Skip to main content
Log in

Anthocyanin and carotenoid pigmentation in flowers of section Mina, subgenus Quamoclit, genus Ipomoea

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plants belong to the section Mina showed characteristic petal pigmentation among Ipomoea plants. For example, petals of Ipomoea hederifolia var. lutea display yellow color derived from carotenoids and those of Ipomoea quamoclit display red color derived from pelargonidin-based anthocyanins. In this study, the pigment composition and the expression patterns of genes for pigment biosynthesis in the petals of I. quamoclit and I. hederifolia var. lutea were analyzed to elucidate the crucial factors that determine petal color in section Mina. The petals of white-flowered I. quamoclit lack the ability to synthesize anthocyanins and carotenoids because of the suppression of anthocyanidin synthase (ANS) gene expression and transcriptional down-regulation of multiple carotenogenic genes, respectively. In petals of I. hederifolia var. lutea, the absence of dihydroflavonol 4-reductase (DFR) gene expression is responsible for the lack of anthocyanins. All F1 progeny obtained by interspecies crossing between I. quamoclit and I. hederifolia var. lutea had scarlet petal color produced by a combination of pelargonidin-based anthocyanins and carotenoids. The flavanone 3-hydroxylase gene, DFR, and ANS were expressed in the petals of the F1 progeny. The results suggest that in these section Mina species, the carotenoid-accumulating phenotype in petals is dominant, and that pelargonidin was produced in the F1 progeny by complementary expression of DFR from white-flowered I. quamoclit and ANS from I. hederifolia var. lutea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 29:501–502

    Article  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Eckenwalder JE, Brown BP (1986) Polyploid speciation in hybrid morning glories of Ipomoea L. sect. Quamoclit Griseb. Can J Genet Cytol 28:17–20

    Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development. Plant Physiol 105:405–413

    PubMed  CAS  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TW, Britton G (1988) Distribution and analysis of carotenoids. In: Goodwin TW (ed) Plant pigments. Academic Press, London, pp 62–132

    Google Scholar 

  • Hattori K (1991) Inheritance of carotenoid pigmentation in flower color of chrysanthemum. Jpn J Breed 41:1–9

    CAS  Google Scholar 

  • Hoshino A, Johzuka-Hisatomi Y, Iida S (2001) Gene duplication and mobile genetic elements in the morning glories. Gene 265:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hugueney P, Bouvier F, Badillo A, Quennemet J, d’Harlingue A, Camara B (1996) Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits. Plant Physiol 111:619–626

    Article  PubMed  CAS  Google Scholar 

  • Iida S, Hoshino A, Johzuka-Hisatomi Y, Habu Y, Inagaki Y (1999) Floricultural traits and transposable elements in the Japanese and common morning glories. Ann NY Acad Sci 870:265–274

    Article  PubMed  CAS  Google Scholar 

  • Imai Y (1938) Genetic literature of the Japanese morning glory. Jpn J Genet 14:91–96

    Article  Google Scholar 

  • Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S (1994) Isolation of a Suppressor-Mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6:375–383

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto S, Ohmiya A (2006) Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium Ramat.). Physiol Plant 128:437–447

    Article  Google Scholar 

  • Kishimoto S, Maoka T, Nakayama M, Ohmiya A (2004) Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochemistry 65:2781–2787

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto S, Sumitomo K, Yagi M, Nakayama M, Ohmiya A (2007) Three routes to orange petal color via carotenoid component in 9 Compositae species. J Japan Soc Hort Sci 76:250–257

    Article  CAS  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Polillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Miller RE, Rausher MD, Manos PS (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst Bot 24:209–227

    Article  Google Scholar 

  • Miller RE, Buckley TR, Manos PS (2002) An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference. Syst Biol 51:740–753

    Article  PubMed  Google Scholar 

  • Miller RE, McDonald JA, Manos PS (2004) Systematics of Ipomoea subgenus Quamoclit (Convolvulaceae) based on ITS sequence data and a Bayesian phylogenetic analysis. Am J Bot 91:1208–1218

    Article  PubMed  Google Scholar 

  • Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006) Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47:457–470

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya A (2011) Diversity of carotenoid composition in flower petals. Jpn Agric Res Quart 45:163–171

    Article  CAS  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya A, Sumitomo K, Aida R (2009) “Yellow Jimba”: suppression of carotenoid cleavage dioxygenase (CmCCD4a) expression turns white chrysanthemum petals yellow. J Jpn Soc Hort Sci 78:450–455

    Article  CAS  Google Scholar 

  • Paolillo DJ Jr, Garvin DF, Parthasarathy MV (2004) The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma 224:245–253

    Article  PubMed  Google Scholar 

  • Robertson AV (1959) Mechanism of formation of anthocyanidins from flavan-3,4-diols. Can J Chem 37:1946–1954

    Article  CAS  Google Scholar 

  • Saito N, Cheng J, Ichimura M, Yokoi M, Abe Y, Honda T (1994) Flavonoids in the acyanic flowers of Pharbitis nil. Phytochemistry 35:687–691

    Article  CAS  Google Scholar 

  • Saito K, Kobayshi M, Gong ZZ, Tanaka Y, Yamazaki M (1999) Direct evidence for anthocyanidin synthase as a 2-oxoglutaratedependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J 17:181–189

    Article  PubMed  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Takahashi K, Sato Y, Sakuta M (2004) Dihydroflavonol 4-reductase cDNA from non-anthocyanin-producing species in the Caryophyllales. Plant Cell Physiol 45:1290–1298

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Inoue YT, Sakuta M (2005a) Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant J 44:950–959

    Article  PubMed  CAS  Google Scholar 

  • Shimada N, Sasaki R, Sato S, Kaneko T, Tabota S, Aoki T, Ayabe S (2005b) A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. J Exp Bot 56:2573–2585

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2007) Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers. Plant Cell Rep 26:823–835

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi M, Kishimoto S, Nakayama M (2009) Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breed 128:172–177

    Article  CAS  Google Scholar 

  • Yamamizo C, Kishimoto S, Ohmiya A (2010) Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. J Exp Bot 61:709–719

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka S, Sumitomo K, Fujita Y, Yamagata A, Onozaki T, Shibata M, Ohmiya A (2010) Significance of CmCCD4a orthologs in apetalous wild chrysanthemum species, responsible for white coloration of ray petals. Euphytica 171:295–300

    Article  CAS  Google Scholar 

  • Zufall RA, Rausher MD (2004) Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428:847–850

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eiji Nitasaka of Kyushu University for providing all of the Ipomoea seeds (NBRP; National BioResource Project) used in our experiments and for useful discussions, and we thank Yasumasa Morita of the National Institute of Floricultural Science and Yoshiaki Yoneda of Shizuoka University for valuable suggestions on the experiments. This work was supported in part by a Grant-in-Aid from the National Agriculture and Food Research Organization (NARO), Japan, and by a Sasakawa Scientific Research Grant from the Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akemi Ohmiya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Sequence comparison of ANS cDNAs in I. hederifolia, I. quamoclit and their F1 progenies. Divergent nucleotides are indicated with black background. F1 Ih × Iq, F1 progeny between I. hederifolia and I. quamoclit; F1 Iq × Ih, F1 progeny between I. quamoclit and I. hederifolia. The nucleotide sequences of ANS expressed in F1 progenies were almost identical (>99.8%) to that of I. hederifolia (DOC 37 kb)

Fig. S2

ClustalW tree analysis of ANS and F3H proteins in Ipomoea plants. GenBank accession number of ANS: I. coccinea (AB690423), I. hederifolia (AB618110), I. nil (AB073919), I. quamoclit (AB690287), and I. purpurea (AF028602). GenBank accession number of F3H: I. coccinea (AB690424), I. hederifolia (AB618109), I. nil (D83041), I. quamoclit (AB618107), and I. purpurea (U74081) (PPT 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamizo, C., Noda, N. & Ohmiya, A. Anthocyanin and carotenoid pigmentation in flowers of section Mina, subgenus Quamoclit, genus Ipomoea . Euphytica 184, 429–440 (2012). https://doi.org/10.1007/s10681-011-0618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0618-4

Keywords

Navigation