Skip to main content
Log in

Flexible Piezoresistive Sensors based on Conducting Polymer-coated Fabric Applied to Human Physiological Signals Monitoring

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper describes a flexible pressure sensor based on polypyrrole(PPy)-Cotton composites, in which PPy is grown on cellulose fibers of cotton pads via an in situ vapor growth method, which is beneficial to the homogeneity of the composites. The resulting devices exhibits rapid response and recovery speed, the response and recovery times are 220 ms and 240 ms, respectively. The optimal PPy-Cotton Pads (PCPs) sensor shows low detection limit, which is about 50 Pa. At the same time, it exhibits excellent durability in the measurement of repeated loading-unloading pressure over 1000 cycles. The resultant sensor can be attached on different positions of body and applied to recording physiological signals, such as wrist pulse, vocal cord vibration, respiration and eyes blinking. Finally, a 4 × 4 pressure sensor array shows that the PCPs sensor has capability in pressure distribution detection and represents great potential in the fields of wearable electronics and biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Advanced Materials, 2014, 26, 5310–5336.

    Article  Google Scholar 

  2. Bae G Y, Han J T, Lee G, Lee S, Kim S W, Park S, Kwon J, Jung S, Cho K. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Advanced Materials, 2018, 30, 1803388.

    Article  Google Scholar 

  3. Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee J E, Song C, Kim S J, Lee D J, Jun S W, Yang S, Park M, Shin J, Do K, Lee M, Kang K, Hwang C S, Lu N S, Hyeon T, Kim D H. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology, 2014, 9, 397–404.

    Article  Google Scholar 

  4. Zang Y P, Zhang F J, Di C A, Zhu D B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015, 2, 140–156.

    Article  Google Scholar 

  5. Wang T, Zhang Y, Liu Q C, Cheng W, Wang X R, Pan L J, Xu B X, Xu H X. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Advanced Functional Materials, 2018, 28, 1705551.

    Article  Google Scholar 

  6. Xu M X, Li F, Zhang Z Y, Shen T, Qi J J. Piezoresistive sensors based on rGO 3D microarchitecture: Coupled properties tuning in local/integral deformation. Advanced Electronic Materials, 2019, 5, 1800461.

    Article  Google Scholar 

  7. Chen S, Song Y J, Ding D Y, Ling Z, Xu F. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Advanced Functional Materials, 2018, 28, 1802547.

    Article  Google Scholar 

  8. Zhao G R, Zhang X D, Cui X, Wang S, Liu Z R, Deng L, Qi A H, Qiao X R, Li L J, Pan C F, Zhang Y, Li L L. Piezoelectric polyacrylonitrile nanofiber film-based dual-function self-powered flexible sensor. ACS Applied Materials & Interfaces, 2018, 10, 15855–15863.

    Article  Google Scholar 

  9. Chen Z F, Wang Z, Li X M, Lin Y X, Luo N Q, Long M Z, Zhao N, Xu J B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano, 2017, 11, 4507–4513.

    Article  Google Scholar 

  10. Liu F, Han F, Ling L, Li J H, Zhao S F, Zhao T, Liang X W, Zhu D L, Zhang G P, Sun R, Ho D, Wong C P. An omnihealable and highly sensitive capacitive pressure sensor with microarray structure. Chemistry–A European Journal, 2018, 24, 16823–16832.

    Article  Google Scholar 

  11. Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9966–9970.

    Article  Google Scholar 

  12. Huang Y, Wang Y, Gao L, He X Y, Liu P, Liu C X. Characterization of stretchable SWCNTs/Lycra fabric electrode with dyeing process. Journal of Materials Science: Materials in Electronics, 2017, 28, 4279–4287.

    Google Scholar 

  13. Wei Y, Chen S, Lin Y, Yuan X, Liu L. Silver nanowires coated on cotton for flexible pressure sensors. Journal of Materials Chemistry C, 2016, 4, 935–943.

    Article  Google Scholar 

  14. Ge G, Cai Y C, Dong Q C, Zhang Y Z, Shao J J, Huang W, Dong X C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale, 2018, 10, 10033–10040.

    Article  Google Scholar 

  15. Luo N Q, Zhang J, Ding X R, Zhou Z Q, Zhang Q, Zhang Y T, Chen S C, Hu J L, Zhao N. Textile-enabled highly reproducible flexible pressure sensors for cardiovascular monitoring. Advanced Materials Technologies, 2018, 3, 1700222.

    Article  Google Scholar 

  16. Yang Z, Pang Y, Han X L, Yang Y F, Ling J, Jian M Q, Zhang Y Y, Yang Y, Ren T L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano, 2018, 12, 9134–9141.

    Article  Google Scholar 

  17. Narongthong J, Das A, Le H H, Wießner S, Sirisinha C. An efficient highly flexible strain sensor: Enhanced electrical conductivity, piezoresistivity and flexibility of a strongly piezoresistive composite based on conductive carbon black and an ionic liquid. Composites Part A, 2018, 113, 330–338.

    Article  Google Scholar 

  18. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 2014, 8, 5154–5163.

    Article  Google Scholar 

  19. Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale, 2015, 7, 2926–2932.

    Article  Google Scholar 

  20. Huang W J, Dai K, Zhai Y, Liu H, Zhan P F, Gao J C, Zheng G Q, Liu C T, Shen C Y. Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Applied Materials & Interfaces, 2017, 9, 42266–42277.

    Article  Google Scholar 

  21. Amjadi M, Yoon Y J, Park I. Ultra-stretchable and skinmountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology, 2015, 26, 375501.

    Article  Google Scholar 

  22. Li C W, Zhang D M, Deng C H, Wang P, Hu Y P, Bin Y Z, Fan Z, Pan L J. High performance strain sensor based on buckypaper for full-range detection of human motions. Nanoscale, 2018, 10, 14966–14975.

    Article  Google Scholar 

  23. Zhao L, Qiang F, Dai S, Shen S, Huang Y, Huang N J, Zhang G, Guan L Z, Gao J, Song Y, Tang L C. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale, 2019, 11, 10229–10238.

    Article  Google Scholar 

  24. Dall’Acqua L, Tonin C, Varesano A, Canetti M, Porzio W, Catellani M. Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synthetic Metals, 2006, 156, 379–386.

    Article  Google Scholar 

  25. Li S X, Xia H, Xu Y S, Lv C, Wang G, Dai Y Z, Sun H B. Gold nanoparticle densely packed micro/nanowire-based pressure sensors for human motion monitoring and physiological signal detection. Nanoscale, 2019, 11, 4925–4932.

    Article  Google Scholar 

  26. Jia J, Huang G T, Deng J P, Pan K. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous gradient wrinkles. Nanoscale, 2019, 11, 4258–4266.

    Article  Google Scholar 

  27. Ma Y N, Yue Y, Zhang H, Cheng F, Zhao W Q, Rao J Y, Luo S J, Wang J, Jiang X L, Liu Z T, Liu N S, Gao Y H. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistivesensor. ACS Nano, 2018, 12, 3209–3216.

    Article  Google Scholar 

  28. Cao M H, Wang M Q, Li L, Qiu H W, Padhiar M A, Yang Z. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy, 2018, 50, 528–535.

    Article  Google Scholar 

  29. Jeong Y R, Park H, Jin S W, Hong S Y, Lee S S, Ha J S. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Advanced Functional Materials, 2015, 25, 4228–4236.

    Article  Google Scholar 

  30. Tao L Q, Zhang K N, Tian H, Liu Y, Wang D Y, Chen Y Q, Yang Y, Ren T L. Graphene-paper pressure sensor for detecting human motions. ACS Nano, 2017, 11, 8790–8795.

    Article  Google Scholar 

  31. Yang T T, Wang W, Zhang H Z, Li X M, Shi J D, He Y J, Zheng Q S, Li Z H, Zhu H W. Tactile sensing system based on arrays of graphene woven microfabrics: Electromechanical behavior and electronic skin application. ACS Nano, 2015, 9, 10867–10875.

    Article  Google Scholar 

  32. Zhang Y, Hu Y G, Zhu P L, Han F, Zhu Y, Sun R, Wong C P. Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Applied Materials & Interfaces, 2017, 9, 35968–35976.

    Article  Google Scholar 

  33. Ma L Q, Shuai X T, Hu Y G, Liang X W, Zhu P L, Sun R, Wong C P. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. Journal of Materials Chemistry C, 2018, 6, 13232–13240.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 61773178 and 61671218), the Natural Science Foundation Committee (NSFC, Nos. 61674066 and 61903150), the China Postdoctoral Science Foundation (No. 801191010412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Ren or Hongran Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zhang, T., Cao, J. et al. Flexible Piezoresistive Sensors based on Conducting Polymer-coated Fabric Applied to Human Physiological Signals Monitoring. J Bionic Eng 17, 55–63 (2020). https://doi.org/10.1007/s42235-020-0004-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-020-0004-9

Keywords

Navigation