Skip to main content
Log in

ICP-AES determination of trace metallic constituents in thorium matrix after preferential extraction of thorium using TBP, TOPO and DHOA: a comparative study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

ICP-AES based methodology was developed for the determination of trace metallic constituents in thorium matrix after preferential extraction of thorium using TBP, TOPO and DHOA. The distribution ratio for thorium followed the trend TOPO > TBP > DHOA with the formation of 1:2 complex. Oxalic acid was found to strip Th effectively. La, Ce, Pr, Gd, Dy, Lu can be determined at 0.1 mg L−1 using all the ligands, while common analytes can be determined at 0.1, 0.5 and 1 mg L−1 concentrations by using DHOA, TBP and TOPO, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahan C, Bonchin S, Figg D, Gcrth D, Collier C (2000) Chromatographic extraction of plutonium and inorganic impurity analysis using ICP-MS and ICPAES. J Anal At Spectrom 15(8):929–935

    Article  CAS  Google Scholar 

  2. Moreno JB, Betti M, Alonso JG (1997) Determination of neptunium and plutonium in the presence of high concentrations of uranium by ion chromatography-inductively coupled plasma mass spectrometry. J Anal At Spectrom 12(3):355–361

    Article  Google Scholar 

  3. Malhotra RK, Satyanarayana K (1999) Estimation of trace impurities in reactor-grade uranium using ICP-AES. Talanta 50(3):601–608

    Article  CAS  Google Scholar 

  4. Marin S, Cornejo S, Jara C, Duran N (1996) Determination of trace level impurities in uranium compounds by ICPAES after organic extraction. Fresenius’ J Anal Chem 355(5–6):680–683

    CAS  Google Scholar 

  5. Huff EA, Bowers DL (1989) The determination of impurities in plutonium metal by anion exchange and ICP/AES. Appl Spectrosc 43(2):223–226

    Article  CAS  Google Scholar 

  6. Adya VC, Sengupta A, Thulasidas SK, Natarajan V (2015) Development of CCD based ICP-AES method for the direct determination of phosphorous and sulphur in U, Th and Zr matrices. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4222-2

    Google Scholar 

  7. Sengupta A, Thulasidas SK, Natarajan V (2014) Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF—a comparative study. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3679-8

    Google Scholar 

  8. Bangia TG, Dhawale BA, Adya VC, Sastry MD (1988) ICP-AES and dc arc AES determination of Sc, Y and lanthanides in nuclear grade graphite. Fresenius J Anal Chem 332:802–804

    Article  CAS  Google Scholar 

  9. Sengupta A, Adya VC, Godbole SV (2012) Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect. J Radioanal Nucl Chem 292(3):1259–1264

    Article  CAS  Google Scholar 

  10. Sengupta A, Adya VC, Seshagiri TK, Godbole SV (2013) Exploration of CCD-based ICP-AES for studying spectral interferences of uranium on other analytes. At Spectrosc 34(2):53–58

    CAS  Google Scholar 

  11. Adya VC, Sengupta A, Godbole SV (2014) Study of the spectral interferences of zirconium on other analytes in the analysis of nuclear materials by CCD-based ICP-AES. Atom Spectrosc 35(1):25–32

    CAS  Google Scholar 

  12. Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298(2):1117–1125

    Article  CAS  Google Scholar 

  13. Sengupta A, Thulasidas SK, Natarajan V (2014) Development of an ICP-AES-based method for the trace level determination of common analytes in a thorium matrix without chemical separation. Atom Spectrosc 35(6):247–259

    CAS  Google Scholar 

  14. Sengupta A, Adya VC (2014) Determination of analytes at trace level in uranium matrix by ICP-AES without chemical/physical separation. J Radioanal Nucl Chem 299(3):2023–2026

    Article  CAS  Google Scholar 

  15. Sengupta A, Adya VC (2013) Determination of common analytes at trace levels in Zr matrix by ICP-AES without chemical/physical separation. At Spectrosc 34(6):207–215

    CAS  Google Scholar 

  16. Rajeswari B, Dhawale BA, Bangia TR, Mathur JN, Page AG (2002) Role of Cyanex-272 as an extractant for uranium in the determination of rare earths by ICP-AES. J Radioanal Nucl Chem 254(3):479–483

    Article  CAS  Google Scholar 

  17. Argekar AA, Kulkarni MJ, Mathur JN, Page AG (2002) Chemical separation and ICP-AES determination of 22 metallic elements in U and Pu matrices using cyanex-923 extractant and studies on stripping of U and Pu. Talanta 56(4):591–601

    Article  CAS  Google Scholar 

  18. Gopalkrishnan M, Radhakrishnan K, Dhami PS, Kulkarni VT, Joshi MV, Patwardhan AB, Mathur JN (1997) Determination of trace impurities in uranium, thorium and plutonium matrices by solvent extraction and inductively coupled plasma atomic emission spectrometry. Talanta 44(2):169–176

    Article  CAS  Google Scholar 

  19. Ko R (1984) The determination of impurities in plutonium nitrate solutions by amine extraction and ICP analysis. Appl Spectrosc 38(6):909–910

    Article  CAS  Google Scholar 

  20. Sengupta A, Adya VC, Kumar M, Thulasidas SK, Godbole SV, Manchanda VK (2011) ICP-AES determination of trace metallic elements in plutonium samples containing sizeable amounts of americium. At Spectrosc 32(2):49–55

    CAS  Google Scholar 

  21. Sengupta A, Thulasidas SK, Natarajan V (2014) Study on the spectral interference of thorium on critical elements and rare earths by CCD-based ICP-AES. At Spectrosc 35(5):213

    CAS  Google Scholar 

  22. Adya VC, Thulasidas SK, Kumar M, Purohit PJ, Mohapatra M, Seshagiri TK, Godbole SV (2011) Determination of In and Ga in plutonium oxide matrix by ICP-AES after chemical separation. Radiochim Acta 99:581–585

    Article  CAS  Google Scholar 

  23. Biswas SS, Murty PS, Sethumadhavan A, Kaimal R, Sankaran AV (1991) Separation of some trace rare earths from uranium by two-step liquid-liquid extraction and estimation by ICP-AES. Anal Lett 24(5):887–889

    Article  CAS  Google Scholar 

  24. Singh DK, Singh H, Mathur JN (2001) Synergistic extraction of U(VI) with mixtures of 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) and TBP, TOPO or cyanex 923. Radiochim Acta 89(9):573–578

    CAS  Google Scholar 

  25. Paiva A, Malik P (2004) Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes. J Radioanal Nucl Chem 261:485–496

    Article  CAS  Google Scholar 

  26. Kulkarni MJ, Argekar AA, Mathur JN, Page AG (1998) Chemical separation and inductively coupled plasma–atomic emission spectrometric determination of seventeen trace metals in thorium oxide matrix using a novel extractant—cyanex-923. Anal Chim Acta 370:163–171

    Article  CAS  Google Scholar 

  27. Sengupta A, Kulkarni MJ, Godbole SV, Natarajan V, Pathak PN (2014) Analytical application of DHOA for the determination of trace metallic constituents in Pu-based fuel materials by ICP-AES. At Spectrosc 35(2):60–64

    CAS  Google Scholar 

  28. Sengupta A, Kulkarni MJ, Godbole SV (2011) Analytical application of DHOA for the determination of trace metallic constituents in U based fuel materials by ICP-AES. J Radioanal Nucl Chem 289(3):961–965

    Article  CAS  Google Scholar 

  29. Gupta KK, Manchanda VK, Subramanian MS, Singh RK (2000) Solvent extraction studies on U(VI), Pu(IV), and fission products using N,N-dihexyloctanamide. Solv Extr Ion Exch 18(2):273–292

    Article  CAS  Google Scholar 

  30. Naik PW, Dhami PS, Misra SK, Jambunathan U, Mathur JN (2003) Use of organophosphorus extractants impregnated on silica gel for the extraction chromatographic separation of minor actinides from high level waste solutions. J Radioanal Nucl Chem 257:327–332

    Article  CAS  Google Scholar 

  31. Suresh G, Murali MS, Mathur JN (2003) Thermodynamics of extraction of Am(III) and Eu(III) from different anionic media with Tri-n-octyl phosphine oxide. Radiochim Acta 91(3):127–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. P.K. Pujari, Head, Radiochemistry Division, for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, A., Ippili, T., Jayabun, S. et al. ICP-AES determination of trace metallic constituents in thorium matrix after preferential extraction of thorium using TBP, TOPO and DHOA: a comparative study. J Radioanal Nucl Chem 310, 59–67 (2016). https://doi.org/10.1007/s10967-016-4790-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4790-9

Keywords

Navigation