Skip to main content
Log in

Sulfonated poly(fluorenyl ether ketone)/Sulfonated α-zirconium phosphate Nanocomposite membranes for proton exchange membrane fuel cells

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Sulfonated poly(aryl ether) (SPAE) membranes have attracted significant attention as polymer electrolyte membranes due to their superior mechanical properties and low cost. However, the poor chemical stability and methanol barrier property of SPAE membranes limit the fuel cell performance. It is necessary to improve the proton conductivity, methanol barrier property, and stability of SPAE for high-performance fuel cells. Herein, a novel proton conductive filler, sulfonated α-zirconium phosphate (ZrP-SO3H), was synthesized and introduced to sulfonated poly(fluorenyl ether ketone) (SPFEK) to fabricate advanced nanocomposite membranes. The oxidative stability, methanol permeability, water uptake, and proton conductivity of the as-prepared nanocomposite membranes were characterized. The nanocomposite membranes exhibited comparable performance as Nafion® 117 membrane in H2/O2 fuel cell and higher performance than Nafion® 117 in direct methanol fuel cell. These results suggest that ZrP-SO3H-doped SPFEK membrane is a promising candidate as a proton exchange membrane in high-performance fuel cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    CAS  Google Scholar 

  2. Veziroglu A, Macario R (2011) Fuel cell vehicles: state of the art with economic and environmental concerns. Int J Hydrogen Energy 36:25–43

    CAS  Google Scholar 

  3. Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555

    CAS  Google Scholar 

  4. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    CAS  Google Scholar 

  5. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612

    CAS  Google Scholar 

  6. McGrath JE, Hickner MA, Ghassemi H, Kim YS, Einsla BR (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4611

    Google Scholar 

  7. Kuzmenko M, Poryadchenko N (2005) Perspective materials for application in fuel-cell technologies. In: Sammes N (ed) Fuel cell technologies: state and perspectives. Springer, Netherlands, pp 253–258

    Google Scholar 

  8. Zhai L, Li H (2019) Polyoxometalate-polymer hybrid materials as proton exchange membranes for fuel cell applications. Molecules 24:3425

    CAS  Google Scholar 

  9. Han X, Xie Y, Liu D, Chen Z, Zhang H, Pang J, Jiang Z (2019) Synthesis and properties of novel poly(arylene ether)s with densely sulfonated units based on carbazole derivative. J Membr Sci 589:117230

  10. Kwon S, Kim T-H (2017) The effect of adjusting the hydrophilic-hydrophobic block length in densely sulfonated poly(fluorenyl ether sulfone) block copolymer membranes. Int J Hydrogen Energy 42:11845–11856

    CAS  Google Scholar 

  11. McGrath JE, Wang F, Hickner M, Kim YS, Zawodzinski TA (2002) Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 197:231–242

    Google Scholar 

  12. Schuster M, Kreuer KD, Andersen HT, Maier J (2007) Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers. Macromolecules 40:598–607

    CAS  Google Scholar 

  13. Watanabe M, Yasuda T, Li Y, Miyatake K, Hirai M, Nanasawa M (2006) Synthesis and properties of polyimides bearing acid groups on long pendant aliphatic chains. J Polym Sci A Polym Chem 44:3995–4005

    Google Scholar 

  14. Meng Y, Wang L, Wang S, Shang X, Li L, Hay AS (2004) Synthesis and sulfonation of poly(aryl ethers) containing triphenyl methane and tetraphenyl methane moieties from isocynate-masked bisphenols. Macromolecules 37:3151–3158

    Google Scholar 

  15. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    CAS  Google Scholar 

  16. Chen Y, Meng Y, Wang S, Tian S, Chen Y, Hay AS (2006) Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application. J Membr Sci 280:433–441

    CAS  Google Scholar 

  17. Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781

    CAS  Google Scholar 

  18. Tripathi BP, Shahi VK (2008) Functionalized organic-inorganic nanostructured N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications. J Phys Chem B 112:15678–15690

    CAS  Google Scholar 

  19. Holdcroft S, Thomas OD, Peckham TJ, Thanganathan U, Yang YS (2010) Sulfonated polybenzimidazoles: proton conduction and acid-base crosslinking. J Polym Sci A Polym Chem 48:3640–3650

    Google Scholar 

  20. Manthiram A, Zhao JA, Jarvis K, Ferreira P (2011) Performance and stability of Pd-Pt-Ni nanoalloy electrocatalysts in proton exchange membrane fuel cells. J Power Sources 196:4515–4523

    Google Scholar 

  21. Yilmazturk S, Deligoz H, Yilmazoglu M, Damyan H, Oksuzomer F, Koc SN, Durmus A, Gurkaynak MA (2009) A novel approach for highly proton conductive electrolyte membranes with improved methanol barrier properties: layer-by-layer assembly of salt containing polyelectrolytes. J Membr Sci 343:137–146

    CAS  Google Scholar 

  22. Jiang SP, Liu ZC, Tian ZQ (2006) Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Adv Mater 18:1068–1072

    CAS  Google Scholar 

  23. Wang S, Zhang G, Han MM, Li HT, Zhang Y, Ni J, Ma WJ, Li MY, Wang J, Liu ZG, Zhang LY, Na H (2011) Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 36:8412–8421

    CAS  Google Scholar 

  24. Lee YM, Phu DS, Lee CH, Park CH, Lee SY (2009) Synthesis of Crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications. Macromol Rapid Commun 30:64–68

    Google Scholar 

  25. Sakamoto M, Nohara S, Miyatake K, Uchida M, Watanabe M, Uchida H (2015) Effects of SiO2 nanoparticles incorporated into poly(arylene ether sulfone ketone) multiblock copolymer electrolyte membranes on fuel cell performance at low humidity. Electrochemistry 83:150–154

    CAS  Google Scholar 

  26. Nawn G, Pace G, Lavina S, Vezzu K, Negro E, Bertasi F, Polizzi S, Di Noto V (2015) Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells. Chemsuschem 8:1381–1393

    CAS  Google Scholar 

  27. Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177:247–253

    CAS  Google Scholar 

  28. Choi YS, Kim TK, Kim EA, Joo SH, Pak C, Lee YH, Chang H, Seung D (2008) Exfoliated Sulfonated poly(arylene ether sulfone)–clay Nanocomposites. Adv Mater 20:2341–2344

    CAS  Google Scholar 

  29. Liu KL, Lee HC, Wang BY, Lue SJ, Lu CY, Tsai LD, Fang J, Chao CY (2015) Sulfonated poly(styrene-block-(ethylene-ran-butylene)-block-styrene (SSEBS)-zirconium phosphate) (ZrP) composite membranes for direct methanol fuel cells. J Membr Sci 495:110–120

    CAS  Google Scholar 

  30. Pandey J, Seepana MM, Shukla A (2015) Zirconium phosphate based proton conducting membrane for DMFC application. Int J Hydrogen Energy 40:9410–9421

    CAS  Google Scholar 

  31. Sahu AK, Ketpang K, Sharmaugam S, Kwon O, Lee S, Kim H (2016) Sulfonated graphene-nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity. J Phys Chem C 120:15855–15866

    CAS  Google Scholar 

  32. Sahu AK, Pitchumani S, Sridhar P, Shukla AK (2009) Co-assembly of a nafion-mesoporous zirconium phosphate composite membrane for PEM fuel cells. Fuel Cells 9:139–147

    CAS  Google Scholar 

  33. Sigwadi R, Dhlamini MS, Mokrani T, Ṋemavhola F, Nonjola PF, Msomi PF (2019) The proton conductivity and mechanical properties of Nafion®/ ZrP nanocomposite membrane. Heliyon 5:e02240

    CAS  Google Scholar 

  34. Mazzapioda L, Panero S, Navarra MA (2019) Polymer electrolyte membranes based on nafion and a superacidic inorganic additive for fuel cell applications. Polymers 11:914

    CAS  Google Scholar 

  35. Yao Y, Lin Z, Li Y, Alcoutlabi M, Hamouda H, Zhang X (2011) Superacidic electrospun fiber-nafion hybrid proton exchange membranes. Adv Energy Mater 1:1133–1140

    CAS  Google Scholar 

  36. Boo WJ, Sun L, Liu J, Clearfield A, Sue H-J (2007) Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways. J Phys Chem C 111:10377–10381

    CAS  Google Scholar 

  37. Sun L, Boo WJ, Sue H-J, Clearfield A (2007) Preparation of alpha-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem 31:39–43

    CAS  Google Scholar 

  38. Hu H, Martin JC, Xiao M, Southworth CS, Meng Y, Sun L (2011) Immobilization of ionic liquids in layered compounds via mechanochemical intercalation. J Phys Chem C 115:5509–5514

    CAS  Google Scholar 

  39. Hu H, Martin JC, Zhang M, Southworth CS, Xiao M, Meng Y, Sun L (2012) Immobilization of ionic liquids in theta-zirconium phosphate for catalyzing the coupling of CO2 and epoxides. RSC Adv 2:3810–3815

    CAS  Google Scholar 

  40. Wang Q, Yu J, Liu J, Guo Z, Umar A, Sun L (2013) Na+ and K+-exchanged zirconium phosphate (ZrP) as high-temperature CO2 adsorbents. Sci Adv Mater 5:469–474

    CAS  Google Scholar 

  41. Lu N, Lin K-Y, Kung C-C, Jhuo J-W, Zhou Y, Liu J, Sun L (2014) Intercalated polyfluorinated Pd complexes in alpha-zirconium phosphate for Sonogashira and heck reactions. RSC Adv 4:27329–27336

    CAS  Google Scholar 

  42. Boo WJ, Sun L, Warren GL, Moghbelli E, Pham H, Clearfield A, Sue HJ (2007) Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer 48:1075–1082

    CAS  Google Scholar 

  43. Sun L, Boo WJ, Sun D, Clearfield A, Sue H-J (2007) Preparation of exfoliated epoxy/alpha-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater 19:1749–1754

    CAS  Google Scholar 

  44. Sun L, O'Reilly JY, Kong D, Su JY, Boo WJ, Sue HJ, Clearfield A (2009) The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction. J Colloid Interface Sci 333:503–509

    CAS  Google Scholar 

  45. Zhou Y, Wang A, Wang Z, Chen M, Wang W, Sun L, Liu X (2015) Titanium functionalized alpha-zirconium phosphate single layer nanosheets for photocatalyst applications. RSC Adv 5:93969–93978

    CAS  Google Scholar 

  46. Zhou Y, Liu J, Xiao M, Meng Y, Sun L (2016) Designing supported ionic liquids (ils) within inorganic nanosheets for CO2 capture applications. ACS Appl Mater Interfaces 8:5547–5555

    CAS  Google Scholar 

  47. Laipan M, Xiang L, Yu J, Martin BR, Zhu R, Zhu J, He H, Clearfield A, Sun L (2020) Layered intercalation compounds: mechanisms, new methodologies, and advanced applications. Prog Mater Sci 109:100631

    CAS  Google Scholar 

  48. Boo WJ, Sun LY, Liu J, Clearfield A, Sue HJ, Mullins MJ, Pham H (2007) Morphology and mechanical behavior of exfoliated epoxy/alpha-zirconium phosphate nanocomposites. Compos Sci Technol 67:262–269

    CAS  Google Scholar 

  49. Zhou Y, Huang R, Ding F, Brittain AD, Liu J, Zhang M, Xiao M, Meng Y, Sun L (2014) Sulfonic acid-functionalized alpha-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications. ACS Appl Mater Interfaces 6:7417–7425

    CAS  Google Scholar 

  50. Zhou Y, Noshadi I, Ding H, Liu J, Parnas RS, Clearfield A, Xiao M, Meng Y, Sun L (2018) Solid acid catalyst based on single-layer alpha-zirconium phosphate nanosheets for biodiesel production via esterification. Catalysts 8:17

    Google Scholar 

  51. Wang F, Chen TL, Xu JP (1998) Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol Chem Phys 199:1421–1426

    CAS  Google Scholar 

  52. Shang X, Tian S, Kong L, Meng Y (2005) Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane. J Membr Sci 266:94–101

    CAS  Google Scholar 

  53. Peckham TJ, Holdcroft S (2010) Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv Mater 22:4667–4690

    CAS  Google Scholar 

  54. Li N, Guiver MD (2014) Ion transport by nanochannels in ion-containing aromatic copolymers. Macromolecules 47:2175–2198

    CAS  Google Scholar 

  55. Shin DW, Guiver MD, Lee YM (2017) Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem Rev 117:4759–4805

    CAS  Google Scholar 

  56. Pan J, Wang S, Xiao M, Hickner M, Meng Y (2013) Layered zirconium phosphate sulfophenylphosphonates reinforced sulfonated poly (fluorenyl ether ketone) hybrid membranes with high proton conductivity and low vanadium ion permeability. J Membr Sci 443:19–27

    CAS  Google Scholar 

  57. Hu H, Xiao M, Wang SJ, Shen PK, Meng YZ (2011) Surface fluorination of poly(fluorenyl ether ketone) ionomers as proton exchange membranes for fuel cell application. Fuel Cells 11:353–360

    CAS  Google Scholar 

  58. Clearfield A, Costantino U (1996) Layered metal phosphates and their intercalation chemistry. In: Alberti G, Bein T (eds) Comprehensive supramolecular chemistry. Elsevier, Oxford, UK, pp 107–149

    Google Scholar 

  59. Zhou Y, Liu J, Huang R, Zhang M, Xiao M, Meng Y, Sun L (2017) Covalently immobilized ionic liquids on single layer nanosheets for heterogeneous catalysis applications. Dalton Trans 46:13126–13134

    CAS  Google Scholar 

  60. Ou Y, Tsen W-C, Jang S-C, Chuang F-S, Wang J, Liu H, Wen S, Gong C (2018) Novel composite polymer electrolyte membrane using solid superacidic sulfated zirconia - functionalized carbon nanotube modified chitosan. Electrochim Acta 264:251–259

    CAS  Google Scholar 

  61. Gonggo ST, Bundjali B, Hariyawati K, Arcana IM (2018) The influence of nano-silica on properties of sulfonated polystyrene-lignosulfonate membranes as proton exchange membranes for direct methanol fuel cell application. Adv Polym Technol 37:1859–1867

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Abraham Clearfield at Texas A&M University for valuable discussions. This work is financial supported by the Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province (20200101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuezhong Meng or Luyi Sun.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Ding, F., Ding, H. et al. Sulfonated poly(fluorenyl ether ketone)/Sulfonated α-zirconium phosphate Nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 3, 498–507 (2020). https://doi.org/10.1007/s42114-020-00182-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00182-0

Keywords

Navigation