Skip to main content
Log in

Predicting single spikes and spike patterns with the Hindmarsh–Rose model

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Most simple neuron models are only able to model traditional spiking behavior. As physiologists discover and classify different electrical phenotypes, computational neuroscientists become interested in using simple phenomenological models that can exhibit these different types of spiking patterns. The Hindmarsh–Rose model is a three-dimensional relaxation oscillator which can show both spiking and bursting patterns and has a chaotic regime. We test the predictive powers of the Hindmarsh–Rose model on two different test databases. We show that the Hindmarsh–Rose model can predict the spiking response of rat layer 5 neocortical pyramidal neurons on a stochastic input signal with a precision comparable to the best known spiking models. We also show that the Hindmarsh–Rose model can capture qualitatively the electrical footprints in a database of different types of neocortical interneurons. When the model parameters are fit from sub-threshold measurements only, the model still captures well the electrical phenotype, which suggests that the sub-threshold signals contain information about the firing patterns of the different neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbib, M (eds) (2002) The handbook of brain theory and neural networks, 2nd edn. MIT Press, London

    Google Scholar 

  • Bargas J, Galarraga E (2002) Ion channels: keys to neuronal specialization. In: Arbib M (eds) The handbook of brain theory and neural networks, 2nd edn. MIT Press, London, pp 496–501

    Google Scholar 

  • Belykh I, de Lange E, Hasler M (2005) Synchronization of bursting neurons: what matters in the network topology. Phys Rev Lett 94(18): 8101

    Article  Google Scholar 

  • Chay TR (1996) Electrical bursting and luminal calcium oscillation in excitable cell models. Biol Cybern 75: 419–431

    Article  CAS  PubMed  Google Scholar 

  • Clopath C, Jolivet R, Rauch A, Lüscher HR, Gerstner W (2007) Predicting neuronal activity with simple models of the threshold type: Adaptive exponential integrate-and-fire model with two compartments. Neurocomputing 70: 1668–1673

    Article  Google Scholar 

  • Conn AR, Gould NIM, Toint PL (1997) A globally convergent augmented Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds. Math Comput 66: 261–288

    Article  Google Scholar 

  • Connors B, Gutnick M (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 17: 3894–3906

    Google Scholar 

  • Destexhe A, Rudolph M, Fellous JM, (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107: 13–24

    Article  CAS  PubMed  Google Scholar 

  • Doedel E, Paffenroth R, Champneys A, Fairgrieve T, Kuznetsov Y, Sandstede B, Wang X (2001) Auto 2000: continuation and bifurcation software for ordinary differential equations (with homcont). Technical Reportr, Caltech

  • Fletcher R (1987) Practical methods of optimization. Wiley, New York

    Google Scholar 

  • González-Miranda JM (2003) Observation of a continuous interior crisis in the Hindmarsh–Rose neuron model. Chaos 13(3): 845

    Article  PubMed  Google Scholar 

  • González-Miranda JM (2007) Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int J Bifurcations Chaos 17(9): 3071–3083

    Article  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287(5451): 273–278

    Article  CAS  PubMed  Google Scholar 

  • Hindmarsh J, Rose R (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond Ser B 221(1222): 87–102

    Article  CAS  Google Scholar 

  • Hindmarsh AC, Brown P, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) Sundials, suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31: 363–396

    Article  Google Scholar 

  • Innocenti G, Morelli A, Genesio R, Torcini A (2007) Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos 17:043,128

    Google Scholar 

  • Izhikevich E (2000) Neural excitability, spiking and bursting. Int J Bifurcation Chaos 10(6): 1171–1266

    Article  Google Scholar 

  • Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006a) Integrate-and-fire models with adaptation are good enough. In: Weiss Y, Schölkopf B, Platt J (eds) (2006) Advances in neural information processing systems, vol 18. MIT Press, Cambridge, pp 595–602

    Google Scholar 

  • Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006b) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosc 21(1): 35–49

    Article  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7: 476–486

    Article  CAS  PubMed  Google Scholar 

  • de Lange E (2006) Neuron models of the generic bifurcation type: Network analysis and data modeling. PhD thesis, Ecole Polytechnique F édérale de Lausanne

  • Mainen Z, Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5: 793–807

    Article  CAS  PubMed  Google Scholar 

  • McCormick D, Connors B, Lighthall J, Prince D (1985) Comparative electrophysiology of pyramidal and sparsely spiny neurons of the neocortex. J Neurophysiol 54: 782–806

    CAS  PubMed  Google Scholar 

  • Rauch A, La Camera G, Lüscher H, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as Integrate-and-Fire neurons to in vivo-like input currents. J Neurophysiol 90: 1598–1612

    Article  PubMed  Google Scholar 

  • Selverston AI, Rabinovich MI, Abarbanel HDI, Elson R, Szücs A, Pinto RD, Huerta R, Varona P (2000) Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators. J Physiol (Paris) 94: 357–374

    Article  CAS  Google Scholar 

  • Steriade M (2004) Neocortical cell classes are flexible entities. Nat Rev Neurosci 5: 121–134

    Article  CAS  PubMed  Google Scholar 

  • Steur E (2006) Parameter estimation in Hindmarsh–Rose neurons. Technical Report DCT 2006.073, Technische Universiteit Eindhoven

  • Steur E, Tyukin I, Nijmeijer H, van Leeuwen C (2007) Reconstructing dynamics of spiking neurons form input–output measurements in vitro. In: Third international IEEE scientific conference on physics and control, Potsdam

  • Storace M, Linaro D, de Lange E (2008) The Hindmars–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18: 033128

    Article  PubMed  Google Scholar 

  • Toledo–Rodriguez M, Gupta A, Wang Y, Wu C, Markram H (2002) Neocortex: basic neuron types. In: Arbib M (eds) The handbook of brain theory and neural networks, 2nd edn. MIT Press, London, pp 791–725

    Google Scholar 

  • Toledo-Rodriguez M, Blumenfeld B, Wu C, Luo J, Attali B, Goodman P, Markram H (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex 14(12): 1310–1327

    Article  PubMed  Google Scholar 

  • Tuckwel H (1988) Introduction to theoretical neurobiology. Linear cable theory and dendritic structure, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Weiss, Y, Schölkopf, B, Platt, J (eds) (2006) Advances in neural information processing systems, vol 18. MIT Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno de Lange.

Additional information

This research was supported by the Swiss National Science Foundation Grant No. 2100-065268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lange, E., Hasler, M. Predicting single spikes and spike patterns with the Hindmarsh–Rose model. Biol Cybern 99, 349–360 (2008). https://doi.org/10.1007/s00422-008-0260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0260-y

Keywords

Navigation