Skip to main content
Log in

Flower color mutants induced by carbon ion beam irradiation of geranium (Pelargonium × hortorum, Bailey)

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In an attempt to elucidate the biological effects and underlying mutations involving flower color in ornamental plants following carbon ion beam radiation, shoots of geranium were exposed at dosages of 0, 10, 15, 30, and 40 Gy, and one flower color mutant was obtained. The morphological characteristics, physiological aspects, and DNA polymorphisms between wild-type and flower color mutants were analyzed. The colors of petal, peduncle, pistil, and stamen of the mutant displayed significant differences compared to those of the wild-type. Compared to the original plants, the total anthocyanin content in the petals of the mutant significantly decreased, resulting in a light pink petal phenotype. DNA polymorphisms detected by random amplified polymorphic DNA analysis showed that the ratio of different bands between the wild-type and mutant reached up to 13.2 %. The present study demonstrates that carbon ion beam irradiation is effective in inducing genomic variations, resulting in flower color geranium mutants within a relatively short period of time. Meanwhile, the developed flower-color mutants may be potentially used in future mutational research studies involving ornamental plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Van der Walt, L. Van Zyl, A taxonomic revision of Pelargonium section Campylia (Geraniaceae). S. Afr. J. Bot. 54, 145–171 (1988)

    Article  Google Scholar 

  2. T. Abe, C.H. Bae, T. Ozaki et al., Stress-tolerant mutants induced by heavy-ion beams, stress tolerance and mutation in plants. In Proceedings of 39th Gamma Field Symposium, Naka-gun, Ibaraki-ken, Japan, 12–13 July 2000

  3. Y. Kazama, H. Saito, M. Miyagai et al., Effect of heavy ion-beam irradiation on plant growth and mutation induction in Nicotiana tabacum. Plant Biotechnol. 25, 105–111 (2008). doi:10.5511/plantbiotechnology.25.105

    Article  Google Scholar 

  4. A. Tanaka, S. Tano, T. Chantes et al., A new Arabidopsis mutant induced by ion beams affects flavonoid synthesis with spotted pigmentation in testa. Genes Genet. Syst. 72, 141–148 (1997). doi:10.1266/ggs.72.141

    Article  Google Scholar 

  5. Y. Hase, A. Tanaka, T. Baba et al., FRL1 is required for petal and sepal development in Arabidopsis. Plant J. 24, 21–32 (2000). doi:10.1046/j.1365-313x.2000.00851.x

    Article  Google Scholar 

  6. A. Tanaka, A. Sakamoto, Y. Ishigaki et al., An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol. 129, 64–71 (2002). doi:10.1104/pp.010894

    Article  Google Scholar 

  7. Y. Du, W.J. Li, L.X. Yu et al., Mutagenic effects of carbon-ion irradiation on dry Arabidopsis thaliana seeds. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 759, 28–36 (2014). doi:10.1016/j.mrgentox.2013.07.018

    Article  Google Scholar 

  8. Z.X. Tang, Z.F. Liu, J.G. Shi et al., Studies on mutagenic effects of winter wheat by heavy ions irradiation. Nucl. Sci. Tech. 28, 30–33 (2005)

    Google Scholar 

  9. Q.F. Chen, H.Y. Ya, G.Y. Qin et al., Study on screening of TaGA2ox1 mutants in wheat by ion beam irradiation. Plasma Sci. Technol. 12, 757–760 (2010). doi:10.1088/1009-0630/12/6/22

    Article  Google Scholar 

  10. X.C. Dong, W.J. Li, Evaluation of KFJT-1, an early-maturity mutant of sweet sorghum acquired by carbon ions irradiation. Nucl. Sci. Tech. 25, 1–4 (2014). doi:10.13538/j.1001-8042/nst.25.020305

    Article  MathSciNet  Google Scholar 

  11. M. Okamura, N. Yasuno, M. Ohtsuka et al., Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl. Instrum. Methods B 206, 574–578 (2003). doi:10.1016/s0168-583x(03)00835-8

    Article  Google Scholar 

  12. J.Y. He, D. Lu, L.X. Yu et al., Pigment analysis of a color-leaf mutant in Wandering Jew (Tradescantia fluminensis) irradiated by carbon ions. Nucl. Sci. Tech. 22, 77–83 (2011). doi:10.13538/j.1001-8042/nst.22.77-83

    Google Scholar 

  13. K. Sasaki, R. Aida, T. Niki et al., High-efficiency improvement of transgenic torenia flowers by ion beam irradiation. Plant Biotechnol. 25, 81–89 (2008). doi:10.5511/plantbiotechnology.25.81

    Article  Google Scholar 

  14. L.X. Yu, W.J. Li, X.C. Dong et al., RAPD analysis on dwarf mutant of Dahlia pinnata Cav induced by 80 MeV/μ 12C6+ ions. Nucl. Sci. Tech. 31, 830–833 (2008)

    Google Scholar 

  15. H. Ishizaka, E. Kondo, N. Kameari, Production of novel flower color mutants from the fragrant cyclamen (Cyclamen persicum × C. purpurascens) by ion-beam irradiation. Plant Biotechnol. 29, 201–208 (2012). doi:10.5511/plantbiotechnology.12.0116a

    Article  Google Scholar 

  16. T. Kanaya, H. Saito, Y. Hayashi et al., Heavy-ion beam-induced sterile mutants of verbena (Verbena × hybrida) with an improved flowering habit. Plant Biotechnol. 25, 91–96 (2008). doi:10.5511/plantbiotechnology.25.91

    Article  Google Scholar 

  17. L.B. Zhou, W.J. Li, L.X. Yu et al., Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int. J. Radiat. Biol. 82, 473–481 (2006). doi:10.1080/09553000600863080

    Article  Google Scholar 

  18. L.B. Zhou, W.J. Li, S. Ma et al., Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Nucl. Instrum. Methods B 244, 349–353 (2006). doi:10.1016/j.nimb.2005.10.034

    Article  Google Scholar 

  19. Y. Tanaka, Y. Katsumoto, F. Brugliera et al., Genetic engineering in floriculture. Plant Cell Tissue Organ Cult. 80, 1–24 (2005). doi:10.1007/s11240-004-0739-8

    Article  Google Scholar 

  20. M. Nieuwhof, L.W.D. Van Raamsdonk, J.P. Van Eijk, Pigment composition of flowers of Tulipa species as a parameter for biosystematic research. Biochem. Syst. Ecol. 18, 399–404 (1990). doi:10.1016/0305-1978(90)90083-R

    Article  Google Scholar 

  21. T.A. Holton, E.C. Cornish, Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071–1083 (1995). doi:10.1105/tpc.7.7.1071

    Article  Google Scholar 

  22. Y. Yuan, X. Ma, D. Tang et al., Comparison of anthocyanin components, expression of anthocyanin biosynthetic structural genes, and TfF3′H1 sequences between Tulipa fosteriana ‘Albert heijn’ and its reddish sport. Sci. Hortic. 175, 16–26 (2014). doi:10.1016/j.scienta.2014.05.032

    Article  Google Scholar 

  23. Q. Li, J. Wang, H.Y. Sun et al., Flower color patterning in pansy (Viola × wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiol. Biochem. 84, 134–141 (2014). doi:10.1016/j.plaphy.2014.09.012

    Article  Google Scholar 

  24. G. Tornielli, R. Koes, F. Quattrocchio, The genetics of flower color, in Petunia, ed. by T. Gerats, J. Strommer (Springer, New York, 2009), pp. 269 –299

    Chapter  Google Scholar 

  25. G. Forkmann, Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106, 1–26 (1991). doi:10.1111/j.1439-0523.1991.tb00474.x

    Article  Google Scholar 

  26. C. Zhang, W. Wang, Y. Wang et al., Anthocyanin biosynthesis and accumulation in developing flowers of tree peony (Paeonia suffruticosa) ‘Luoyang Hong’. Postharvest Biol. Technol. 97, 11–22 (2014). doi:10.1016/j.postharvbio.2014.05.019

    Article  Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - The stopping and range of ions in matter. Nucl. Instrum. Methods B 268, 1818–1823 (2010). doi:10.1016/j.nimb.2010.02.091

    Article  Google Scholar 

  28. S.A. Becher, K. Steinmetz, K. Weising et al., Microsatellites for cultivar identification in Pelargonium. Theor. Appl. Genet. 101, 643–651 (2000). doi:10.1007/s001220051526

    Article  Google Scholar 

  29. M. Nei, W.H. Li, Mathematical-model for studying genetic-variation in terms of restriction endonucleases. Proc. Natl. Acad Sci. USA 76, 5269–5273 (1979). doi:10.1073/pnas.76.10.5269

    Article  MATH  Google Scholar 

  30. M.F. Zhang, L.M. Jiang, D.M. Zhang et al., De novo transcriptome characterization of Lilium ‘Sorbonne’ and key enzymes related to the flavonoid biosynthesis. Mol. Genet. Genomics 290, 399–412 (2015). doi:10.1007/s00438-014-0919-0

    Article  Google Scholar 

  31. D.Y. Xie, S.B. Sharma, E. Wright et al., Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 45, 895–907 (2006). doi:10.1111/j.1365-313X.2006.026553.x

    Article  Google Scholar 

  32. R. Aida, K. Yoshida, T. Kondo et al., Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Sci. 160, 49–56 (2000). doi:10.1016/S0168-9452(00)00364-2

    Article  Google Scholar 

  33. Noda K-i, B.J. Glover, P. Linstead et al., Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369, 661–664 (1994). doi:10.1038/369661a0

    Article  Google Scholar 

  34. C. Leloup, G. Garty, G. Assaf et al., Evaluation of lesion clustering in irradiated plasmid DNA. Int. J. Radiat. Biol. 81, 41–54 (2005). doi:10.1080/09553000400017895

    Article  Google Scholar 

  35. L. Sui, J.Y. Guo, F.Q. Kong et al., Investigation of direct and indirect interaction of DNA damage induced by high LET 7Li ions. Nucl. Sci. Tech. 30, 250–254 (2007)

    Google Scholar 

  36. N. Shikazono, C. Suzuki, S. Kitamura et al., Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J. Exp. Bot. 56, 587–596 (2005). doi:10.1093/jxb/eri047

    Article  Google Scholar 

  37. C. Moretti, M. Quaglia, M. Cerri et al., A real-time PCR assay for detection and quantification of Botrytis cinerea in Pelargonium × hortorum plants and its use for evaluation of plant resistance. Eur. J. Plant Pathol. 143, 159–171 (2015). doi:10.1007/s10658-015-0673-0

    Article  Google Scholar 

  38. H. Hadrys, M. Balick, B. Schierwater, Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1, 55–63 (1992). doi:10.1111/j.1365-294X.1992.tb00155.x

    Article  Google Scholar 

  39. D.T. Goodhead, The initial physical damage produced by ionizing radiations. Int. J. Radiat. Biol. 56, 623–634 (1989). doi:10.1080/09553008914551841

    Article  Google Scholar 

  40. X.C. Dong, W.J. Li, Biological features of an early-maturity mutant of sweet sorghum induced by carbon ions irradiation and its genetic polymorphism. Adv. Space Res. 50, 496–501 (2012). doi:10.1016/j.asr.2012.04.028

    Article  Google Scholar 

  41. L.Q. Luan, H.P.U. Nguyen, T.T.H. Vo, In vitro mutation breeding of Paphiopedilum by ionization radiation. Sci. Hortic. 144, 1–9 (2012). doi:10.1016/j.scienta.2012.06.028

    Article  Google Scholar 

  42. M. Nakayama, N. Tanikawa, Y. Morita et al., Comprehensive analyses of anthocyanin and related compounds to understand flower color change in ion-beam mutants of cyclamen (Cyclamen spp.) and carnation (Dianthus caryophyllus). Plant Biotechnol. 29, 215–221 (2012). doi:10.5511/plantbiotechnology.12.0102a

    Article  Google Scholar 

  43. T. Nakatsuka, M. Nishihara, K. Mishiba et al., Two different mutations are involved in the formation of white-flowered gentian plants. Plant Sci. 169, 949–958 (2005). doi:10.1016/j.plantsci.2005.06.013

    Article  Google Scholar 

  44. R. Saito, N. Fukuta, A. Ohmiya et al., Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci. 170, 828–834 (2006). doi:10.1016/j.plantsci.2005.12.003

    Article  Google Scholar 

  45. R. Saito, K. Kuchitsu, Y. Ozeki et al., Spatiotemporal metabolic regulation of anthocyanin and related compounds during the development of marginal picotee petals in Petunia hybrida (Solanaceae). J. Plant. Res. 120, 563–568 (2007). doi:10.1007/s10265-007-0086-z

    Article  Google Scholar 

  46. S. Shimada, K. Takahashi, Y. Sato et al., Dihydroflavonol 4-reductase cDNA from non-anthocyanin-producing species in the Caryophyllales. Plant Cell Physiol. 45, 1290–1298 (2004). doi:10.1093/Pcp/Pch156

    Article  Google Scholar 

  47. S. Shimada, Y.T. Inoue, M. Sakuta, Anthocyanidin synthase in non-anthocyanin-producing caryophyllales species. Plant J. 44, 950–959 (2005). doi:10.1111/j.1365-313X.2005.02574.x

    Article  Google Scholar 

  48. C. Yamamizo, N. Noda, A. Ohmiya, Anthocyanin and carotenoid pigmentation in flowers of section Mina, subgenus Quamoclit, genus Ipomoea. Euphytica 184, 429–440 (2012). doi:10.1007/s10681-011-0618-4

    Article  Google Scholar 

  49. H.M. Schaefer, Why fruits go to the dark side. Acta Oecol. 37, 604–610 (2011). doi:10.1016/j.actao.2011.04.008

    Article  Google Scholar 

  50. M.F. Willson, C.J. Whelan, The evolution of fruit color in fleshy-fruited plants. Am. Nat. 136, 790–809 (1990). doi:10.1086/285132

    Article  Google Scholar 

  51. L.J. Cooney, H.M. Schaefer, B.A. Logan et al., Functional significance of anthocyanins in peduncles of Sambucus nigra. Environ. Exp. Bot. 119, 18–26 (2015). doi:10.1016/j.envexpbot.2015.03.001

    Article  Google Scholar 

  52. V.L. Chandler, J.P. Radicella, T.P. Robbins et al., Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell 1, 1175–1183 (1989). doi:10.1105/tpc.1.12.1175

    Article  Google Scholar 

  53. K.-I. Park, N. Ishikawa, Y. Morita et al., A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J. 49, 641–654 (2007). doi:10.1111/j.1365-313X.2006.02988.x

    Article  Google Scholar 

  54. S. Shimada, H. Otsuki, M. Sakuta, Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58, 957–967 (2007). doi:10.1093/jxb/erl256

    Article  Google Scholar 

  55. Y. Morita, M. Saitoh, A. Hoshino et al., Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol. 47, 457–470 (2006). doi:10.1093/pcp/pcj012

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Mr. Huai-An Gu (Institute of Modern Physics, Chinese Academy of Sciences) and Dr. Jinyu He for their invaluable assistance. We also thank our colleagues at HIRFL for providing the carbon ion beams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Bin Zhou.

Additional information

Li-Xia Yu, Wen-Jian Li, and Yan Du have contributed equally to this research.

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11205218, 11275171, and 11405234), the Knowledge Innovation Project of the Chinese Academy of Sciences (CAS) (No. KJCX2-EW-N05), CAS “Light of West China” Program (No. 29Y506020), and the Youth Innovation Promotion Association of CAS (No. 29Y506030) supported this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LX., Li, WJ., Du, Y. et al. Flower color mutants induced by carbon ion beam irradiation of geranium (Pelargonium × hortorum, Bailey). NUCL SCI TECH 27, 112 (2016). https://doi.org/10.1007/s41365-016-0117-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0117-3

Keywords

Navigation