Skip to main content
Log in

Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of a system of two coupled van der Pol oscillators is investigated. The coupling between the two oscillators consists of adding to each one’s amplitude a perturbation proportional to the other one. The coupling between two laser oscillators and the coupling between two vacuum tube oscillators are examples of physical/experimental systems related to the model considered in this paper. The stability of fixed points and the symmetries of the model equations are discussed. The bifurcations structures of the system are analyzed with particular attention on the effects of frequency detuning between the two oscillators. It is found that the system exhibits a variety of bifurcations including symmetry breaking, period doubling, and crises when monitoring the frequency detuning parameter in tiny steps. The multistability property of the system for special sets of its parameters is also analyzed. An experimental study of the coupled system is carried out in this work. An appropriate electronic simulator is proposed for the investigations of the dynamic behavior of the system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. A comparison of experimental and numerical results yields a very good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aronson, D.G., Doedel, E.J., Othmer, H.G.: An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators. Physica D 25(1), 320–104 (1987)

    MathSciNet  Google Scholar 

  2. Balanov, A., Janson, N., Postnov, D., Sosnovtseva, O.: Synchronization: From Simple to Complex. Springer, Berlin (2009)

    Google Scholar 

  3. Yu, P.E., Kuznetsov, A.P., Sataev, I.R., Turukina, L.V.: Synchronization and multi-frequency oscillations in a low-dimensional chain of the self-oscillators. Physica D 244(1), 36–49 (2013)

    Article  MATH  Google Scholar 

  4. Chakraborty, T., Rand, R.H.: The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillator. Int. J. Non-Linear Mech. 23(5–6), 369–376 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuznetsov, A.P., Seleznev, E.P., Stankevich, N.V.: Nonautonomous dynamics of coupled van der pol oscillators in the regime of amplitude death. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3740–3746 (2012)

    Google Scholar 

  6. Chedjou, J.C., Fotsin, H.B., Woafo, P., Domngang, S.: Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator. IEEE Trans. Circuits Syst. I 48, 748–756 (2001)

    Article  MATH  Google Scholar 

  7. Gonzalez-Miranda, J.M.: Synchronization and Control of Chaos: An Introduction for Scientists and Engineers. Imperial College Press, London (2004)

    Book  Google Scholar 

  8. Pastor, I., Perez-Garcia, V.M., Encinas-Sanz, F., Gerra, J.M.: Ordered and chaotic behavior of two coupled van der pol oscillators. Phys. Rev. E 48, 171–182 (1983)

    Article  Google Scholar 

  9. Pastor-Diaz, I., Lopez-Fragas, A.: Dynamics of two coupled van der Pol oscillators. Phys. Rev. E 52(2), 1480–1489 (1995)

    Article  MathSciNet  Google Scholar 

  10. Poliasshenko, M., Mckay, S.R., Smith, C.W.: Hysteresis of synchronous–asynchronous regimes in a system of two coupled oscillators. Phys. Rev. A 43, 5638–5641 (1991)

    Article  Google Scholar 

  11. Storti, D.W., Rand, R.H.: Dynamics of two strongly coupled van der Pol oscillators. Int. J. Non-Linear Mech. 17(3), 143–152 (1982)

    Google Scholar 

  12. Van der Pol, B.: On ‘relaxation-oscillation’. Philos. Mag. 7, 978–992 (1926)

    Google Scholar 

  13. Pinto, C.M., Machado, J.T.: Complex-order forced van der Pol. J. Vib. Control 18(14), 2201–2209 (2012)

    Article  MathSciNet  Google Scholar 

  14. Barbosa, R.S., Tenreiro Machado, J.A., Vinagre, B.M., Calderon, A.J.: Analysis of the van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13(9–10), 1291–1301 (2007)

    Google Scholar 

  15. Pikovsky, A., Rosenblum, M.: Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators. Physica D 238, 27–37 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wirkus, S.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 3(3), 205–221 (2002)

    Article  MathSciNet  Google Scholar 

  17. Jianming, Z., Xinsheng, G.: Stability and bifurcation analysis in the delay-coupled van der Pol oscillators. Appl. Math. Model. 34, 2291–2299 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Camacho, E., Rand, R., Howland, H.: Dynamics of two coupled van der Pol oscillators via a bath. Int. J. Solids Struct. 41(8), 1233–2143 (2004)

    MathSciNet  Google Scholar 

  19. Nayfeh, A.H., Balakumar, B.: Applied Monlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995)

    Book  Google Scholar 

  20. Wolf, A., Swift, J.B., Swinney, H.L., Wastano, J.A.: Determining Lyapunov exponents from time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Masoller, C.: Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys. Rev. A 50, 2569–2578 (1994)

    Article  Google Scholar 

  22. Cushing, J.M., Henson, S.M., Blackburn, : Multiple mixed attractors in a competition model. J. Biol. Dyn. 1(4), 347–362 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vaithianathan, V., Veijun, J.: Coexistence of four different attractors in a fundamental power system model. IEEE Trans. Circuits Syst. I 46(3), 405–409 (1999)

    Google Scholar 

  24. Maggio, G.M., De Feo, O., Kennedy, M.P.: Nonlinear analysis of the Colpitts oscillator and application to design. IEEE Trans. Circuits Syst. 46, 1118–1130 (1999)

    Article  MATH  Google Scholar 

  25. Itoh, M.: Synthesis of electronic circuits for simulating nonlinear dynamics. Int. J. Bifurcation Chaos 11(3), 605–653 (2001)

    Google Scholar 

  26. Hamil, D.C.: Learning about chaotic circuits with SPICE. IEEE Trans. Educ. 36(1), 28–35 (1991)

    Article  Google Scholar 

  27. Yujun, N., Xingyuan, W., Mingjun, W., Huaguang, Z.: A new hyperchaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 15, 3518–3524 (2010)

    Google Scholar 

  28. Chen, D.Y., Wu, C., Liu, C.F., Ma, X.Y., You, Y.J., Zhan, R.F.: Synchronization and circuit simulation of a new double-wing chaos. Nonlinear Dyn. 67, 1481–1504 (2012)

    Google Scholar 

  29. Liu, Y.: Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system. Nonlinear Dyn. 67, 89–96 (2012)

    Article  MATH  Google Scholar 

  30. Jia, H.Y., Chen, Z.Q., Qi, G.Y.: Topological horseshoes analysis and circuit implementation for a four-wing chaotic attractor. Nonlinear Dyn. 65(1–2), 131–140 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kengne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kengne, J., Chedjou, J.C., Kom, M. et al. Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies. Nonlinear Dyn 76, 1119–1132 (2014). https://doi.org/10.1007/s11071-013-1195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1195-y

Keywords

Navigation