Skip to main content
Log in

Emerging wearable flexible sensors for sweat analysis

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Sweat, as a biofluid with the potential for noninvasive collection, provides profound insights into human health conditions, because it contains various chemicals and information to be utilized for the monitoring of well-being, stress levels, exercise, and nutrition. Recently, wearable sweat sensors have been developed as a promising substitute to conventional laboratory sweat detection methods. Such sensors are promising to realize low-cost, real-time, in situ sweat measurements, and provide great opportunities for health status evaluation analysis based on personalized big data. This review first presents an overview of wearable sweat sensors from the perspective of basic components, including materials and structures for specific sensing applications and modalities. Current strategies and specific methods of the fabrication of wearable power management are also summarized. Finally, current challenges and future directions of wearable sweat sensors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu Y, Suh MJ, Sikorski P et al (2014) Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem 86(11):5470–5477. https://doi.org/10.1021/ac5008317

    Article  Google Scholar 

  2. Torrente-Rodríguez RM, Lukas H, Tu J et al (2020) SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 3(6):1981–1998. https://doi.org/10.1016/j.matt.2020.09.027

    Article  Google Scholar 

  3. Farandos NM, Yetisen AK, Monteiro MJ et al (2015) Contact lens sensors in ocular diagnostics. Adv Healthcare Mater 4(6):792–810. https://doi.org/10.1002/adhm.201400504

    Article  Google Scholar 

  4. Kim J, Sempionatto JR, Imani S et al (2018) Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci 5(10):1800880. https://doi.org/10.1002/advs.201800880

    Article  Google Scholar 

  5. Kim J, Campbell AS, de Ávila BEF et al (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37(4):389–406. https://doi.org/10.1038/s41587-019-0045-y

    Article  Google Scholar 

  6. Jessen C (2001) Temperature regulation in humans and other mammals. Springer, Berlin

    Book  Google Scholar 

  7. Xu K, Lu Y, Takei K (2021) Flexible hybrid sensor systems with feedback functions. Adv Funct Mater 31(39):2007436. https://doi.org/10.1002/adfm.202007436

    Article  Google Scholar 

  8. Lu Y, Fujita Y, Honda S et al (2021) Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv Healthcare Mater 10(17):2100103. https://doi.org/10.1002/adhm.202100103

  9. Yang G, Deng J, Pang G et al (2018) An IoT-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE J Transl Eng Health Med 6:1–10. https://doi.org/10.1109/JTEHM.2018.2822681

    Article  Google Scholar 

  10. Xu K, Lu Y, Takei K (2019) Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 4(3):1800628. https://doi.org/10.1002/admt.201800628

    Article  Google Scholar 

  11. Heng W, Pang G, Xu F et al (2019) Flexible insole sensors with stably connected electrodes for gait phase detection. Sensors 19(23):5197. https://doi.org/10.3390/s19235197

    Article  Google Scholar 

  12. Yang G, Pang G, Pang Z et al (2019) Non-invasive flexible and stretchable wearable sensors with nano-based enhancement for chronic disease care. IEEE Rev Biomed Eng 12:34–71. https://doi.org/10.1109/RBME.2018.2887301

    Article  Google Scholar 

  13. Yang Y, Song Y, Bo X et al (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38(2):217–224. https://doi.org/10.1038/s41587-019-0321-x

    Article  Google Scholar 

  14. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327(5973):1603–1607. https://doi.org/10.1126/science.1182383

    Article  Google Scholar 

  15. Wang G, Zhang S, Dong S et al (2019) Stretchable optical sensing patch system integrated heart rate, pulse oxygen saturation, and sweat pH detection. IEEE Trans Biomed Eng 66(4):1000–1005. https://doi.org/10.1109/TBME.2018.2866151

    Article  Google Scholar 

  16. Wang C, Wang C, Huang Z et al (2018) Materials and structures toward soft electronics. Adv Mater 30(50):1801368. https://doi.org/10.1002/adma.201801368

    Article  Google Scholar 

  17. Li BM, Kim I, Zhou Y et al (2019) Kirigami-inspired textile electronics: K.I.T.E. Adv Mater Technol 4(11):1900511. https://doi.org/10.1002/admt.201900511

    Article  Google Scholar 

  18. Ning X, Wang X, Zhang Y et al (2018) Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review. Adv Mater Interf 5(13):1800284. https://doi.org/10.1002/admi.201800284

    Article  Google Scholar 

  19. He W, Wang C, Wang H et al (2019) Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci Adv 5(11):eaax0649. https://doi.org/10.1126/sciadv.aax0649

    Article  MathSciNet  Google Scholar 

  20. Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24(37):5117–5122. https://doi.org/10.1002/adma.201201886

    Article  Google Scholar 

  21. Kaltenbrunner M, Sekitani T, Reeder J et al (2013) An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459):458–463. https://doi.org/10.1038/nature12314

    Article  Google Scholar 

  22. Zhang H, Xiang L, Yang Y et al (2018) High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil. ACS Nano 12(3):2773–2779. https://doi.org/10.1021/acsnano.7b09145

    Article  Google Scholar 

  23. Wang L, Wang L, Zhang Y et al (2018) Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater 28(42):1804456. https://doi.org/10.1002/adfm.201804456

    Article  Google Scholar 

  24. Chan EP, Smith EJ, Hayward RC et al (2008) Surface wrinkles for smart adhesion. Adv Mater 20(4):711–716. https://doi.org/10.1002/adma.200701530

    Article  Google Scholar 

  25. Kim K, Kim SU, Choi S et al (2020) High-definition optophysical image construction using mosaics of pixelated wrinkles. Adv Sci 7(24):2002134. https://doi.org/10.1002/advs.202002134

    Article  Google Scholar 

  26. Toi PT, Trung TQ, Dang TML et al (2019) Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection. ACS Appl Mater Interf 11(11):10707–10717. https://doi.org/10.1021/acsami.8b20583

    Article  Google Scholar 

  27. Mohan AMV, Kim N, Gu Y et al (2017) Merging of thin- and thick-film fabrication technologies: toward soft stretchable “island–bridge” devices. Adv Mater Technol 2(4):1600284. https://doi.org/10.1002/admt.201600284

    Article  Google Scholar 

  28. Song Z, Ma T, Tang R et al (2014) Origami lithium-ion batteries Nat Commun 5(1):1–6. https://doi.org/10.1038/ncomms4140

    Article  Google Scholar 

  29. Hojaiji H, Zhao Y, Gong MC et al (2020) An autonomous wearable system for diurnal sweat biomarker data acquisition. Lab Chip 20(24):4582–4591. https://doi.org/10.1039/D0LC00820F

    Article  Google Scholar 

  30. Heng W, Yang G, Pang G et al (2021) Fluid-driven soft CoboSkin for safer human–robot collaboration: fabrication and adaptation. Adv Intell Syst 3(3):2000038. https://doi.org/10.1002/aisy.202000038

    Article  Google Scholar 

  31. Pang G, Yang G, Heng W et al (2021) CoboSkin: soft robot skin with variable stiffness for safer human–robot collaboration. IEEE Trans Ind Electron 68(4):3303–3314. https://doi.org/10.1109/TIE.2020.2978728

    Article  Google Scholar 

  32. Huang X, Liu Y, Chen K et al (2014) Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10(15):3083–3090. https://doi.org/10.1002/smll.201400483

    Article  Google Scholar 

  33. Ding R, Lisak G (2019) Sponge-based microfluidic sampling for potentiometric ion sensing. Anal Chim Acta 1091:103–111. https://doi.org/10.1016/j.aca.2019.09.024

    Article  Google Scholar 

  34. Xu K, Lu Y, Yamaguchi T et al (2019) Highly precise multifunctional thermal management-based flexible sensing sheets. ACS Nano 13(12):14348–14356. https://doi.org/10.1021/acsnano.9b07805

    Article  Google Scholar 

  35. Lu Y, Xu K, Yang MQ et al (2021) Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz 6(3):260–270. https://doi.org/10.1039/D0NH00594K

    Article  Google Scholar 

  36. Imani S, Bandodkar AJ, Mohan AMV et al (2016) A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun 7(1):1–7. https://doi.org/10.1038/ncomms11650

    Article  Google Scholar 

  37. Nakata S, Shiomi M, Fujita Y et al (2018) A wearable pH sensor with high sensitivity based on a flexible charge-coupled device. Nat Electron 1(11):596–603. https://doi.org/10.1038/s41928-018-0162-5

    Article  Google Scholar 

  38. Xu K, Fujita Y, Lu Y et al (2021) A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater 33(18):2008701. https://doi.org/10.1002/adma.202008701

    Article  Google Scholar 

  39. Yang H, Xu K, Xu C et al (2019) Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency. Nanoscale Res Lett 14(1):1–10. https://doi.org/10.1186/s11671-019-3140-6

    Article  MathSciNet  Google Scholar 

  40. Reeder JT, Choi J, Xue Y et al (2019) Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci Adv 5(1):eaau6356. https://doi.org/10.1126/sciadv.aau6356

    Article  Google Scholar 

  41. Zhao Y, Wang B, Hojaiji H et al (2020) A wearable freestanding electrochemical sensing system. Sci Adv 6(12):eaaz0007. https://doi.org/10.1126/sciadv.aaz0007

    Article  Google Scholar 

  42. Zhao Z, Li Q, Chen L et al (2021) A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab Chip 21(5):916–932. https://doi.org/10.1039/D0LC01075H

    Article  Google Scholar 

  43. Xu K, Zhou R, Takei K et al (2019) Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv Sci 6(16):1900925. https://doi.org/10.1002/advs.201900925

    Article  Google Scholar 

  44. Li H, Cheng F, Robledo-Lara JA et al (2020) Fabrication of paper-based devices for in vitro tissue modeling. Bio-Des Manuf 3:252–265. https://doi.org/10.1007/s42242-020-00077-5

    Article  Google Scholar 

  45. Liang B, Cao Q, Mao X et al (2021) An integrated paper-based microfluidic device for real-time sweat potassium monitoring. IEEE Sens J 21(8):9642–9648. https://doi.org/10.1109/JSEN.2020.3009327

    Article  Google Scholar 

  46. Li M, Wang L, Liu R et al (2021) A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens Bioelectron 174:112828. https://doi.org/10.1016/j.bios.2020.112828

    Article  Google Scholar 

  47. Sato K, Kang WH, Saga K et al (1989) Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 20:537–563. https://doi.org/10.1016/S0190-9622(89)70063-3

    Article  Google Scholar 

  48. Yang Y, Gao W (2019) Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 48(6):1465–1491. https://doi.org/10.1039/C7CS00730B

    Article  Google Scholar 

  49. Lee H, Choi TK, Lee YB et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11(6):566–572. https://doi.org/10.1038/nnano.2016.38

    Article  Google Scholar 

  50. Zhang J, Xu J, Lim J et al (2021) Wearable glucose monitoring and implantable drug delivery systems for diabetes management. Adv Healthcare Mater 10(17):2100194. https://doi.org/10.1002/adhm.202100194

  51. Kim SB, Lee K, Raj MS et al (2018) Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition. Small 14(45):1802876. https://doi.org/10.1002/smll.201802876

    Article  Google Scholar 

  52. Sempionatto JR, Lin M, Yin L et al (2021) An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat Biomed Eng 5:737–748. https://doi.org/10.1038/s41551-021-00685-1

    Article  Google Scholar 

  53. Kidwell DA, Holland JC, Athanaselis S (1998) Testing for drugs of abuse in saliva and sweat. J Chromatogr B Biomed Sci Appl 713(1):111–135. https://doi.org/10.1016/S0378-4347(97)00572-0

    Article  Google Scholar 

  54. Torrente-Rodríguez RM, Tu J, Yang Y et al (2020) Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2(4):921–937. https://doi.org/10.1016/j.matt.2020.01.021

    Article  Google Scholar 

  55. Madhu S, Anthuuvan AJ, Ramasamy S et al (2020) ZnO nanorod integrated flexible carbon fibers for sweat cortisol detection. ACS Appl Electron Mater 2(2):499–509. https://doi.org/10.1021/acsaelm.9b00730

    Article  Google Scholar 

  56. Amjadi M, Kyung KU, Park I et al (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26(11):1678–1698. https://doi.org/10.1002/adfm.201504755

    Article  Google Scholar 

  57. Zhou W, Yao S, Wang H et al (2020) Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5):5798–5805. https://doi.org/10.1021/acsnano.0c00906

    Article  Google Scholar 

  58. Yu Y, Nyein HYY, Gao W et al (2020) Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv Mater 32(15):1902083. https://doi.org/10.1002/adma.201902083

    Article  Google Scholar 

  59. Bariya M, Nyein HYY, Javey A (2018) Wearable sweat sensors Nat Electron 1(3):160–171. https://doi.org/10.1038/s41928-018-0043-y

    Article  Google Scholar 

  60. Parrilla M, Cuartero M, Crespo GA (2019) Wearable potentiometric ion sensors. TrAC Trends Anal Chem 110:303–320. https://doi.org/10.1016/j.trac.2018.11.024

    Article  Google Scholar 

  61. Zhai Q, Yap LW, Wang R et al (2020) Vertically aligned gold nanowires as stretchable and wearable epidermal ion-selective electrode for noninvasive multiplexed sweat analysis. Anal Chem 92(6):4647–4655. https://doi.org/10.1021/acs.analchem.0c00274

    Article  Google Scholar 

  62. Oh SY, Hong SY, Jeong YR et al (2018) Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl Mater Interf 10(16):13729–13740. https://doi.org/10.1021/acsami.8b03342

    Article  Google Scholar 

  63. Bai YF, Xu TB, Luong JHT et al (2014) Direct electron transfer of glucose oxidase-boron doped diamond interface: a new solution for a classical problem. Anal Chem 86(10):4910–4918. https://doi.org/10.1021/ac501143e

    Article  Google Scholar 

  64. Hui X, Sharifuzzaman M, Sharma S et al (2020) High-performance flexible electrochemical heavy metal sensor based on layer-by-layer assembly of Ti3C2Tx /MWNTs nanocomposites for noninvasive detection of copper and zinc ions in human biofluids. ACS Appl Mater Interf 12(43):48928–48937. https://doi.org/10.1021/acsami.0c12239

    Article  Google Scholar 

  65. Kinnamon D, Ghanta R, Lin KC et al (2017) Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci Rep 7(1):13312. https://doi.org/10.1038/s41598-017-13684-7

    Article  Google Scholar 

  66. Ganguly A, Lin KC, Muthukumar S et al (2021) Autonomous, real-time monitoring electrochemical aptasensor for circadian tracking of cortisol hormone in sub-microliter volumes of passively eluted human sweat. ACS Sens 6(1):63–72. https://doi.org/10.1021/acssensors.0c01754

    Article  Google Scholar 

  67. Gao W, Emaminejad S, Nyein HYY et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514. https://doi.org/10.1038/nature16521

    Article  Google Scholar 

  68. Emaminejad S, Gao W, Wu E et al (2017) Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci 114(18):4625–4630. https://doi.org/10.1073/pnas.1701740114

    Article  Google Scholar 

  69. Anastasova S, Crewther B, Bembnowicz P et al (2017) A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron 93:139–145. https://doi.org/10.1016/j.bios.2016.09.038

    Article  Google Scholar 

  70. Guinovart T, Bandodkar AJ, Windmiller JR et al (2013) A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 138(22):7031–7038. https://doi.org/10.1039/C3AN01672B

    Article  Google Scholar 

  71. Nyein HYY, Gao W, Shahpar Z et al (2016) A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10(7):7216–7224. https://doi.org/10.1021/acsnano.6b04005

    Article  Google Scholar 

  72. Amatore C, Szunerits S, Thouin L (2000) Mapping concentration profiles within the diffusion layer of an electrode Part II. Potentiometric measurements with an ultramicroelectrode. Electrochem Commun 2(4):248–253. https://doi.org/10.1016/S1388-2481(00)00016-3

    Article  Google Scholar 

  73. Alizadeh A, Burns A, Lenigk R et al (2018) A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip 18(17):2632–2641. https://doi.org/10.1039/C8LC00510A

    Article  Google Scholar 

  74. Yu Y, Nassar J, Xu C et al (2020) Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 5(41):eaaz7946. https://doi.org/10.1126/scirobotics.aaz7946

    Article  Google Scholar 

  75. Bariya M, Li L, Ghattamaneni R et al (2020) Glove-based sensors for multimodal monitoring of natural sweat. Sci Adv 6(35):eabb8308. https://doi.org/10.1126/sciadv.abb8308

    Article  Google Scholar 

  76. Xu Y, Zhao G, Zhu L et al (2020) Pencil–paper on-skin electronics. Proc Natl Acad Sci 117(31):18292–18301. https://doi.org/10.1073/pnas.2008422117

    Article  Google Scholar 

  77. Kim J, Jeerapan I, Imani S et al (2016) Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens 1(8):1011–1019. https://doi.org/10.1021/acssensors.6b00356

    Article  Google Scholar 

  78. Windmiller JR, Bandodkar AJ, Valdés-Ramírez G et al (2012) Electrochemical sensing based on printable temporary transfer tattoos. Chem Commun 48(54):6794–6796. https://doi.org/10.1039/c2cc32839a

    Article  Google Scholar 

  79. Jia W, Bandodkar AJ, Valdés-Ramírez G et al (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85(14):6553–6560. https://doi.org/10.1021/ac401573r

    Article  Google Scholar 

  80. Gao W, Nyein HYY, Shahpar Z et al (2016) Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens 1(17):866–874. https://doi.org/10.1021/acssensors.6b00287

    Article  Google Scholar 

  81. Lin S, Wang B, Yu W et al (2020) Design framework and sensing system for noninvasive wearable electroactive drug monitoring. ACS Sens 5(1):265–273. https://doi.org/10.1021/acssensors.9b02233

    Article  Google Scholar 

  82. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825. https://doi.org/10.1021/cr068123a

    Article  Google Scholar 

  83. Cheng X, Wang B, Zhao Y et al (2020) A mediator-free electroenzymatic sensing methodology to mitigate ionic and electroactive interferents’ effects for reliable wearable metabolite and nutrient monitoring. Adv Funct Mater 30(10):1908507. https://doi.org/10.1002/adfm.201908507

    Article  Google Scholar 

  84. Martín A, Kim J, Kurniawan JF et al (2017) Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens 2(12):1860–1868. https://doi.org/10.1021/acssensors.7b00729

    Article  Google Scholar 

  85. Teymourian H, Barfidokht A, Wang J (2020) Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev 49:7671–7709. https://doi.org/10.1039/D0CS00304B

    Article  Google Scholar 

  86. Tai LC, Ahn CH, Nyein HYY et al (2020) Nicotine monitoring with a wearable sweat band. ACS Sens 5(6):1831–1837. https://doi.org/10.1021/acssensors.0c00791

    Article  Google Scholar 

  87. Xu G, Cheng C, Liu Z et al (2019) Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis. Adv Mater Technol 4(7):1800658. https://doi.org/10.1002/admt.201800658

    Article  Google Scholar 

  88. Bandodkar AJ, Hung VWS, Jia W et al (2013) Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138(1):123–128. https://doi.org/10.1039/C2AN36422K

    Article  Google Scholar 

  89. Zhao Y, Zhai Q, Dong D et al (2019) Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal Chem 91(10):6569–6576. https://doi.org/10.1021/acs.analchem.9b00152

    Article  Google Scholar 

  90. Kim S, Lee B, Reeder JT et al (2020) Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci 117(45):27906–27915. https://doi.org/10.1073/pnas.2012700117

    Article  Google Scholar 

  91. Nyein HYY, Tai LC, Ngo QP et al (2018) A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens 3(5):944–952. https://doi.org/10.1021/acssensors.7b00961

    Article  Google Scholar 

  92. Rose DP, Ratterman ME, Griffin DK et al (2015) Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans Biomed Eng 62(6):1457–1465. https://doi.org/10.1109/TBME.2014.2369991

    Article  Google Scholar 

  93. Xiao G, He J, Chen X et al (2019) A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose 26(7):4553–4562. https://doi.org/10.1007/s10570-019-02396-y

    Article  Google Scholar 

  94. Kwon K, Kim JU, Deng Y et al (2021) An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat Electron 4(4):302–312. https://doi.org/10.1038/s41928-021-00556-2

    Article  Google Scholar 

  95. Lin S, Yu W, Wang B et al (2020) Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics. Proc Natl Acad Sci 117(32):19017–19025. https://doi.org/10.1073/pnas.2009979117

    Article  Google Scholar 

  96. Ghaffari R, Choi J, Raj MS et al (2020) Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv Funct Mater 30(37):1907269. https://doi.org/10.1002/adfm.201907269

    Article  Google Scholar 

  97. Kim SB, Zhang Y, Won SM et al (2018) Super-absorbent polymer valves and colorimetric chemistries for time-sequenced discrete sampling and chloride analysis of sweat via skin-mounted soft microfluidics. Small 14(12):1703334. https://doi.org/10.1002/smll.201703334

    Article  Google Scholar 

  98. Promphet N, Rattanawaleedirojn P, Siralertmukul K et al (2019) Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta 192:424–430. https://doi.org/10.1016/j.talanta.2018.09.086

    Article  Google Scholar 

  99. Vaquer A, Barón E, de la Rica R (2021) Wearable analytical platform with enzyme-modulated dynamic range for the simultaneous colorimetric detection of sweat volume and sweat biomarkers. ACS Sens 6(1):130–136. https://doi.org/10.1021/acssensors.0c01980

    Article  Google Scholar 

  100. He J, Xiao G, Chen X et al (2019) A thermoresponsive microfluidic system integrating a shape memory polymer-modified textile and a paper-based colorimetric sensor for the detection of glucose in human sweat. RSC Adv 9(41):23957–23963. https://doi.org/10.1039/C9RA02831E

    Article  Google Scholar 

  101. Koh A, Kang D, Xue Y et al (2016) A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 8(366):366ra165. https://doi.org/10.1126/scitranslmed.aaf2593

    Article  Google Scholar 

  102. Bandodkar AJ, Gutruf P, Choi J et al (2019) Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv 5(1):eaav3294. https://doi.org/10.1126/sciadv.aav3294

    Article  Google Scholar 

  103. Choi J, Bandodkar AJ, Reeder JT et al (2019) Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens 4(2):379–388. https://doi.org/10.1021/acssensors.8b01218

    Article  Google Scholar 

  104. Sekine Y, Kim SB, Zhang Y et al (2018) A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip 18(15):2178–2186. https://doi.org/10.1039/C8LC00530C

    Article  Google Scholar 

  105. Morris NB, Cramer MN, Hodder SG et al (2013) A comparison between the technical absorbent and ventilated capsule methods for measuring local sweat rate. J Appl Physiol 114(6):816–823. https://doi.org/10.1152/japplphysiol.01088.2012

    Article  Google Scholar 

  106. Parrilla M, Guinovart T, Ferré J et al (2019) A wearable paper-based sweat sensor for human perspiration monitoring. Adv Healthcare Mater 8(16):1900342. https://doi.org/10.1002/adhm.201900342

    Article  Google Scholar 

  107. Reeder JT, Xue Y, Franklin D et al (2019) Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback. Nat Commun 10(1):1–12. https://doi.org/10.1038/s41467-019-13431-8

    Article  Google Scholar 

  108. Nyein HYY, Bariya M, Tran B et al (2021) A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat Commun 12(1):1–13. https://doi.org/10.1038/s41467-021-22109-z

    Article  Google Scholar 

  109. Choi DH, Gonzales M, Kitchen GB et al (2020) A capacitive sweat rate sensor for continuous and real-time monitoring of sweat loss. ACS Sens 5(12):3821–3826. https://doi.org/10.1021/acssensors.0c01219

    Article  Google Scholar 

  110. Choi J, Xue Y, Xia W et al (2017) Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab Chip 17(15):2572–2580. https://doi.org/10.1039/C7LC00525C

    Article  Google Scholar 

  111. He Q, Das SR, Garland NT et al (2017) Enabling inkjet printed graphene for ion selective electrodes with postprint thermal annealing. ACS Appl Mater Interf 9(14):12719–12727. https://doi.org/10.1021/acsami.7b00092

    Article  Google Scholar 

  112. Zoerner A, Oertel S, Jank MPM et al (2018) Human sweat analysis using a portable device based on a screen-printed electrolyte sensor. Electroanalysis 30(4):665–671. https://doi.org/10.1002/elan.201700672

    Article  Google Scholar 

  113. Abrar M, Dong Y, Lee P et al (2016) Bendable electro-chemical lactate sensor with printed silver nano ink. Sci Rep 6(1):1–9. https://doi.org/10.1038/srep30565

    Article  Google Scholar 

  114. Dong Y, Min X, Kim WS (2018) A 3D printed integrated electro-chemical sensor system. IEEE Sens J 18(7):2959–2966. https://doi.org/10.1109/JSEN.2018.2801459

    Article  Google Scholar 

  115. Nyein HYY, Bariya M, Kivimäki L et al (2019) Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci Adv 5(8):eaaw9906. https://doi.org/10.1126/sciadv.aaw9906

    Article  Google Scholar 

  116. Xu J, Zhang Z, Gan S et al (2020) Highly stretchable fiber-based potentiometric ion sensors for multichannel real-time analysis of human sweat. ACS Sens 5(9):2834–2842. https://doi.org/10.1021/acssensors.0c00960

    Article  Google Scholar 

  117. Su R, Wen J, Su Q et al (2020) 3D printed self-supporting elastomeric structures for multifunctional microfluidics. Sci Adv 6(41):eabc9846. https://doi.org/10.1126/sciadv.abc9846

    Article  Google Scholar 

  118. Mehta V, Rath SN (2021) 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des Manuf 4:311–343. https://doi.org/10.1007/s42242-020-00112-5

    Article  Google Scholar 

  119. Francis J, Stamper I, Heikenfeld J et al (2018) Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement. Lab Chip 19(1):178–185. https://doi.org/10.1039/C8LC00968F

    Article  Google Scholar 

  120. Ouyang H, Jiang D, Fan Y et al (2021) Self-powered technology for next-generation biosensor. Sci Bull 66(17):1709–1712. https://doi.org/10.1016/j.scib.2021.04.035

    Article  Google Scholar 

  121. Zou Y, Bo L, Li Z (2021) Recent progress in human body energy harvesting for smart bioelectronic system. Fundam Res 1(3):364–382. https://doi.org/10.1016/j.fmre.2021.05.002

    Article  Google Scholar 

  122. Tan P, Zou Y, Fan Y et al (2020) Self-powered wearable electronics. Wearable Technol 1:e5. https://doi.org/10.1017/wtc.2020.3

    Article  Google Scholar 

  123. Gu X, Zhou Y, Gu K et al (2017) Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Adv Energy Mater 7(14):1602742. https://doi.org/10.1002/aenm.201602742

    Article  Google Scholar 

  124. Zhao J, Lin Y, Wu J et al (2019) A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens 4(7):1925–1933. https://doi.org/10.1021/acssensors.9b00891

    Article  Google Scholar 

  125. Luo J, Gao W, Wang ZL (2021) The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv Mater 33(17):2004178. https://doi.org/10.1002/adma.202004178

    Article  Google Scholar 

  126. Song Y, Min J, Yu Y et al (2020) Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 6(40):eaay9842. https://doi.org/10.1126/sciadv.aay9842

    Article  Google Scholar 

  127. Yin L, Moon JM, Sempionatto JR et al (2021) A passive perspiration biofuel cell: high energy return on investment. Joule 5(7):1888–1904. https://doi.org/10.1016/j.joule.2021.06.004

    Article  Google Scholar 

  128. Yeknami AF, Wang X, Jeerapan I et al (2018) A 0.3-V CMOS biofuel-cell-powered wireless glucose/lactate biosensing system. IEEE J Solid-State Circ 53(11):3126–3139. https://doi.org/10.1109/JSSC.2018.2869569

    Article  Google Scholar 

  129. Yin L, Kim KN, Lv J et al (2021) A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat Commun 12(1):1–12. https://doi.org/10.1038/s41467-021-21701-7

    Article  Google Scholar 

  130. Jing Y, Wang A, Li J et al (2021) Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des Manuf. https://doi.org/10.1007/s42242-021-00143-6

    Article  Google Scholar 

  131. Chen H, Zhang Y, Zhang L et al (2021) Applications of bioinspired approaches and challenges in medical devices. Bio-Des Manuf 4:146–148. https://doi.org/10.1007/s42242-020-00103-6

    Article  Google Scholar 

  132. Heikenfeld J, Jajack A, Feldman B et al (2019) Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 37(4):407–419. https://doi.org/10.1038/s41587-019-0040-3

    Article  Google Scholar 

  133. Huang X, Li J, Liu Y et al (2021) Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Des Manuf. https://doi.org/10.1007/s42242-021-00156-1

    Article  Google Scholar 

  134. Bandodkar AJ, Jeang WJ, Ghaffari R et al (2019) Wearable sensors for biochemical sweat analysis. Annu Rev Anal Chem 12:1–22. https://doi.org/10.1146/annurev-anchem-061318-114910

    Article  Google Scholar 

  135. Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1(10):0076. https://doi.org/10.1038/s41570-017-0076

    Article  Google Scholar 

  136. Parrilla M, Ferré J, Guinovart T et al (2016) Wearable potentiometric sensors based on commercial carbon fibres for monitoring sodium in sweat. Electroanalysis 28(6):1267–1275. https://doi.org/10.1002/elan.201600070

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 51975513 and 52105593), the Natural Science Foundation of Zhejiang Province, China (No. LR20E050003), and the Major Research Plan of Ningbo Innovation 2025 (No. 2020Z022).

Author information

Authors and Affiliations

Authors

Contributions

WZH was involved in writing the original draft; GY, WSK, and KCX had contributed to writing, reviewing, and editing.

Corresponding authors

Correspondence to Geng Yang or Kaichen Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, W., Yang, G., Kim, W.S. et al. Emerging wearable flexible sensors for sweat analysis. Bio-des. Manuf. 5, 64–84 (2022). https://doi.org/10.1007/s42242-021-00171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00171-2

Keywords

Navigation