Skip to main content
Log in

Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work deals with the adsorption of uranium from a nitric acid waste solution using the cation exchange resin Amberjet 1200 H (AHR) . Batch experiments were performed in order to assess the performance of AHR in uranium adsorption. The influences of pH, contact time, initial uranium concentration and temperature have been enhanced. The physical parameters including the adsorption kinetics, the isotherm models and the thermodynamic data have also been determined to determine the nature of the uranium adsorption by AHR. The studied resin has been agreed with both the pseudo second order reaction and Langmuir isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Choi J, Lee JY, Yang JS (2009) Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Hazard Mater 15:157–162

    Article  Google Scholar 

  2. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 65:192–200

    CAS  Google Scholar 

  3. Donat R, Cılgı GK, Aytas S, Cetisl H (2009) Thermodynamics parameters and sorption of U(VI) on ACSD. Radioanal Nucl Chem 279:271–280

    Article  CAS  Google Scholar 

  4. Merritt RC (1971) The extractive metallurgy of uranium. Colorado School of Mines Research Institute, Chicago

    Google Scholar 

  5. Streat M, Naden D (1987) Ion exchange and sorption processes in hydrometallurgy. Critical reports on applied chemistry, vol 19. Wiley, New York

    Google Scholar 

  6. Guettaf H, Becis A, Ferhat K, Hanou K, Bouchiha D, Yakoubi K, Ferrad F (2009) Concentration-purification of uranium from an acid leaching solution. Phys. Proc. 2:765–771

    Article  CAS  Google Scholar 

  7. Khawassek YM (2014) Production of commercial uranium concentrate from El-Sela Shear zone mineralized ore material, South Eastern Desert- Egypt, at Inshas Pilot plant unit. Nuclear Sciences Scientific Journal 3:169–179

    Google Scholar 

  8. Abdel Aal M (2014) Purification of uranium concentrate from Abo- Rushied ore material with emphasize upon ion exchange technique, South Eastern Desert, Egypt, Faculty of science Ain Shams University

  9. Mirjial K, Roshani M (2007) Resin-in-pulp method for uranium recovery from leached pulp of low grade uranium ore. Hydrometallurgy 85(2–4):103–107

    Article  Google Scholar 

  10. Kraus KA, Moor GE (1950) Adsorption of protactinium from hydrochloric acid solutions by anion exchange Resins. J Am Chem Soc 72(9):4293–4294

    Article  CAS  Google Scholar 

  11. Abd El-Ghany MS, Mahdy MA, Abd ElMonem NM, El-Hazek NT (1994) Pilot plant studies on the treatment of E1 Atshan uranium ores, Eastern Desert, Egypt. 2nd Arab conference peaceful uses of atomic energy, AAEA, Cairo

  12. Barnes CD, da Silva Neves R A, Streat M (1974) Anion exchange of uranium from aqueous sulphuric acid solutions: diffusion kinetics. J Appl Chem Biotechnol 24:787–801

    Article  CAS  Google Scholar 

  13. Abd El-Ghany MS (2000) Uranium recovery from sulfate leach pulps of some Egyptian Ores. Ph.D., Faculty of Engineering, Cairo University

  14. Cheira MF, El-Didamony AM, Mahmoud KF, Atia BM (2014) Equilibrium and kinetic characteristics of uranium recovery by the strong base Ambersep 920U Cl Resin. IOSR J Appl Chem 7(5):32–40

    Article  Google Scholar 

  15. Bai Y, Bartkiewicz B (2009) Removal of cadmium from wastewater using ion exchange resin Amberjet 1200H columns. Pol J Environ Stud 18(6):1191–1195

    CAS  Google Scholar 

  16. Rengaraj S, Kim Y, Joo CK, Choi K, Yi J (2004) Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H. Korean J Chem Eng 21(1):187–194

    Article  CAS  Google Scholar 

  17. Zewail TM, Yousef NS (2015) Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Eng J 54(1):83–90

    Article  Google Scholar 

  18. Marczenko Z, Balcerzak M (2000) Separation, preconcentration and spectrophotometry in inorganic analysis. Elsevier Science B.V., Amsterdam, p 521

    Google Scholar 

  19. Rohwer H, Rheeder N, Hosten E (1997) Interactions of uranium and thorium with arsenazoIII in an aqueous medium. Anal Chim Acta 341(2):263–268

    Article  CAS  Google Scholar 

  20. Davies W, Gray W (1964) A rapid and specific volumetric method for the precise determination of uranium using ferrous sulfate as a reductant”. Talanta 11:1203–1211

    Article  CAS  Google Scholar 

  21. Mathew KJ, Mason B, Morales ME, Narayann UI (2009) Uranium assay determination using Davies and Gray titration: an overview and implementation of GUM uncertainty evaluation. Radio Anal Nucl Chem 282:939–944

    Article  CAS  Google Scholar 

  22. Puigdomenech I (2006) HYDRA (hydrochemical equilibrium-constant database) and MEDUSA (make equilibrium diagrams using sophisticated algorithms) programs, Royal Institute of Technology, Sweden. http://www.kemi.kth.se/medusa/

  23. Chen Y, Wu F, Lin YX, Deng NS, Bazhin N, Glebov E (2007) Photodegradation of glyphosate in the ferrioxalate system. J Hazard Mater 148:360–365

    Article  CAS  Google Scholar 

  24. Sheng L, Zhou L, Huang Z, Liu Z, Chen Q, Huang G, Adesina AA (2016) Facile synthesis of magnetic chitosan nano-particles functionalized with N/O-containing groups for efficient adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 310:1361–1371

    Article  CAS  Google Scholar 

  25. Chegrouche S, Mellah A, Telmoune S (1997) Removal of lanthanum from aqueous solutions by natural bentonite. Water Res 31:1733–1737

    Article  CAS  Google Scholar 

  26. Mellah A, Chegrouche S (1997) The removal of zinc from aqueous solutions by natural bentonite. Water Res 31:621–629

    Article  CAS  Google Scholar 

  27. Bhatnagar A, Jain AK (2005) A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J Colloid Interface Sci 28(1):49–55

    Article  Google Scholar 

  28. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  29. Li L, Ding DX, Hu N, Fu PK, Xin X, Wang YD (2014) Adsorption of U(VI) ions from low concentration uranium solution by thermally activated sodium feldspar. J Radioanal Nucl Chem 299:681–690

    Article  CAS  Google Scholar 

  30. Manes M, Hofer BJE (1969) Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. J Phys Chem 73(3):584–590

    Article  CAS  Google Scholar 

  31. Abderrahim O, Didi MA, Villemin D (2009) A new sorbent for uranium extraction polyethyleniminephenylphosphonamidic acid. J Radioanal Nucl Chem 279(1):237–244

    Article  CAS  Google Scholar 

  32. Ansari SA, Mohapatra PK, Manchanda VK (2009) A novel malonamide grafted polystyrene- divinyl benzene resin for extraction pre-concentration and separation of actinides. J Hazard Mater 161(2–3):1323–1329

    Article  CAS  Google Scholar 

  33. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 65(1):192–200

    CAS  Google Scholar 

  34. Venkatesan K, Sukumaran V, Antony M, Vasudeva Rao P (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260(3):443–450

    Article  CAS  Google Scholar 

  35. Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175(1–3):393–398

    Article  CAS  Google Scholar 

  36. Ferrah N, Abderrahim O, Didi MA (2015) Comparative study of Cd2+ ions sorption by both Lewatit TP214 and Lewatit TP 208 resins: kinetic. Equilib Thermodyn Model Chem J 5(1):6–13

    Google Scholar 

  37. Lagergren S (1898) Zur theorie der sogenannten adsorption gelo ¨ster stoffe Kungliga venska Vetenskapsakademiens. Handlingar 24(4):1–39

    Google Scholar 

  38. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  39. Srinivasan T, Rao P, Sood D (1997) The effect of temperature on the extraction of uranium(VI) from nitric acid by tri-n-amyl phosphate. Solvent Extr Ion Exch 15:15–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. M. Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khawassek, Y.M., Masoud, A.M., Taha, M.H. et al. Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger. J Radioanal Nucl Chem 315, 493–502 (2018). https://doi.org/10.1007/s10967-017-5692-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5692-1

Keywords

Navigation