Skip to main content
Log in

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Che G, Lakshmi B B, Fisher E R, Martin C R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 346–349

    Article  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer M C, Lu X, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid. Chemical Reviews, 2011, 111(5): 3577–361

    Article  Google Scholar 

  3. Rabis A, Rodriguez P, Schmidt T J. Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catalysis, 2012, 2(5): 864–890

    Article  Google Scholar 

  4. Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51

    Article  Google Scholar 

  5. Shao M, Chang Q, Dodelet J P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chemical Reviews, 2016, 116(6): 3594–3657

    Article  Google Scholar 

  6. Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J P, Wu G, Chung H T, Johnston C M, Zelenay P. Recent advances in nonprecious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy & Environmental Science, 2011, 4(1): 114–130

    Article  Google Scholar 

  7. Shao Y, Park S, Xiao J, Zhang J G, Wang Y, Liu J. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catalysis, 2012, 2(5): 844–857

    Article  Google Scholar 

  8. Black R, Lee J H, Adams B, Mims C A, Nazar L F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angewandte Chemie International Edition, 2013, 52(1): 392–396

    Article  Google Scholar 

  9. Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 2011, 332(6028): 443–447

    Article  Google Scholar 

  10. Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383–1385

    Article  Google Scholar 

  11. Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science, 2009, 324(5923): 71–74

    Article  Google Scholar 

  12. Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323(5915): 760–764

    Article  Google Scholar 

  13. Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature, 2006, 443(7107): 63–66

    Article  Google Scholar 

  14. Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H, Wang H L, Dai L. Carbon Nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy, 2016, 29: 83–110

    Article  Google Scholar 

  15. Rabis A, Rodriguez P, Schmidt T J. Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catalysis, 2012, 2(5): 864–890

    Article  Google Scholar 

  16. Osgood H, Devaguptapu S V, Xu H, Cho J P, Wu G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016, 11(5): 601–625

    Article  Google Scholar 

  17. Gupta S, Qiao L, Zhao S, Xu H, Lin Y, Devaguptapu S V, Wang X, Swihart M T, Wu G. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Advanced Energy Materials, 2016, 6(22): 1601198

    Article  Google Scholar 

  18. Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chemistry, an Asian Journal, 2016, 11(1): 10–21

    Article  Google Scholar 

  19. Chen C F, King G, Dickerson R M, Papin PA, Gupta S, Kellogg W R, Wu G. Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2015, 13: 423–432

    Article  Google Scholar 

  20. Wang X, Ke Y, Pan H, Ma K, Xiao Q, Yin D, Wu G, Swihart M T. Cu-deficient plasmonic Cu2-xS nanoplate electrocatalysts for oxygen reduction. ACS Catalysis, 2015, 5(4): 2534–2540

    Article  Google Scholar 

  21. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J P, Wu G, Chung H T, Johnston C M, Zelenay P. Recent advances in nonprecious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy & Environmental Science, 2011, 4(1): 114–130

    Article  Google Scholar 

  22. Wu G, Nelson M A, Mack N H, Ma S G, Sekhar P, Garzon F H, Zelenay P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chemical Communications (Cambridge), 2010, 46(40): 7489–7491

    Article  Google Scholar 

  23. Li Q, Xu P, Gao W, Ma S G, Zhang G Q, Cao R G, Cho J, Wang H L, Wu G. Graphene/graphene tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Advanced Materials, 2014, 26(9): 1378–1386

    Article  Google Scholar 

  24. Li Q, Cao R, Cho J, Wu G. Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Advanced Energy Materials, 2014, 4(6): 1301415

    Article  Google Scholar 

  25. Wu G, Chung H T, Nelson M, Artyushkova K, More K L, Johnston C M, Zelenay P. Graphene-enriched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media. ECS Transactions, 2011, 4(1): 1709–1717

    Article  Google Scholar 

  26. Wu G, More K L, Xu P, Wang H L, Ferrandon M, Kropf A J, Myers D J, Ma S, Johnston C M, Zelenay P. A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chemical Communications (Cambridge), 2013, 49(32): 3291–3293

    Article  Google Scholar 

  27. Li Q, Wu G, Cullen D A, More K L, Mack N H, Chung H T, Zelenay P. Phosphate-tolerant oxygen reduction catalysts. ACS Catalysis, 2014, 4(9): 3193–3200

    Article  Google Scholar 

  28. He Q G, Wu G, Liu K, Khene S, Li Q, Mugadza T, Deunf E, Nyokong T, Chen S W. Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media. ChemElectroChem, 2014, 1(9): 1508–1515

    Article  Google Scholar 

  29. He Q, Li Q, Khene S, Ren X, López-Suárez F E, Lozano-Castelló D, Bueno-López A, Wu G. High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchangemembrane alkaline fuel cells. Journal of Physical Chemistry, 2013, 117(17): 8697–8707

    Google Scholar 

  30. Wu G, Mack N H, Gao W, Ma S, Zhong R, Han J, Baldwin J K, Zelenay P. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano, 2012, 6(11): 9764–9776

    Article  Google Scholar 

  31. Li Q, Pan H, Higgins D, Cao R, Zhang G, Lv H, Wu K, Cho J, Wu G. Metal-organic framework derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts. Small, 2015, 11(12): 1443–1452

    Article  Google Scholar 

  32. Li Q, Wang T, Havas D, Zhang H, Xu P, Han J, Cho J, Wu G. Highperformance direct methanol fuel cells with precious-metal-free cathode. Advancement of Science, 2016, 3(11): 1600140

    Google Scholar 

  33. Wang X, Li Q, Pan H, Lin Y, Ke Y, Sheng H, Swihart M T, Wu G. Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. Nanoscale, 2015, 7(47): 20290–20298

    Article  Google Scholar 

  34. Parvez K, Yang S, Hernandez Y, Winter A, Turchanin A, Feng X, Müllen K. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano, 2012, 6(11): 9541–9550

    Article  Google Scholar 

  35. Qu L, Liu Y, Baek J B, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3): 1321–1326

    Article  Google Scholar 

  36. Byon H R, Suntivich J, Shao-Horn Y. Graphene-based non-noblemetal catalysts for oxygen reduction reaction in acid. Chemistry of Materials, 2011, 23(15): 3421–3428

    Article  Google Scholar 

  37. Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J, Ruoff R S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012, 5(7): 7936–7942

    Article  Google Scholar 

  38. Li Y, Wang J, Li X, Geng D, Banis M N, Li R, Sun X. Nitrogendoped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochemistry Communications, 2012, 18(0): 12–15

    Article  Google Scholar 

  39. Li Y G, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J, Dai H. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nature Nanotechnology, 2012, 7(6): 394–400

    Article  Google Scholar 

  40. Xiao J, Mei D, Li X, Xu W, Wang D, Graff G L, Bennett W D, Nie Z, Saraf L V, Aksay I A, Liu J, Zhang J G. Hierarchically porous graphene as a lithium–air battery electrode. Nano Letters, 2011, 11 (11): 5071–5078

    Article  Google Scholar 

  41. Shui J L, Karan N K, Balasubramanian M, Li S Y, Liu D J. Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. Journal of the American Chemical Society, 2012, 134(40): 16654–16661

    Article  Google Scholar 

  42. Pylypenko S, Mukherjee S, Olson T S, Atanassov P. Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochimica Acta, 2008, 53(27): 7875–7883

    Article  Google Scholar 

  43. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2009, 187(1): 93–97

    Article  Google Scholar 

  44. Mamtani K, Ozkan U S. Heteroatom-doped carbon nanostructures as oxygen reduction reaction catalysts in acidic media: an overview. Catalysis Letters, 2015, 145(1): 436–450

    Article  Google Scholar 

  45. Wiggins-Camacho J D, Stevenson K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. Journal of Physical Chemistry, 2011, 115(40): 20002–20010

    Google Scholar 

  46. Jaouen F, Goellner V, Lefèvre M, Herranz J, Proietti E, Dodelet J. Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active Fe N C catalysts. Electrochimica Acta, 2013, 87: 619–628

    Article  Google Scholar 

  47. Nallathambi V, Leonard N, Kothandaraman R, Barton S C. Nitrogen precursor effects in iron-nitrogen-carbon oxygen reduction catalysts. Electrochemical and Solid-State Letters, 2011, 14(6): B55–B58

    Article  Google Scholar 

  48. Wu J, Yang Z, Li X, Sun Q, Jin C, Strasser P, Yang R. Phosphorusdoped porous carbons as efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry, 2013, 1(34): 9889–9896

    Article  Google Scholar 

  49. Ramaswamy N, Tylus U, Jia Q, Mukerjee S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. Journal of the American Chemical Society, 2013, 135(41): 15443–15449

    Article  Google Scholar 

  50. Jaouen F, Herranz J, Lefevre M, Dodelet J P, Kramm U I, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn J R, Olson T, Pylypenko S, Atanassov P, Ustinov E A. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Applied Materials & Interfaces, 2009, 1(8): 1623–1639

    Article  Google Scholar 

  51. Liang J, Jiao Y, Jaroniec M, Qiao S Z. Sulfur and nitrogen dualdoped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition, 2012, 51(46): 11496–11500

    Article  Google Scholar 

  52. Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. Journal of the American Chemical Society, 2014, 136(11): 4394–4403

    Article  Google Scholar 

  53. Ganesan S, Leonard N, Barton S C. Impact of transition metal on nitrogen retention and activity of iron–nitrogen–carbon oxygen reduction catalysts. Physical Chemistry Chemical Physics, 2014, 16 (10): 4576–4585

    Article  Google Scholar 

  54. Gong Y, Fei H, Zou X, Zhou W, Yang S, Ye G, Liu Z, Peng Z, Lou J, Vajtai R, Yakobson B I, Tour J M, Ajayan P M. Boron-and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction. Chemistry of Materials, 2015, 27(4): 1181–1186

    Article  Google Scholar 

  55. Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati M T, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nature Communications, 2015, 6: 7343

    Article  Google Scholar 

  56. Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby E F, Zelenay P, Mukerjee S. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano, 2015, 9(12): 12496–12505

    Article  Google Scholar 

  57. Gao W, Havas D, Gupta S, Pan Q, He N, Zhang H, Wang H L, Wu G. Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts? Carbon, 2016, 102: 346–356

    Article  Google Scholar 

  58. Wu G, Johnston C M, Mack N H, Artyushkova K, Ferrandon M, Nelson M, Lezama-Pacheco J S, Conradson S D, More K L, Myers D J, Zelenay P. Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells. Journal of Chemistry Materials, 2011, 21(30): 11392–11405

    Article  Google Scholar 

  59. Sheng H, Wei M, D’Aloia A, Wu G. Heteroatom polymer-derived 3D high-surface-area and mesoporous graphene sheet-like carbon for supercapacitors. ACS Applied Materials & Interfaces, 2016, 8 (44): 30212–30224

    Article  Google Scholar 

  60. Wu G, Artyushkova K, Ferrandon M, Kropf A J, Myers D, Zelenay P. Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Transactions, 2009, 25(1): 1299–1311

    Article  Google Scholar 

  61. Wu G, Zelenay P. Nanostructured non-precious metal catalysts for oxygen reduction reaction. Accounts of Chemical Research, 2013, 46(8): 1878–1889

    Article  Google Scholar 

  62. Gupta S, Zhao S, Ogoke O, Lin Y, Xu H, Wu G. Engineering favorable morphology and structure of Fe-N-C oxygen-reduction catalysts via tuning nitrogen/carbon precursors. ChemSusChem, 2017, 10(4): 774–785

    Article  Google Scholar 

  63. Wu G, Nelson M A, Mack N H, Ma S, Sekhar P, Garzon F H, Zelenay P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chemical Communications, 2010, 46(40): 7489–7491

    Article  Google Scholar 

  64. Li Q, Wu G, Cullen D A, More K L, Mack N H, Chung H, Zelenay P. Phosphate-tolerant oxygen reduction catalysts. ACS Catalysis, 2014, 4(9): 3193–3200

    Article  Google Scholar 

  65. Wu G, More K L, Xu P, Wang H L, Ferrandon M, Kropf A J, Myers D J, Ma S, Johnston C M, Zelenay P. Carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chemical Communications (Cambridge), 2013, 49(32): 3291–3293

    Article  Google Scholar 

  66. Chung H T, Wu G, Li Q, Zelenay P. Role of two carbon phases in oxygen reduction reaction on the Co-PPy-C catalyst. International Journal of Hydrogen Energy, 2014, 39(28): 15887–15893

    Article  Google Scholar 

  67. Ferrandon M, Kropf A J, Myers D J, Artyushkova K, Kramm U, Bogdanoff P, Wu G, Johnston C M, Zelenay P. Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst. Journal of Physical Chemistry, 2012, 116(30): 16001–16013

    Google Scholar 

  68. Ferrandon M, Wang X, Kropf A J, Myers D J, Wu G, Johnston CM, Zelenay P. Stability of iron species in heat-treated polyaniline-ironcarbon polymer electrolyte fuel cell cathode catalysts. Electrochimica Acta, 2013, 110: 282–291

    Article  Google Scholar 

  69. Weng L T, Bertrand P, Lalande G, Guay D, Dodelet J P. Surface characterization by time-of-flight SIMS of a catalyst for oxygen electroreduction: pyrolyzed cobalt phthalocyanine-on-carbon black. Applied Surface Science, 1995, 84(1): 9–21

    Article  Google Scholar 

  70. Wu G, Nelson M, Ma S, Meng H, Cui G, Shen P K. Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon, 2011, 49(12): 3972–3982

    Article  Google Scholar 

  71. Lin Z, Chu H, Shen Y, Wei L, Liu H, Li Y. Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance. Chemical Communications, 2009, 46(46): 7167–7169

    Article  Google Scholar 

  72. Lee S U, Belosludov R V, Mizuseki H, Kawazoe Y. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes. Small, 2009, 5(15): 1769–1775

    Article  Google Scholar 

  73. Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96

    Article  Google Scholar 

  74. Zhang H, Osgood H, Xie X, Shao Y, Wu G. Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 2017, 31: 331–350

    Article  Google Scholar 

  75. Barkholtz H M, Liu D J. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks. Materials Horizons, 2017, 4(1): 20–37

    Article  Google Scholar 

  76. Wang X J, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Li X. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy, 2016, 25: 110–119

    Article  Google Scholar 

  77. Liu X, Park M, Kim M G, Gupta S, Wu G, Cho J. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc-air batteries. Angewandte Chemie International Edition, 2015, 54(33): 9654–9658

    Article  Google Scholar 

  78. Liu X, Liu W, Ko M, Park M, Kim M G, Oh P, Chae S, Park S, Casimir A, Wu G, Cho J. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Advanced Functional Materials, 2015, 25(36): 5799–5808

    Article  Google Scholar 

  79. Tyminska N, Wu G, Dupuis M. Water oxidation on oxygen-deficient barium titanate: a first principles study. Journal of Physical Chemistry, 2017, 121(15): 8378–8389

    Google Scholar 

  80. Stamenkovic V, Mun B S, Mayrhofer K J, Ross P N, Markovic NM, Rossmeisl J, Greeley J, Nørskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angewandte Chemie, 2006, 118(18): 2963–2967

    Article  Google Scholar 

  81. Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science, 2007, 315 (5811): 493–497

    Article  Google Scholar 

  82. Zhang J, Sasaki K, Sutter E, Adzic R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222

    Article  Google Scholar 

  83. Zhang L, Xia Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. Journal of Physical Chemistry, 2011, 115(22): 11170–11176

    Google Scholar 

  84. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angewandte Chemie, 2011, 123(31): 7270–7273

    Article  Google Scholar 

  85. Holby E F, Wu G, Zelenay P, Taylor C D. Structure of Fe-Nx-C defects in oxygen reduction reaction catalysts from first principles modeling. Journal of Physical Chemistry, 2014, 118(26): 14388–14393

    Google Scholar 

  86. Hammer B, Norskov J. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238–240

    Article  Google Scholar 

  87. Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46

    Article  Google Scholar 

  88. Zhang L, Niu J, Dai L, Xia Z. Effect of microstructure of nitrogendoped graphene on oxygen reduction activity in fuel cells. Langmuir, 2012, 28(19): 7542–7550

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Start-up funding from the University at Buffalo (SUNY) along with NSF (CBET-1604392) and US Department of Energy, Fuel Cell Technologies Office (FCTO) Incubator Program (DE-EE000696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Front. Energy 11, 286–298 (2017). https://doi.org/10.1007/s11708-017-0477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-017-0477-3

Keywords

Navigation