Neves L, Mdluli S, Rayaisse J-B, Belem AMG, Pagabeleguem S, de Beer CJ, Parker AG, Van Den Abbeele J, Mach RL, Vreysen MJB, Abd-Alla AMM (2022) Prevalence of Trypanosoma and Sodalis in wild populations of tsetse flies and their impact on sterile insect technique programmes for tsetse eradication. Sci Rep 12:3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudoumis V, Alam U, Aksoy E, Abd-Alla AM, Tsiamis G, Brelsfoard C, Aksoy S, Bourtzis K (2013) Tsetse-Wolbachia symbiosis: comes of age and has great potential for pest and disease control. J Invertebr Pathol 112(Suppl):S94-103

    Article  PubMed  Google Scholar 

  • Eyasu T, Mekuria S, Sheferaw D (2021) Seasonal prevalence of trypanosomosis, Glossina density and infection along the escarpment of Omo River, Loma district, southern Ethiopia. Heliyon 7:e06667–e06667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (1982) Training manual for tsetse control personnel Volume 1. Rome, Italy: Food and Agriculture Organization, p 265

  • Geiger A, Ravel S, Frutos R, Cuny G (2005) Sodalis glossinidius (Enterobacteriaceae) and vectorial competence of Glossina palpalis gambiensis and Glossina morsitans morsitans for Trypanosoma congolense savannah type. Curr Microbiol 51:35–40

    Article  CAS  PubMed  Google Scholar 

  • Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, Cuny G, Frutos R (2007) Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol 24:102–109

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Rio RVM, Medlock J, Haines LR, Nayduch D, Savage AF, Guz N, Attardo GM, Pearson TW, Galvani AP, Aksoy S (2008) Infections with immunogenic trypanosomes reduce tsetse reproductive fitness: Potential impact of different parasite strains on vector population structure. PLoS Negl Trop Dis 2:e192

    Article  PubMed  PubMed Central  Google Scholar 

  • Kame-Ngasse GI, Njiokou F, Melachio-Tanekou TT, Farikou O, Simo G, Geiger A (2018) Prevalence of symbionts and trypanosome infections in tsetse flies of two villages of the “Faro and Déo” division of the Adamawa region of Cameroon. BMC Microbiol 18:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kariithi HM, Ahmadi M, Parker AG, Franz G, Ros VID, Haq I, Elashry AM, Vlak JM, Bergoin M, Vreysen MJB, Abd-Alla AMM (2013) Prevalence and genetic variation of salivary gland hypertrophy virus in wild populations of the tsetse fly Glossina pallidipes from southern and eastern Africa. J Invertebr Pathol 112:S123–S132

    Article  PubMed  Google Scholar 

  • Kendra C, Keller C, Bruna R, Pontes M, McMahon K (2020) Conjugal DNA transfer in Sodalis glossinidius, a maternally inherited symbiont of tsetse flies. mSphere 5:e00864–e00820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kibona SN, Matemba L, Kaboya JS, Lubega GW (2006) Drug-resistance of Trypanosoma b. rhodesiense isolates from Tanzania. Trop Med Int Health 11:144–155

    Article  CAS  PubMed  Google Scholar 

  • Kubi C, Van den Abbeele J, De Deken R, Marcotty T, Dorny P, van den Bossche P (2006) The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection. Med Vet Entomol 20:388–392

    Article  CAS  PubMed  Google Scholar 

  • Lietze V-U, Abd-Alla AMM, Vreysen MJB, Geden CJ, Boucias DG (2011) Salivary gland hypertrophy viruses: A novel group of insect pathogenic viruses. Annu Rev Entomol 56:63–80

    Article  CAS  PubMed  Google Scholar 

  • Lord JS, Lea RS, Allan FK, Byamungu M, Hall DR, Lingley J, Mramba F, Paxton E, Vale GA, Hargrove JW, Morrison LJ, Torr SJ, Auty HK (2020) Assessing the effect of insecticide-treated cattle on tsetse abundance and trypanosome transmission at the wildlife-livestock interface in Serengeti, Tanzania. PLoS Negl Trop Dis 14:e0008288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luziga C, Muya C, Mramba F, Byamungu M, Mbata G, Mtambuki A (2017) A tsetse Glossina pallidipes harbors the pathogenic trypanosomes circulating in Liwale district, Tanzania. Vet Parasitol Reg Stud Rep 9:93–97

    Google Scholar 

  • Makhulu EE, Villinger J, Adunga VO, Jeneby MM, Kimathi EM, Mararo E, Oundo JW, Musa AA, Wambua L (2021) Tsetse blood-meal sources, endosymbionts and trypanosome-associations in the Maasai Mara National Reserve, a wildlife-human-livestock interface. PLoS Negl Trop Dis 15:e0008267

    Article  PubMed  PubMed Central  Google Scholar 

  • Malele II, Manangwa O, Nyingilili HH, Kitwika WA, Lyaruu EA, Msangi AR, Ouma JO, Nkwangulila G, Abd-Alla AMM (2013) Prevalence of SGHV among tsetse species of economic importance in Tanzania and their implication for SIT application. J Invertebr Pathol 112:S133–S137

    Article  PubMed  Google Scholar 

  • Malulu DJ, Tuntufye HN, Temba BA, Kimbita E, Malele II, Kinung’hi SM, Nyingilili HS, Mbilu T, Kaboya JS, Lyaruu EA (2019) The PCR identification of trypanosomes isolated from Cattle and Glossina spp. in wildlife-human-animal interface of Meatu District, North-Eastern Tanzania. J Adv Vet Res 9:201–208

    Google Scholar 

  • Matovu E, Iten M, Enyaru JCK, Schmid C, Lubega GW, Brun R, Kaminsky R (1997) Susceptibility of Trypanosoma brucei rhodesiense isolated from man and animal reservoirs to diminazene, isometamidium and melarsoprol. Trop Med Int Health 2:13–18

    Article  CAS  PubMed  Google Scholar 

  • Mbewe NJ, Mweempwa C, Guya S, Wamwiri FN (2015) Microbiome frequency and their association with trypanosome infection in male Glossina morsitans centralis of Western Zambia. Vet Parasitol 211:93–98

    Article  PubMed  Google Scholar 

  • MedCalc® (2021) Statistical Software version 20. MedCalc Software Ltd, Ostend, Belgium. https://www.medcalc.org. Accessed 7 May 2022

  • Mihok S (2007) The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bull Entomol Res 92:385–403

    Article  Google Scholar 

  • Moloo SK (1993) The distribution of Glossina species in Africa and their natural hosts. Insect Sci Appl 14:511–527

    Google Scholar 

  • Ngonyoka A, Gwakisa PS, Estes AB, Salekwa LP, Nnko HJ, Hudson PJ, Cattadori IM (2017) Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania. Infect Dis Poverty 6:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngumbi AF, Silayo RS (2017) A cross-sectional study on the use and misuse of trypanocides in selected pastoral and agropastoral areas of eastern and northeastern Tanzania. Parasites Vectors 10:607

    Article  PubMed  PubMed Central  Google Scholar 

  • Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RC, Dávila AM (2005) The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res 95:186–192

    Article  CAS  PubMed  Google Scholar 

  • Nnko HJ, Ngonyoka A, Salekwa L, Estes AB, Hudson PJ, Gwakisa PS, Cattadori IM (2017) Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania. J Vector Ecol 42:24–33

    Article  PubMed  Google Scholar 

  • Nthiwa DM, Odongo DO, Ochanda H, Khamadi S, Gichimu BM (2015) Trypanosoma infection rates in Glossina species in Mtito Andei Division, Makueni County, Kenya. J Parasitol Res 2015:607432

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill SL, Gooding RH, Aksoy S (1993) Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med Vet Entomol 7:377–383

    Article  CAS  PubMed  Google Scholar 

  • Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM (2012) Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 21:5138–5150

    Article  CAS  PubMed  Google Scholar 

  • Ouedraogo GMS, Demirbas-Uzel G, Rayaisse J-B, Gimonneau G, Traore AC, Avgoustinos A, Parker AG, Sidibe I, Ouedraogo AG, Traore A, Bayala B, Vreysen MJB, Bourtzis K, AmM A-A (2018) Prevalence of trypanosomes, salivary gland hypertrophy virus and Wolbachia in wild populations of tsetse flies from West Africa. BMC Microbiol 18:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouma JO, Beadell JS, Hyseni C, Okedi LM, Krafsur ES, Aksoy S, Caccone A (2011) Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya. Parasites Vectors 4:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Radwanska M, Chamekh M, Vanhamme L, Claes F, Magez S, Magnus E, de Baetselier P, Büscher P, Pays E (2002) The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 67:684–690

    Article  CAS  PubMed  Google Scholar 

  • Salekwa LP, Nnko H, Ngonyoka A, Estes A, Agaba M, Gwakisa P (2014) Relative abundance of tsetse fly species and their infection rates in simanjiro, Northern Tanzania. Livestock Research for Rural Development 26

  • Selby R, Bardosh K, Picozzi K, Waiswa C, Welburn SC (2013) Cattle movements and trypanosomes: restocking efforts and the spread of Trypanosoma brucei rhodesiense sleeping sickness in post-conflict Uganda. Parasites Vectors 6:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder AK, Rio RV (2013) Interwoven biology of the tsetse holobiont. J Bacteriol 195:4322–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szumilas M (2010) Explaining odds ratios. J Can Acad Child Adolesc Psychiatry 19:227–229

    PubMed  PubMed Central  Google Scholar 

  • Telleria E, Benoit J, Zhao X, Savage A, Regmi S, Silva TL, O’Neill M, Aksoy S (2014) Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands. PLoS Negl Trop Dis 8:e2649

    Article  PubMed  PubMed Central  Google Scholar 

  • Trappeniers K, Matetovici I, Van Den Abbeele J, De Vooght L (2019) The tsetse fly displays an attenuated immune response to its secondary symbiont, Sodalis glossinidius. Front Microbiol 10

  • Van Den Abbeele J, Caljon G, De Ridder K, De Baetselier P, Coosemans M (2010) Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. PLoS Pathog 6:e1000926

    Article  PubMed  Google Scholar 

  • Wamwiri FN, Ndungu K, Thande PC, Thungu DK, Auma JE, Ngure RM (2014) Infection with the secondary tsetse-endosymbiont Sodalis glossinidius (Enterobacteriales: Enterobacteriaceae) influences parasitism in Glossina pallidipes (Diptera: Glossinidae). J Insect Sci 14:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Brelsfoard C, Wu Y, Aksoy S (2013) Intercommunity effects on microbiome and GpSGHV density regulation in tsetse flies. J Invertebr Pathol 112:S32–S39

    Article  PubMed  Google Scholar 

  • Wang J, Wu Y, Yang G, Aksoy S (2009) Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci USA 106:12133–12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S (2013) Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog 9:e1003318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongserepipatana M (2016) Prevalence and associations of Trypanosoma spp. and Sodalis glossinidius with intrinsic factors of tsetse flies. PhD thesis, the University of Glasgow. p 347

  • Zayats T, Young TL, Mackey DA, Malecaze F, Calvas P, Guggenheim JA (2009) Quality of DNA extracted from mouthwashes. PLoS ONE 4:e6165

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by IAEA Funded CRP project NO 22658. The Approval of this study was granted by the Tanzania commission for Science and Technology (COSTECH) under Research Permit Number 2019-405-NA-2019-161

Author information

Authors and Affiliations

Authors

Contributions

IIM, DJM and HSN, Conceived and designed the study. DJM, IIM, HSN, PL and DE executed the experiments. DJM and IWT analyzed the data and DJM, IIM, IT and AA wrote the paper.

Corresponding author

Correspondence to Deusdedit J. Malulu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malulu, D.J., Nyingilili, H.S., Edward, D. et al. Interactions among Sodalis, Glossina pallidipes salivary gland hypertrophy virus and trypanosomes in wild Glossina pallidipes. Int J Trop Insect Sci 43, 1649–1657 (2023). https://doi.org/10.1007/s42690-023-01062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01062-y

Keywords

Navigation