Skip to main content
Log in

Insight-HXMT observations of the first binary neutron star merger GW170817

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (~1000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (~10‒7 to 10‒6 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  2. B. D. Metzger, and E. Berger, Astrophys. J. 746, 48 (2012), arXiv: 1108.6056.

    Article  ADS  Google Scholar 

  3. S. Nissanke, D. E. Holz, N. Dalal, S. A. Hughes, J. L. Sievers, and C. M. Hirata, aXiv: 1307.2638.

  4. C. M. Will, Phys. Rev. D 57, 2061 (1998).

    Article  ADS  Google Scholar 

  5. B. P. Abbott, et al. (LV EM teams), Astrophys. J. Lett. 826, L13 (2016), arXiv: 1602.08492.

    Article  ADS  Google Scholar 

  6. V. Connaughton, et al. (Fermi/GBM team), Astrophys. J. Lett. 826, L6 (2016), arXiv: 1602.03920.

    Article  ADS  Google Scholar 

  7. S. L. Xiong, arXiv: 1605.05447.

  8. J. Greiner, J. M. Burgess, V. Savchenko, and H. F. Yu, Astrophys. J. Lett. 827, L38 (2016), arXiv: 1606.00314.

    Article  ADS  Google Scholar 

  9. V. Savchenko, et al. (INTEGRAL team), Astrophys. J. 820, L36 (2016), arXiv: 1602.04180.

    Article  ADS  Google Scholar 

  10. Y. Liu, and S. N. Zhang, Phys. Lett. B 679, 88 (2009), arXiv: 0907.2574.

    Article  ADS  MathSciNet  Google Scholar 

  11. S.-N. Zhang, Y. Liu, S. Yi, Z. Dai, and C. Huang, arXiv: 1604.02537.

  12. B. Zhang, Astrophys. J. Lett. 827, L31 (2016), arXiv: 1602.04542.

    Article  ADS  Google Scholar 

  13. A. Loeb, Astrophys. J. Lett. 819, L21 (2016), arXiv: 1602.04735.

    Article  ADS  Google Scholar 

  14. J. Abadie, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 27, 173001 (2010), arXiv: 1003.2480.

    Article  ADS  Google Scholar 

  15. T. P. Li, and M. Wu, Astrophys. Space Sci. 206, 91 (1993).

    Article  ADS  Google Scholar 

  16. T. P. Li, and M. Wu, Astrophys. Space Sci. 215, 213 (1994).

    Article  ADS  Google Scholar 

  17. S. Zhang, F. J. Lu, S. N. Zhang, and T. P. Li, Int. Soc. Opt. Photon. 9144, 914421 (2014).

    Google Scholar 

  18. S. Agostinelli, et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 506, 250 (2003).

    Article  ADS  Google Scholar 

  19. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  20. A. Goldstein, et al. (Fermi/GBM team), Astrophys. J. Lett. 848, L14 (2017).

    Article  ADS  Google Scholar 

  21. V. Savchenko, et al. (INTEGRAL/SPI-ACS team), Astrophys. J. Lett. 848, L15 (2017).

    Article  ADS  Google Scholar 

  22. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration, Fermi/GBM team, INTEGRAL/SPI-ACS team), Astrophys. J. Lett. 848, L13 (2017).

    Article  ADS  Google Scholar 

  23. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration, LV EM teams), Astrophys. J. Lett. 848, L12 (2017).

    Article  ADS  Google Scholar 

  24. D. A. Coulter, R. J. Foley, C. D. Kilpatrick, M. R. Drout, A. L. Piro, B. J. Shappee, M. R. Siebert, J. D. Simon, N. Ulloa, D. Kasen, B. F. Madore, A. Murguia-Berthier, Y. C. Pan, J. X. Prochaska, E. Ramirez-Ruiz, A. Rest, and C. Rojas-Bravo, Science eaap9811 (2017).

    Google Scholar 

  25. J. Y. Liao, C. K. Li, M. Y. Ge, Y. Huang, Z. W. Li, S. L. Xiong, Y. Liu, C. Z. Liu, X. F. Li, Z. Chang, X. F. Lu, J. L. Zhao, A. M. Zhang, Y. F. Zhang, C. L. Zou, Y. J. Jin, Z. Zhang, T. P. Li, F. J. Lu, L. M. Song, H. Y. Wang, M. Wu, Y. P. Xu, and S. N. Zhang, Gamma-ray Coord. Network 21518, 1 (2017).

    Google Scholar 

  26. L. Kuiper, W. Hermsen, G. Cusumano, R. Diehl, V. Schönfelder, A. Strong, K. Bennett, and M. L. McConnell, Astron. Astrophys. 378, 918 (2001).

    Article  ADS  Google Scholar 

  27. E. Troja, S. Rosswog, and N. Gehrels, Astrophys. J. 723, 1711 (2010), arXiv: 1009.1385.

    Article  ADS  Google Scholar 

  28. Y. Kaneko, Z. F. Bostancı, E. Göğüş, and L. Lin, Mon. Not. R. Astron. Soc. 452, 824 (2015), arXiv: 1506.05899.

    Article  ADS  Google Scholar 

  29. D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, and P. Lestrade, Astrophys. J. 413, 281 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to ShuangNan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Xiong, S., Zhang, S. et al. Insight-HXMT observations of the first binary neutron star merger GW170817. Sci. China Phys. Mech. Astron. 61, 031011 (2018). https://doi.org/10.1007/s11433-017-9107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9107-5

Keywords

Navigation