Skip to main content
Log in

High-performance Multilayer Flexible Piezoresistive Pressure Sensor with Bionic Hierarchical and Anisotropic Structure

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Flexible pressure sensor that enables detection of multimodal signals has greater advantages in human–computer interaction, medical/health care, and other applications. To make a versatile flexible pressure sensor, hierarchical and anisotropy structure are key features to improve sensing performance and realize multi-signal detection. However, traditional flexible sensors usually have narrow linear range and single signal detection capability. Herein, a highly sensitive flexible piezoresistive pressure sensor which has broad linear range of pressure is developed by replicating one dimensional microstructures from reed leaf and using multilayer superposition of micropatterned polydimethylsiloxane (m-PDMS). Through superposing 4 layers of parallel micropatterned constructive substrates, the multilayer piezoresistive pressure sensor exhibits a high sensitivity of 2.54 kPa−1, a fast response time of 30 ms, and a broad linear range of 107 kPa. The flexible piezoresistive pressure sensor is also highly robust: there is no fatigue after testing for at least 1000 cycles. Due to the specific anisotropy of the micro-structure, the sensor can measure the tangential force in different directions. It permits multimode signal detection, including pressure, tangential force, and deformation. The versatile flexible pressure sensor enables effective monitoring of multisignals, it reveals great potential for medical and health care, flexible human–computer interaction, and intelligent robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ling, Y. Z., An, T. C., Yap, L. W., Zhu, B. W., Gong, S., & Chen, W. L. (2020). Disruptive, soft, wearable sensors. Advanced Materials, 32, 1904664.

    Article  Google Scholar 

  2. Someya, T., & Amagai, M. (2019). Toward a new generation of smart skins. Nature Biotechnology, 37, 382–388.

    Article  Google Scholar 

  3. Zhao, X. F., Hang, C. Z., Lu, H. L., Xu, K., Zhang, H., Yang, F., Ma, R. G., Wang, J. C., & Zhang, D. W. (2020). A skin-like sensor for intelligent braille recognition. Nano Energy, 68, 104346.

    Article  Google Scholar 

  4. Schwartz, G., Tee, B. C. K., Mei, J. G., Appleton, A. L., Kim, D. H., Wang, H. L., & Bao, Z. N. (2013). Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications, 4, 1859.

    Article  Google Scholar 

  5. Chen, S. W., Wu, N., Ma, L., Lin, S. Z., Yuan, F., Xu, Z. S., Li, W. B., Wang, B., & Zhou, J. (2018). Noncontact heartbeat and respiration monitoring based on a hollow microstructured self-powered pressure sensor. ACS Applied Materials & Interfaces, 10, 3660–3667.

    Article  Google Scholar 

  6. Zhu, B. W., Ling, Y. Z., Yap, L. W., Yang, M. J., Lin, F. G., Gong, S., Wang, Y., An, T., Zhao, Y. M., & Cheng, W. L. (2019). Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Applied Materials & Interfaces, 11, 29014–29021.

    Article  Google Scholar 

  7. Wang, X. W., Gu, Y., Xiong, Z. P., Cui, Z., & Zhang, T. (2014). Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Advanced Materials, 26, 1336–1342.

    Article  Google Scholar 

  8. Chen, L. Y., Tee, B. C. K., Chortos, A. L., Schwartz, G., Tse, V., Lipomi, D. J., Wong, H. S. P., McConnell, M. V., & Bao, Z. N. (2014). Continuous wireless pressure monitoring and mapping with ultrasmall passive sensors for health monitoring and critical care. Nature Communications, 5, 5028.

    Article  Google Scholar 

  9. Lin, X. Z., Zhang, T., Cao, J. H., Wen, H., Fei, T., Liu, S., Wang, R., Ren, H., & Zhao, H. R. (2020). Flexible piezoresistive sensors based on conducting polymer-coated fabric applied to human physiological signals monitoring. Journal of Bionic Engineering, 17, 55–63.

    Article  Google Scholar 

  10. Yang, B. S., Chen, W. H., Zhou, X. H., Meng, F. D., Chen, C. Y., Liu, Q., Li, Q., Wang, X., Xu, P., Lei, Y. F., & Xue, L. J. (2021). Strong and crack-resistant hydrogel derived from pomelo peel for highly sensitive wearable sensors. Chemical Engineering Journal, 431, 134094.

    Article  Google Scholar 

  11. Zubizarreta, M. E., & Xiao, S. (2020). Bioengineering models of female reproduction. Bio-Design and Manufacturing, 3, 237–251.

    Article  Google Scholar 

  12. Heng, W. Z., Yang, G., Kim, W. S., & Xu, K. C. (2022). Emerging wearable flexible sensors for sweat analysis. Bio-Design and Manufacturing, 5, 64–84.

    Article  Google Scholar 

  13. You, I. S., Mackanic, D. G., Matsuhisa, N. J., Kang, J. H., Kwon, J. M., Beker, L. V., Mun, J. W., Suh, W. J., Kim, T. Y., Tok, J. B. H., Bao, Z. N., & Jeong, U. Y. (2020). Artificial multimodal receptors based on ion relaxation dynamics. Science, 370, 961–965.

    Article  Google Scholar 

  14. Boutry, C. M., Negre, M., Jorda, M. K., Vardoulis, O. T., Chortos, A., Khatib, O. S., & Bao, Z. N. (2018). A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics, 3, eaau6914.

    Article  Google Scholar 

  15. Wang, C. Y., Xia, K. L., Wang, H. M., Liang, X. P., Yin, Z., & Zhang, Y. Y. (2019). Advanced carbon for flexible and wearable electronics. Advanced Materials, 31, 1801072.

    Article  Google Scholar 

  16. Ha, T. W., Tran, J. S., Liu, S. Y., Jang, H. W., Jeong, H. Y., Mitbander, R. C., Huh, H. Y., Qiu, Y. T., Duong, J. S., Wang, R. L., Wang, P. L., Tandon, A. M., Sirohi, J. Y., & Lu, N. S. (2019). A chest-laminated ultrathin and stretchable etattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Advanced Science, 6, 1900290.

    Article  Google Scholar 

  17. Cao, Y., Tan, Y. J., Li, S., Lee, W. W., Guo, H. C., Cai, Y. Q., Wang, C., & Tee, B. C. K. (2019). Self-healing electronic skins for aquatic environments. Nature Electronics, 2, 75–82.

    Article  Google Scholar 

  18. Osica, I. B., Imamura, G. K., Shiba, K. T., Ji, Q. M., Shrestha, L. K., Hill, J. P., Kurzydłowski, K. J., Yoshikawa, G. K., & Ariga, K. S. (2017). Highly networked capsular silica-porphyrin hybrid nanostructures as efficient materials for acetone vapor sensing. ACS Applied Materials & Interfaces, 9, 9945–9954.

    Article  Google Scholar 

  19. Pang, C. H., Lee, G.-Y., Kim, T.-I., Kim, S. M., Kim, H. N., Ahn, S.-H., & Suh, K.-Y. (2012). A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials, 11, 795–801.

    Article  Google Scholar 

  20. Pan, L. J., Chortos, A., Yu, G. H., Wang, Y. Q., Isaacson, S., Allen, R., Shi, Y., Dauskardt, R., & Bao, Z. N. (2014). An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 5, 3002.

    Article  Google Scholar 

  21. Ji, Q. M., Honma, I., Paek, S.-M., Akada, M., Hill, J. P., Vinu, A., & Ariga, K. (2010). Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angewandte Chemie International Edition, 49, 9737–9739.

    Article  Google Scholar 

  22. Choong, C.-L., Shim, M.-B., Lee, B.-S., Jeon, S. H., Ko, D.-S., Kang, T.-H., Bae, J. Y., Lee, S. H., Byun, K.-E., Im, J. K., Jeong, Y. J., Park, C. E., Park, J.-J., & Chung, U.-I. (2014). Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Advanced Materials, 26, 3451–3458.

    Article  Google Scholar 

  23. She, X. Y., Shen, Y., Wang, J. F., & Jin, C. J. (2019). Pd films on soft substrates: a visual, high-contrast and low-cost optical hydrogen sensor. Light: Science & Applications, 8, 4.

    Article  Google Scholar 

  24. Park, J. H., Lee, Y., Hong, J., Ha, M., Jung, Y.-D., Lim, H., Kim, S. Y., & Ko, H. (2014). Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 8, 4689–4697.

    Article  Google Scholar 

  25. Yesilkoy, F., Terborg, R. A., Pello, J., Belushkin, A. A., Jahani, Y., Pruneri, V., & Altug, H. (2018). Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light: Science & Applications, 7, 17152.

    Article  Google Scholar 

  26. Zhang, Y.-L., Chen, Q.-D., Xia, H., & Sun, H.-B. (2010). Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 5, 435–448.

    Article  Google Scholar 

  27. Mannsfeld, S. C. B., Tee, B. C. K., Stoltenberg, R. M., Chen, C. V. H. H., Barman, S., Muir, B. V. O., Sokolov, A. N., Reese, C., & Bao, Z. N. (2010). Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 9, 859.

    Article  Google Scholar 

  28. Tee, B. C. K., Chortos, A., Dunn, R. R., Schwartz, G., Eason, E., & Bao, Z. N. (2014). Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Advanced Functional Materials, 24, 5427.

    Article  Google Scholar 

  29. Yang, J. C., Kim, J.-O., Oh, J., Kwon, S. Y., Sim, J. Y., Kim, D. W., Choi, H. B., & Park, S. (2019). Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Applied Materials & Interfaces, 11, 19472.

    Article  Google Scholar 

  30. Yang, J., Luo, S., Zhou, X., Li, J. L., Fu, J. T., Yang, W. D., & Wei, D. P. (2019). Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Applied Materials & Interfaces, 11, 14997.

    Article  Google Scholar 

  31. Nie, P., Wang, R. R., Xu, X. J., Cheng, Y., Wang, X., Shi, L. J., & Sun, J. (2017). High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Applied Materials & Interfaces, 9, 14911.

    Article  Google Scholar 

  32. Zhao, X. L., Hua, Q. L., Yu, R. M., Zhang, Y., & Pan, C. F. (2015). Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Advanced Electronic Materials, 1, 1500142.

    Article  Google Scholar 

  33. Trung, T. Q., & Lee, N. E. (2016). Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Advanced Materials, 28, 4338.

    Article  Google Scholar 

  34. Park, J., Kim, J., Hong, J., Lee, H., Lee, Y., Cho, S., Kim, S. W., Kim, J. J., Kim, S. Y., & Ko, H. (2018). Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Materials, 10, 163.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of National Key Research and Development Program of China (2018YFC2001300), the National Natural Science Foundation of China (52175271, 51822504, 52021003, 52105299, 51905207, 91948302), Science and technology development plan project of Jilin Province (20210508057RQ), Program for JLU Science and Technology Innovative Research Team (2017TD-04), and Scientific Research Project of Education Department of Jilin Province (JJKH20211084KJ)

Author information

Authors and Affiliations

Authors

Contributions

MW, SM and ZL: designed the experiments. MW, YY and YL: performed the experiments. MW, SM and ZL: performed the data analysis. MW and SM: co-wrote the paper. ZH and LR: reviewed and edited the manuscript. CL: checked and revised the English grammar and diction of the article, and also modified the format of the references. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Suqian Ma or Zhaohua Lin.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2411 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yu, Y., Liang, Y. et al. High-performance Multilayer Flexible Piezoresistive Pressure Sensor with Bionic Hierarchical and Anisotropic Structure. J Bionic Eng 19, 1439–1448 (2022). https://doi.org/10.1007/s42235-022-00219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00219-8

Keywords

Navigation