Skip to main content
Log in

Amberlite XAD-2010 Impregnated with Chrome Azurol S for Separation and Spectrophotometric Determination of Uranium and Thorium

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A new extractant-impregnated resin (EIR), chrome azurol S-impregnated on XAD-2010, is used as an adsorbent to separate and preconcentrate U(VI) and Th(IV) ions prior to their spectrophotometric determination. Various instrumental techniques such as elemental analysis, FTIR, and SEM analysis were employed for full characterization of the synthetic extractant. Optimization of the adsorption and elution conditions of U(VI) and Th(IV) ions using synthesized chrome azurol S-impregnated XAD-2010 were studied. Langmuir isotherm model has the best fitting experimental data with a maximum adsorption capacity of 23.8 mg g−1 for U(VI) and 25.4 mg g−1 for Th(IV). The adsorption process of each metal ion using synthesized chrome azurol S-impregnated XAD-2010 showed an exothermic pseudo-second-order adsorption process. High tolerance limits for several studied metal ions on chrome azurol S-impregnated XAD-2010 were observed. The optimized method was applied on an international certified samples and different rock types bearing thorium and uranium with accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry, US Public Health Service, New York (2008) Health consultation. Depleted uranium at Hawaiian military sites; Schofield Barracks Impact Area; Makua Military Reservation, Pohakuloa Training Area on Islands of Oahu and Hawaii

  2. Jain V, Pandya R, Pillai S, Shrivastav P (2006) Solid phase extraction, preconcentration and sequential separation of U(VI), Th(IV), La(III) and Ce(III) by octa-O-methoxy resorcin[4]arene based amberlite XAD-4 chelating resin. Talanta 70:257–266. https://doi.org/10.1016/j.talanta.2006.02.032

    Article  CAS  PubMed  Google Scholar 

  3. Welz B, Sperling M (1999) Atomic absorption spectrometry. Wiley-VCH, New York

    Google Scholar 

  4. Tamborini G (2004) SIMS analysis of uranium and actinides in microparticles of different origin. Microchim Acta 145:237–242. https://doi.org/10.1007/s00604-003-0160-8

    Article  CAS  Google Scholar 

  5. Dean J (1997) Atomic absorption and plasma spectroscopy. Wiley, London

    Google Scholar 

  6. Marczenko Z, Balcerzak M (2000) Separation, preconcentration and spectrophotometry in inorganic analysis, vol 10. Elsevier, Amsterdam

    Google Scholar 

  7. Perkampus H (1992) UV–Vis spectroscopy and its applications. Springer-Verlag, Berlin, p 33

    Book  Google Scholar 

  8. Pretty J, Van Berkel G, Duckworth D (1998) Adsorptive stripping voltammetry as a sample pretreatment method for trace uranium determinations by inductively coupled plasma mass spectrometry. Int J Mass Spectrom 178:51–63. https://doi.org/10.1016/S1387-3806(98)80001-8

    Article  CAS  Google Scholar 

  9. Dojozan D, Pournaghi-Azar M, Toutounchi-Asr J (1998) Preconcentration of trace uranium from seawater with solid phase extraction followed by differential pulse polarographic determination in chloroform eluate. Talanta 46:123–128. https://doi.org/10.1016/S0039-9140(97)00252-X

    Article  CAS  PubMed  Google Scholar 

  10. Miura T, Morimoto T, Hayano K, Kishimoto T, Kagaku P (2000) Determination of uranium in water samples by ICP-AES with chelating resin disk preconcentration. Bunseki Kagaku 49:245–249. https://doi.org/10.2116/bunsekikagaku.49.245

    Article  CAS  Google Scholar 

  11. Kato K, Ito M, Watanabe K (2000) Determination of thorium and uranium in activated concrete by inductively coupled plasma mass spectrometry after anion-exchange separation. Fresenius’ J Anal Chem 366:54. https://doi.org/10.1007/s002160050011

    Article  CAS  Google Scholar 

  12. Torgov V, Demidova M, Saprykin A, Nikolaeva I, Us T, Chebykin E (2002) Extraction preconcentration of uranium and thorium traces in the analysis of bottom sediments by inductively coupled plasma mass spectrometry. Anal Chem 57:303. https://doi.org/10.1023/A:1014942112864

    Article  CAS  Google Scholar 

  13. Sengupta A, Ippili T, Jayabun S, Singh M, Thulasidas K (2016) ICP-AES determination of trace metallic constituents in thorium matrix after preferential extraction of thorium using TBP, TOPO and DHOA: a comparative study. J Radioanal Nucl Chem 310(1):59–67. https://doi.org/10.1007/s10967-016-4790-9

    Article  CAS  Google Scholar 

  14. Amer T, El-Sheikh E, Hassanin M, Fathy W (2019) Processing of monazite mineral concentrate for selective recovery of uranium. Chem Afr 2:123. https://doi.org/10.1007/s42250-018-00037-8

    Article  Google Scholar 

  15. Gupta N, Sengupta A, Gupta A, Sonawane J, Sahoo H (2018) Biosorption—an alternative method for nuclear waste management: a critical review. J Environ Chem Eng 6(2):2159–2175. https://doi.org/10.1016/j.jece.2018.03.021

    Article  CAS  Google Scholar 

  16. Sengupta A, Gupta N (2017) MWCNTs based sorbents for nuclear waste management: a review. J Environ Chem Eng 5(5):5099–5114. https://doi.org/10.1016/j.jece.2017.09.054

    Article  CAS  Google Scholar 

  17. Zhang T, Shan X, Liu R, Tang H, Zhang S (1998) Preconcentration of rare earth elements in seawater with poly(acrylaminophosphonic dithiocarbamate) chelating fiber prior to determination by inductively coupled plasma mass spectrometry. Anal Chem 70:3964–3968. https://doi.org/10.1021/ac980321h

    Article  CAS  Google Scholar 

  18. Tolmachyov S, Kuwabara J, Noguchi H (2004) Flow injection extraction chromatography with ICP-MS for thorium and uranium determination in human body fluids. J Radioanal Nucl Chem 261:125. https://doi.org/10.1023/B:JRNC.0000030945.53499.1c

    Article  CAS  Google Scholar 

  19. Ghaedi M, Fathi M, Shokrollahi A, Shajarat F (2006) Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Anal Lett 39:1171–1185. https://doi.org/10.1080/00032710600622167

    Article  CAS  Google Scholar 

  20. Ghaedi M, Asadpour E, Vafaie A (2006) Simultaneous preconcentration and determination of copper, nickel, cobalt, lead and iron content using a surfactant coated alumina. Bull Chem Soc Jpn 79:432–436. https://doi.org/10.1246/bcsj.79.432

    Article  CAS  Google Scholar 

  21. Baytak S, Balaban A, Turker A, Erk B (2006) Atomic absorption spectrometric determination of Fe(III) and Cr(III) in various samples after preconcentration by solid-phase extraction with pyridine-2-carbaldehyde thiosemicarbazone. J Anal Chem 61:476. https://doi.org/10.1134/S106193480605008X

    Article  CAS  Google Scholar 

  22. Lemos V, David G, Santos L (2006) Synthesis and application of XAD-2/Me-BTAP resin for on-line solid phase extraction and determination of trace metals in biological samples by FAAS. J Braz Chem Soc 17:697–704. https://doi.org/10.1590/S0103-50532006000400010

    Article  CAS  Google Scholar 

  23. Korn M, Santos A, Jaegera H, Silva N, Costa A (2004) Copper, zinc and manganese determination in saline samples employing FAAS after separation and preconcentration on amberlite XAD-7 and Dowex 1X-8 Loaded with Alizarin Red S. J Braz Chem Soc 15(2):212–218

    Article  CAS  Google Scholar 

  24. Hosseini M, Bazrafshan A, Hosseini-Bandegharaei A (2016) A novel solvent-impregnated resin containing 3-hydroxy-2-naphthoic acid for stepwise extraction of Th(IV) and U(VI) over other coexistence ions. Sep Sci Technol 51(8):1328–1335. https://doi.org/10.1080/01496395.2016.1147465

    Article  CAS  Google Scholar 

  25. Dubey R, Bhalotra A, Gupta M, Puri B (1998) Differential-pulse polarographic-determination of uranium (VI) in standard and synthetic samples after adsorption of its quinolin-8-olate on microcrystalline naphthalene. Anal Chim 88:719–729

    CAS  Google Scholar 

  26. Seki T, Oguma K (2004) Determination of uranium in natural waters and high-purity aluminum by flow-injection on-line preconcentration and ICP-MS detection. Bunseki Kagaku 53:353–357. https://doi.org/10.2116/bunsekikagaku.53.353

    Article  CAS  Google Scholar 

  27. Rao T, Metilda P, Mary Gladis J (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination—an overview. Talanta 68:1047–1064. https://doi.org/10.1016/j.talanta.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  28. Pyrzy˜nska K, Trojanowicz M (1999) Functionalized cellulose sorbents for preconcentration of trace metals in environmental analysis. Crit Rev Anal Chem 29:313–321. https://doi.org/10.1080/10408349891199329

    Article  Google Scholar 

  29. Ghaedi M, Niknam K, Zamani S, Larki H, Roosta M, Soylak M (2013) Silica chemically bonded N-propyl kriptofix 21 and 22 with immobilized palladium nanoparticles for solid phase extraction and preconcentration of some metal ions. Mater Sci Eng C 33:3180–3189. https://doi.org/10.1016/j.msec.2013.03.045

    Article  CAS  Google Scholar 

  30. Gladis J, Rao T (2002) Solid phase extractive preconcentration of uranium on to 5,7-dichloroquinoline-8-ol modified naphthalene. Anal Lett 35:501–515. https://doi.org/10.1081/AL-120002683

    Article  CAS  Google Scholar 

  31. Hosseini M, Hosseini-Bandegharaei A (2011) Comparison of sorption behavior of Th(IV) and U(VI) on modified impregnated resin containing quinizarin with that conventional prepared impregnated resin. J Hazard Mater 190:755–765. https://doi.org/10.1016/j.jhazmat.2011.03.111

    Article  CAS  PubMed  Google Scholar 

  32. Hosseini-Bandegharaei A, Hosseini M, Jalalabadi Y, Nedaie M, Sarwghadi M, Taherian A, Hosseini E (2011) A novel extractant-impregnated resin containing carminic acid for selective separation and pre-concentration of uranium(VI) and thorium(IV). Int J Environ Anal Chem 93:108–124. https://doi.org/10.1080/03067319.2011.620706

    Article  CAS  Google Scholar 

  33. Ali A, Nouh E (2019) Rhodamine-B modified silica for uranium (VI) extraction from aqueous waste samples. Sep Sci Technol 54(4):602–614. https://doi.org/10.1080/01496395.2018.1512620

    Article  CAS  Google Scholar 

  34. Soylak M, Elci L, Dogan M (2001) Solid Phase extraction of trace metal ions with amberlite XAD resins prior to atomic absorption spectrometric analysis. J Trace Microprobe Technol 19:329–344. https://doi.org/10.1081/TMA-100105049

    Article  CAS  Google Scholar 

  35. Lemos V, Nunes L, Baliza P, Santos J, Yamaki R, Jesus A (2004) On-line solid phase extraction system for cadmium preconcentration and determination by flame atomic absorption spectroscopy. Can J Anal Sci Spectrosc 49:24–30

    CAS  Google Scholar 

  36. Qadeer R, Hanif J, Khan M, Saleem M (1995) Uptake of uranium ions by molecular sieve. Radiochim Acta 68(3):197–201. https://doi.org/10.1524/ract.1995.68.3.197

    Article  CAS  Google Scholar 

  37. Landgraf W, Li N, Benson J (2003) Polymer microcarrier exhibiting zero-order release. Drug Delivery Technol 3:1–12

    Google Scholar 

  38. Sigma-Aldrich (2006) Amberlite XAD polimeric resins. http://www.sigmaaldrich.com/sigma/product%20information%20sheet/xad7pis.pdf. Accessed 10 Aug 2006

  39. Bulut V, Duran C, Tufekci M, Elci L, Soylak M (2007) Speciation of Cr(III) and Cr(VI) after column solid phase extraction on Amberlite XAD-2010. J Hazard Mater 143:112–117. https://doi.org/10.1016/j.jhazmat.2006.08.074

    Article  CAS  PubMed  Google Scholar 

  40. Duran C, Gundogdu A, Bulut V, Soylak M, Elci L, Senturk H, Tufekci M (2007) Separation and enrichment of gold (III) from environmental samples prior to its flame atomic absorption spectrometric determination. J Hazard Mater 149:317–323. https://doi.org/10.1016/j.jhazmat.2007.03.083

    Article  CAS  PubMed  Google Scholar 

  41. Duran C, Senturk H, Gundogdu A, Bulut V, Elci L, Soylak M, Tufekci M, Uygur Y (2007) Determination of some trace metals in environmental samples by flame AAS following solid phase extraction with amberlite XAD-2000 resin after complexing with 8-hydroxyquinoline. Chin J Chem 25:196–202. https://doi.org/10.1002/cjoc.200790040

    Article  CAS  Google Scholar 

  42. Hosseini M, Hosseini-Bandegharaei A (2010) Selective extraction of Th(IV) over U(VI) and other co-existing ions using eosin B impregnated Amberlite IRA-410 resin beads. J Radioanal Nucl Chem 283:23–30. https://doi.org/10.1007/s10967-009-0037-3

    Article  CAS  Google Scholar 

  43. Hosseini M, Hosseini-Bandegharaei A, Raissi H et al (2009) Sorption of Cr(VI) by Amberlite XAD-7 resin impregnated with brilliant green and its determination by quercetin as a selective spectrophotometric reagent. J Hazard Mater 169:52–57. https://doi.org/10.1016/j.jhazmat.2009.03.058

    Article  CAS  PubMed  Google Scholar 

  44. Hosseini M, Hosseini-Bandegharaei A, Hosseini M (2009) Column-mode separation and pre-concentration of some heavy metal ions by solvent-impregnated resins containing quinizarin before the determination by flame atomic absorption spectrometry. Int J Environ Anal Chem 89:35–48. https://doi.org/10.1080/03067310802464948

    Article  CAS  Google Scholar 

  45. Hosseini-Bandegharaei A, Hosseini M, Jalalabadi Y (2011) Removal of Hg(II) from aqueous solutions using a novel impregnated resin containing 1-(2-thiazolylazo)-2-naphthol (TAN). Chem Eng J 168:1163–1173. https://doi.org/10.1016/j.cej.2011.02.004

    Article  CAS  Google Scholar 

  46. Hosseini-Bandegharaei A, Hosseini M, Sarw-Ghadi M, Zowghi S, Hosseini E, Hosseini-Bandegharaei H (2010) Kinetics, equilibrium and thermodynamic study of Cr(VI) sorption into toluidine blue o-impregnated XAD-7 resin beads and its application for the treatment of wastewaters containing Cr(VI). Chem Eng J 160:190–198. https://doi.org/10.1016/j.cej.2010.03.040

    Article  CAS  Google Scholar 

  47. Fouad H, Elenein SA, Orabi A, Abdulmoteleb S (2019) A new extractant impregnated resin for separation of traces of uranium and thorium followed by their spectrophotometric determination in some geological samples. SN Appl Sci 1:309. https://doi.org/10.1007/2Fs42452-019-0325-7

    Article  Google Scholar 

  48. Marczenko Z (1986) Separation and spectrophotometric determination of elements, vol 60. Wiley, New York

    Google Scholar 

  49. Leenheer A, Ruyter M, Steyaert H (1976) A method for the statistical evaluation of results in external quality control surveys. Clin Chim Acta 71:229–238. https://doi.org/10.1016/0009-8981(76)90535-0

    Article  PubMed  Google Scholar 

  50. Davis J (1986) Handbook of statistics and analysis in geology, 2nd edn. Wiley, New York

    Google Scholar 

  51. Christian G (1994) Handbook of analytical chemistry, Chapter 2, 5th edn. Wiley, New York, pp 22–26

    Google Scholar 

  52. Maihub A, El-ajaily M, Aboukrish M (2003) Synthesis and characterization of some homodinuclear mixed ligand complexes of Co(II) and Cu(II) part II. Jerash Res Stud 7(2):41–47

    Google Scholar 

  53. Hosseini-Bandegharaei A, Sarwghadi M, Heydarbeigi A, Hosseini S, Nedaie M (2013) Solid-phase extraction of trace amounts of uranium(VI) in environmental water samples using an extractant-impregnated resin followed by detection with UV–Vis spectrophotometry. J Chem 2013:1–10. https://doi.org/10.1155/2013/671564

    Article  CAS  Google Scholar 

  54. Hosseini S, Rahmani-Sani A, Jalalabadi Y, Karimzadeh M, Hosseini-Bandegharaei A, Kharghani K, Allahabadi A (2015) Preconcentration and determination of ultra-trace amounts of U(VI) and Th(IV) using titan yellow impregnated Amberlite XAD-7 resin. Int J Environ Anal Chem 95:277–290. https://doi.org/10.1080/03067319.2015.1016009

    Article  CAS  Google Scholar 

  55. Cheira M, Orabi A, Hassanin M, Hassan S (2018) Chem Data Collect 13–14:84–103. https://doi.org/10.1016/j.cdc.2018.01.003

    Article  Google Scholar 

  56. Barbano P, Rigali L (1978) Anal Chim Acta 96(1):199–201

    Article  CAS  Google Scholar 

  57. Sato T (1983) Hydrometallurgy 22:121–140

    Article  Google Scholar 

  58. Jha M, Kumar V, Singh R (2002) Solvent Extr Ion Exch 20(3):389–405

    Article  CAS  Google Scholar 

  59. Merdivan M, Zahir Z, Hamamci C (2001) Sorption behaviour of uranium(VI) with N,N-dibutyl-N-benzoylthiourea impregnated in amberlite XAD-16. Talanta 55:639–645

    Article  CAS  Google Scholar 

  60. Upase A, Zade A, Kalbende P (2011) Spectrophotometric microdetermination of thorium(IV) and uranium(VI) with chrome azurol-S in presence of cationic surfactant. E J Chem 8(3):1132–1141

    Article  CAS  Google Scholar 

  61. Bursali E, Merdivan E, Yurdakoc M (2010) Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent. J Radioanal Nucl Chem 283:471–476. https://doi.org/10.1007/s10967-009-0365-3

    Article  CAS  Google Scholar 

  62. Khalifa M (1998) Selective separation of uranium using alizarin red S (ARS)-modified anion-exchange resin or by flotation of U-ARS chelate. Sep Sci Technol 33:2123–2141. https://doi.org/10.1080/01496399808545719

    Article  CAS  Google Scholar 

  63. Mishra S, Achary G, Das M (2012) Adsorption of Cu(II) by used aqua guard carbon(UAC). J Chem Pharm Res 4(2):1207–1216

    CAS  Google Scholar 

  64. Sharma I, Goyal D (2009) Kinetic modeling: chromium(III) removal from aqueous solution bymicrobial waste biomass. J Sci Ind Res 68:640–646

    CAS  Google Scholar 

  65. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  66. Lagergren S (1898) About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  67. Hosseini-Bandegharaei A, Khamirchi R, Hekmat-Shoar R, Rahmani-Sani A, Rastegar A, Pajohankia Z, Fattahi Z (2016) Sorption efficiency of three novel extractant-impregnated resins containing vesuvin towards Pb(II) ion: effect of nitrate and amine functionalization of resin backbone. Coll Surf A Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2016.05.060

    Article  Google Scholar 

  68. Hosseini-Bandegharaei A, Alahabadi A, Rahmani-Sani A, Rastegar A, Khamirchi R, Mehrpouyan M, Agah J, Pajohanki Z (2016) Effect of nitrate and amine functionalization on the adsorption properties of a macroporous resin towards tetracycline antibiotic. J Taiwan Inst Chem Eng 66:143–153

    Article  CAS  Google Scholar 

  69. Elsalamouny A, Desouky O, Mohamed S, Galhoum A (2016) Evaluation of adsorption behavior for U(VI) and Th(IV) ions onto solidified Mannich type material. J Dispersion Sci Technol 38:860–865. https://doi.org/10.1080/01932691.2016.1207546

    Article  CAS  Google Scholar 

  70. Preetha C, Gladis J, Rao T (2002) Solid phase extractive preconcentration of thorium onto 5,7-dichloroquinoline-8-ol modified benzophenone. Talanta 58:701–709. https://doi.org/10.1016/S0039-9140(02)00378-8

    Article  CAS  PubMed  Google Scholar 

  71. Gladis J, Rao J (2002) Quinoline-8-ol-immobilized Amberlite XAD-4: synthesis, characterization, and uranyl ion uptake properties suitable for analytical applications. Anal Bioanal Chem 373:867–887. https://doi.org/10.1007/s00216-002-1387-7.12194052

    Article  CAS  PubMed  Google Scholar 

  72. Jain V, Handa A, Sait S, Shrivastav P, Agrawal Y (2001) Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Anal Chim Acta 429:237–246. https://doi.org/10.1016/S0003-2670(00)01299-X

    Article  CAS  Google Scholar 

  73. Kumar M, Rathore D, Singh A (2001) Pyrogallol immobilized Amberlite XAD-2: a newly designed collector for enrichment of metal ions prior to their de-termination by flame atomic absorption spectrometry. Mikrochim Acta 137:127–134. https://doi.org/10.1007/s006040170002

    Article  CAS  Google Scholar 

  74. Jal P, Dutta R, Sudershan K, Saha M, Bhattacharya A, Chintalapudi S, Mishra B (2001) Extraction of metal ions using chemically modified silica gel: a PIXE analysis. Talanta 55:233–240. https://doi.org/10.1016/S0039-9140(00)00678-0

    Article  CAS  PubMed  Google Scholar 

  75. Kumar M, Rathore D, Singh A (2000) Metal ion enrichment with Amberlite XAD-2 functionalized with Tiron: analytical applications. Analyst 125:1221–1226. https://doi.org/10.1039/b000858n

    Article  CAS  Google Scholar 

  76. Hosseini M, Hosseini M, Bandeh-Gharaei A (2007) Solvent Impregnated resins containing quinizarin: preparation and application to batch-mode separation of Cd(II), Cu(II), Ni(II), and Zn(II) in aqueous media prior to the determination by flame atomic absorption spectrometry. Sep Sci Technol 42:3465–3480. https://doi.org/10.1080/01496390701626552

    Article  CAS  Google Scholar 

  77. Kwiatkowski E, Kwiatkowski M (1980) Unsymmetrical Schiffbase complexes of nickel (II) and palladium (II). Inorg Chim Acta 42:197–202

    Article  CAS  Google Scholar 

  78. Muraviev D (1998) Solvent Extr Ion Exch 16:381–457. https://doi.org/10.1080/07366299808934533

    Article  CAS  Google Scholar 

  79. Kalal H, Panahi H, Hoveidi H, Taghiof M, Menderjani M (2012) Synthesis and application of Amberlite xad-4 functionalized with alizarin red-s for preconcentration and adsorption of rhodium (III). Iran J Environ Health Sci Eng 9:1–9. https://doi.org/10.1186/1735-2746-9-7

    Article  CAS  Google Scholar 

  80. Ummathur M, Malini P, Krishnankutty K (2013) Dioxouranium (VI) complexes of some unsaturated β-diketones. Int J Chem TechNOL Res 5:1–5

    Article  CAS  Google Scholar 

  81. Foo K, Hameed B (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  82. Srinivasan T, Rao P, Sood D (1997) Solvent Extr Ion Exch 15:15–31. https://doi.org/10.1080/07366299708934463

    Article  CAS  Google Scholar 

  83. Sajjadi S, Meknati A, Lima E, Dotto G, Mendoza-Castillo D, Anastopoulos I, Alakhras F, Unuabonah E, Singh P, Hosseini-Bandegharaei A (2019) A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J Environ Manage 236:34–44

    Article  CAS  Google Scholar 

  84. Lima E, Hosseini-Bandegharaei A, Moreno-Piraján J, Anastopoulos I (2019) J Mol Liq 273:425

    Article  CAS  Google Scholar 

  85. Elsalamouny A, Desouky O, Mohamed S, Galhoum A, Guibal E (2017) Evaluation of adsorption behavior for U(VI) and Nd(III) ions onto fumarated polystyrene microspheres. J Radioanal Nucl Chem 314:429–437. https://doi.org/10.1007/s10967-017-5389-5

    Article  CAS  Google Scholar 

  86. Khawassek Y, Masoud A, Taha M, Hussein A (2018) Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger. J Radioanal Nucl Chem 315:493–502. https://doi.org/10.1007/s10967-017-5692-1

    Article  CAS  Google Scholar 

  87. Orabi A, Atrees M, Salem H (2018) Selective preconcentration of uranium on chitosan Steroyl thiourea prior to its spectrophotometric determination. Sep Sci Technol 53(14):2267–2283. https://doi.org/10.1080/01496395.2018.1445113

    Article  CAS  Google Scholar 

  88. Cheira M (2015) Synthesis of pyridylazo resorcinol—functionalized Amberlite XAD-16 and its characteristics for uranium recovery. J Environ Chem Eng 3:642–652. https://doi.org/10.1016/j.jece.2015.02.003

    Article  CAS  Google Scholar 

  89. Afifi S, Mustafa M, El Sheikh E, Gado M (2012) Extraction and determination of thorium and its application on geologic samples using trioctyl phosphine oxide. Arab J Nuclear Sci Appl 45(3):1–16

    Google Scholar 

  90. Fouad H, Abu Elenein S, Elrakaiby R, Abdulmoteleb S (2015) A developed spectrophotometric method for thorium determination using alizarin red S dye in different types of its bearing rocks. Int J Sci Res 4:1611–1615

    Google Scholar 

  91. Bale M, Sawant A (2011) Solvent extraction and spectrophotometric determination of uranium (VI) with pyridine- 2-carboxaldehyde 2-hydroxybenzoylhydrazone. J Radioanal Nucl Chem 247:531–534. https://doi.org/10.1023/A:1010626409358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hussien Orabi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orabi, A.H., Elenein, S.A. & Abdulmoteleb, S.S. Amberlite XAD-2010 Impregnated with Chrome Azurol S for Separation and Spectrophotometric Determination of Uranium and Thorium. Chemistry Africa 2, 673–688 (2019). https://doi.org/10.1007/s42250-019-00072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00072-z

Keywords

Navigation