Skip to main content
Log in

Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A series of bifurcations from period-1 bursting to period-1 spiking in a complex (or simple) process were observed with increasing extra-cellular potassium concentration during biological experiments on different neural pacemakers. This complex process is composed of three parts: period-adding sequences of burstings, chaotic bursting to chaotic spiking, and an inverse period-doubling bifurcation of spiking patterns. Six cases of bifurcations with complex processes distinguished by period-adding sequences with stochastic or chaotic burstings that can reach different bursting patterns, and three cases of bifurcations with simple processes, without the transition from chaotic bursting to chaotic spiking, were identified. It reveals the structures closely matching those simulated in a two-dimensional parameter space of the Hindmarsh–Rose model, by increasing one parameter \(I\) and fixing another parameter \(r\) at different values. The experimental bifurcations also resembled those simulated in a physiologically based model, the Chay model. The experimental observations not only reveal the nonlinear dynamics of the firing patterns of neural pacemakers but also provide experimental evidence of the existence of bifurcations from bursting to spiking simulated in the theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Braun, H.A., Wissing, H., Schäfer, K.: Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273 (1994)

    Article  Google Scholar 

  2. Sejnowski, T.J.: Time for a new neural code? Nature 376, 21–22 (1995)

    Article  Google Scholar 

  3. Yang, M.H., An, S.C., Gu, H.G., Liu, Z.Q., Ren, W.: Understanding of physiological neural firing patterns through dynamical bifurcation machineries. NeuroReport 17, 995–999 (2006)

  4. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001)

    Article  Google Scholar 

  5. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984)

    Article  Google Scholar 

  6. Hansel, D., Sompolinsky, H.: Synchronization and computation in a chaotic neural network. Phys. Rev. Lett. 68, 718–721 (1992)

  7. Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92, 028101 (2004)

    Article  Google Scholar 

  8. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)

  9. Rosenblum, M.G., Pikovsky, A.S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92, 114102 (2004)

    Article  Google Scholar 

  10. Jiang, Y.: Comment on “Transitions to synchrony in coupled bursting neurons”. Phys. Rev. Lett. 93, 229801 (2004)

    Article  Google Scholar 

  11. Zhou, J., Wu, Q.J., Xiang, L.: Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization. Nonlinear Dyn. 69, 1393–1403 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos Appl. Sci. Eng. 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, Y.S., Holden, A.V.: From simple to complex bursting oscillatory behaviour via intermittent chaos in the Hindmarsh–Rose model for neuronal activity. Chaos Solitons Fractals 2, 349–367 (1992)

    Article  MATH  Google Scholar 

  14. González-Miranda, J.M.: Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. Chaos 13, 845–852 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. González-Miranda, J.M.: Block structured dynamics and neuronal coding. Phys. Rev. E 72, 051922 (2005)

    Article  MathSciNet  Google Scholar 

  16. Wang, X.J.: Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Phys. D 62, 263–274 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shilnikov, A.L., Kolomiets, M.L.: Methods of the qualitative theory for the Hindmarsh–Rose model: a case study. Tutor. Int. J. Bifurc. Chaos 18, 2141–2168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Barrio, R., Shilnikov, A.: Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh–Rose model. J. Math. Neurosci. 1, 6 (2011)

    Article  MathSciNet  Google Scholar 

  19. Rech, P.C.: Dynamics of a neuron model in different two-dimensional parameter-spaces. Phys. Lett. A 375, 1461–1464 (2011)

    Article  MATH  Google Scholar 

  20. Fan, Y.S., Holden, A.V.: Bifurcations, burstings, chaos and crises in the Rose–Hindmarsh model for neuronal activity. Chaos Solitons Fractals 3, 439–449 (1993)

    Article  MATH  Google Scholar 

  21. González-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurc. Chaos 17, 3071–3083 (2007)

    Article  MATH  Google Scholar 

  22. Terman, D.: The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2, 135–182 (1992)

  23. Medvedev, G.S.: Reduction of a model of an excitable cell to a one-dimensional map. Phys. D 202, 37–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Medvedev, G.S.: Transition to bursting via deterministic chaos. Phys. Rev. Lett. 97, 048102 (2006)

    Article  Google Scholar 

  25. Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos 19, 023124 (2009)

    Article  MathSciNet  Google Scholar 

  26. Innocenti, G., Morelli, A., Genesio, R., Torcini, A.: Dynamical phases of the Hindmarsh–Rose neuronal model studies of the transition from bursting to spiking chaos. Chaos 17, 043128 (2007)

    Article  MathSciNet  Google Scholar 

  27. Storace, M., Linaro, D., De, L.E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)

    Article  MathSciNet  Google Scholar 

  28. Linaro, D., Poggi, T., Storace, M.: Experimental bifurcation diagram of a circuit-implemented neuron model. Phys. Lett. A 374, 4589–4593 (2011)

    Article  Google Scholar 

  29. Gu, H.G., Yang, M.H., Li, L., Liu, Z.Q., Ren, W.: Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. NeuroReport 13, 1657–1660 (2002)

    Article  Google Scholar 

  30. Wu, X.B., Mo, J., Yang, M.H., Zheng, Q.H., Gu, H.G., Ren, W.: Two different bifurcation scenarios in neural firing rhythms discovered in biological experiments by adjusting two parameters. Chin. Phys. Lett. 25, 2799–2802 (2008)

  31. Gu, H.G.: Experimental observation of an unnoticed chaos as simulated by the Hindmarsh–Rose model. PLoS ONE 8, e81759 (2013)

    Article  Google Scholar 

  32. De, L.E., Hasler, M.: Oscillations and oscillatory behavior in small neural circuits. Biol. Cybern. 95(6), 537–554 (2006)

  33. Selverston, A.I., Ayers, J.: Predicting single spikes and spike patterns with the Hindmarsh–Rose model. Biol. Cybern. 99, 349–360 (2008)

    Article  Google Scholar 

  34. Dahasert, N., Öztürk, I., Kiliç, R.: Experimental realizations of the HR neuron model with programmable hardware and synchronization applications. Nonlinear Dyn. 70, 2343–2358 (2012)

    Article  Google Scholar 

  35. Braun, H.A., Schäfer, K., Voigt, K., Peters, R., Bretschneider, F., Pei, X., Wilkens, L., Moss, F.: Low-dimensional dynamics in sensory biology 1: thermally sensitive electroreceptors of the catfish. J. Comput. Neurosci. 4, 335–347 (1997)

    Article  MATH  Google Scholar 

  36. Braun, H.A., Schwabedal, J., Dewald, M., Finke, C., Postnova, S.: Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model. Chaos 21, 047509 (2011)

    Article  Google Scholar 

  37. Coombes, S., Osbaldestin, A.H.: Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator. Phys. Rev. E 62, 4057–4066 (2000)

    Article  Google Scholar 

  38. Gu, H.G., Yang, M.H., Li, L., Liu, Z.Q., Ren, W.: Dynamics of autonomous stochastic resonance in neural period-adding bifurcation scenarios. Phys. Lett. A 319, 89–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lu, Q.S., Gu, H.G., Yang, Z.Q., Shi, X., Duan, L.X., Zheng, Y.H.: Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities. Acta Mech. Sin. 24, 593–628 (2008)

    Article  MATH  Google Scholar 

  40. Yang, M.H., Liu, Z.Q., Li, L., Xu, Y.L., Liu, H.J., Gu, H.G., Ren, W.: Identifying distinct stochastic dynamics from chaos: a study on multimodal neural firing patterns. Int. J. Bifurc. Chaos 19, 453–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, L., Gu, H.G., Liu, Z.Q., Yang, M.H., Ren, W.: A series of bifurcation scenarios in the firing pattern transitions in an experimental neural pacemaker. Int. J. Bifurc. Chaos 14, 1813–1817 (2004)

    Article  MATH  Google Scholar 

  42. Jia, B., Gu, H.G., Li, L., Zhao, X.Y.: Dynamics of period doubling bifurcation to chaos discovered in the spontaneous neural firing pattern. Cogn. Neurodyn. 6, 89–106 (2012)

    Article  Google Scholar 

  43. Feudel, U., Neiman, A., Pei, X., Wojtennek, W., Braun, H., Huber, M., Moss, F.: Homoclinic bifurcation in a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 10, 231–239 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gu, H.G.: Experimental observation of transitions from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos 23, 023126 (2013)

    Article  Google Scholar 

  45. Holden, A.V., Fan, Y.S.: From simple to simple bursting oscillatory behaviour via chaos in the Hindmarsh–Rose model for neuronal activity. Chaos Solitons Fractals 2, 221–236 (1992)

  46. Mannella, R., Palleschi, V.: Fast and precise algorithm for compute simulation of stochastic differential equations. Phys. Rev. A 40, 3381–3386 (1989)

    Article  Google Scholar 

  47. González-Miranda, M.: Pacemaker dynamics in the full Morris–Lecar model. Commun. Nonlinear Sci. Numer. Simul. http://dx.doi.org/10.1016/j.cnsns.2014.02.020.

  48. Bennett, G.J., Xie, Y.K.: A peripheral mononeuropathy in rat produces disorders of pain sensation like those seen in man. Pain 33, 87–109 (1988)

    Article  Google Scholar 

  49. Tal, M., Eliav, E.: Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 64, 511–518 (1996)

    Article  Google Scholar 

  50. Takeda, M., Tsuboi, Y., Kitagawa, J., Nakagawa, K., Iwata, K., Matsumoto, S.: Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol. Pain 7, 5 (2011)

    Article  Google Scholar 

  51. Xie, Y.K.: Mechanism for chronic pain generation. Chin. Sci. Bull. 45, 775–783 (2000)

    Article  Google Scholar 

  52. Dong, C.H., Xie, Z.L., Fan, J.Y., Xie, Y.K.: Ectopic discharges trigger sympathetic sprouting in rat dorsal root ganglia following peripheral nerve injury. Sci. China Ser. C. Life Sci. 45, 191–200 (2002)

    Article  Google Scholar 

  53. Zhang, X.L., Peng, X.Q., Jing, Y.L., Xie, W.R., Xie, Y.K.: Sialic acid contributes to generation of ectopic spontaneous discharges in rats with neuropathic pain. Neurosci. Lett. 346, 65–68 (2003)

    Article  Google Scholar 

  54. Mongan, L.C., Hill, M.J., Chen, M.X., Tate, S.N., Collins, S.D., Buckby, L., Grubb, B.D.: The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system. Neuroscience 131, 161–175 (2005)

    Article  Google Scholar 

  55. Moore, K.A., Kohno, T., Karchewski, L.A., Scholz, J., Baba, H., Woolf, C.J.: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731 (2002)

    Google Scholar 

  56. Fan, Y.S., Chay, T.R.: Generation of periodic and chaotic bursting in an excitable cell model. Biol. Cybern. 71, 417–431 (1994)

  57. Mo, J., Li, Y.Y., Wei, C.L., Yang, M.H., Liu, Z.Q., Gu, H.G., Qu, S.X., Ren, W.: Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable. Chin. Phys. B 19, 080513 (2010)

    Article  Google Scholar 

  58. Holden, A.V., Winlow, W.: Bifurcation of periodic activity from periodic activity in a molluscan neurone. Biol. Cybern. 42(3), 189–194 (1982)

    MathSciNet  Google Scholar 

  59. Holden, A.V., Winlow, W., Haydon, P.G.: The induction of periodic and chaotic activity in a molluscan neurone. Biol. Cybern. 43(3), 169–173 (1982)

    Article  MathSciNet  Google Scholar 

  60. Djouhri, L., Koutsikou, S., Fang, X., McMullan, S., Lawson, S.N.: Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J. Neurosci. 26, 1281–1292 (2006)

  61. Yang, J., Duan, Y.B., Xing, J.L., Zhu, J.L., Duan, J.H., Hu, S.J.: Responsiveness of a neural pacemaker near the bifurcation point. Neurosci. Lett. 392, 105–109 (2006)

  62. Linaro, D., Champneys, A., Desroches, M., Storace, M.: Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh–Rose burster. SIAM J. Appl. Dyn. Syst. 11, 939–962 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Braun, H.A., Voigt, K., Huber, M.T.: Oscillations, resonances and noise: basis of flexible neuronal pattern generation. Biosystems 71, 39–50 (2003)

  64. Liger-Belair, G., Tufaile, A., Robillard, B., Jeandet, P., Sartorelli, J.C.: Period-adding route in sparkling bubbles. Phys. Rev. E 72, 037204 (2005)

  65. Channell, P., Cymbalyuk, G., Shilnikov, A.: Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett. 98, 134101 (2007)

    Article  Google Scholar 

  66. Channell, P., Fuwape, I., Neiman, A., Shilnikov, A.L.: Variability of bursting patterns in a neuronal model in the presence of noise. J. Comput. Neurosci. 27, 527–542 (2009)

    Article  MathSciNet  Google Scholar 

  67. Pereira, F.A., Colli, E., Sartorelli, J.C.: Period adding cascades: experiment and modeling in air bubbling. Chaos 22, 013135 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11372224 and 11072135, the Fundamental Research Funds for Central Universities designated to Tongji University under Grant No. 1330219127, and Hong Kong Research Grants Council under the GRF Grant CityU1109/12E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Pan, B., Chen, G. et al. Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn 78, 391–407 (2014). https://doi.org/10.1007/s11071-014-1447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1447-5

Keywords

Navigation