Skip to main content
Log in

Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

While several green biomolecules have been used to synthesize functional and biologically compatible nanoparticles, little attention has been paid to Persea americana (PA) (avocado) fruit extract as a potential reducing agent. This study used avocado fruit peel aqueous extracts to synthesize silver nanoparticles (PAAgNPs), gold nanoparticles (PAAuNPs) and bimetallic alloy nanoparticles (PAAg–AuNPs). The particles were characterized using UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy, selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy and X-ray diffraction among others. The particles were assessed for their antibacterial, antifungal and antioxidant properties. The UV–vis spectroscopy showed PAgNPs, PAAuNPs and PAAg–AuNPs with surface plasmon resonance at 455.5, 538 and 540.5 nm, respectively. The significant FTIR peaks: PAAgNPs (3358 cm−1), PAAuNPs (3503 cm−1) and PAAg–AuNPs (3651 cm−1) pointed to protein as both capping and stabilizing agents for the synthesized nanoparticles. Generally, the particles were spherical, with size range of 18–80 nm for PAAgNPs, 16–71 nm for PAAuNPs and 44–55 nm for PAAg–AuNPs. The energy-dispersive X-ray spectra showed silver, gold and silver/gold as conspicuous metals in PAAgNPs, PAAuNPs and PAAg–AuNPs colloids, respectively. SAED showed ring-shaped patterns for the particles. The nanoparticles effectively inhibited growth of tested bacteria (11–94%) for PAAgNPs, (10–77%) for PAAuNPs and (20–85%) for PAAg–AuNPs. The effectiveness of the biosynthesized nanoparticles can be placed as PAAg–AuNPs > PAAgNPs > PAAuNPs. The fungal inhibition performances are 33–76%, 50–82% and 27–88% for PAAgNPs, PAAuNPs and PAAg–AuNPs, respectively, while DPPH-scavenging activities were 57.82–63.25%, 15.28–54.50% and 53.05–54.26%, which were dose dependent at the tested concentrations of 20–100 µg/ml with good antioxidant activities compared to standard BHA (41.46–84.57%) and ascorbic acid (43.56–91.10%). The bleaching inhibition assay of ABTS showed activities of 56.15–85.43% (PAAgNPs), 34.67–50.93% (PAAuNPs) and 45.31–94.01% (PAAg–AuNPs). The lower concentrations of EC50 were obtained in nanoparticles (24.45–58.33 µg/ml) compared with the standards (38.42–69.04 µg/ml), indicating that the nanoparticles could suffice as good agents in drug consignment. This study has demonstrated the potential of P. americana fruit peel aqueous extracts to synthesize AgNPs, AuNPs and Ag–AuNPs for antimicrobial and antioxidant applications. The current work, to the best of our knowledge, is the first to use avocado peel extract to synthesis nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ajibade SE, Ojo SA, Gueguim-Kana EB, Beukes LS (2016) Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and application as a paint additive. J Taibah Univ Sci 10(4):551–562. https://doi.org/10.1016/j.jtusci.2015.10.010

    Article  Google Scholar 

  2. Salem WM, Haridy M, Sayed WF, Hassan NH (2014) Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind Crops Prod 62:228–234

    Article  Google Scholar 

  3. Lateef A, Adelere IA, Gueguim-Kana EB (2015) The biology and potential biotechnological applications of Bacillus safensis. Biologia 70:411–419. https://doi.org/10.1515/biolog-2015-0062

    Article  Google Scholar 

  4. Lateef A, Ojo SA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016) Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl Nanosci 6(6):863–874. https://doi.org/10.1007/s13204-015-0492-9

    Article  Google Scholar 

  5. Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242. https://doi.org/10.1016/j.biortech.2014.04.085

    Article  Google Scholar 

  6. El-Batal AI, ElKenawya NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39. https://doi.org/10.1016/j.btre.2014.11.001

    Article  Google Scholar 

  7. Augustine R, Kalarikkal N, Thomas S (2014) A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl Nanosci 4:809–818. https://doi.org/10.1007/s13204-013-0260-7

    Article  Google Scholar 

  8. Ramos-Jerz MDR, Villanueva S, Jerz GP, Winterhalter P, Deters AM (2013) Persea americana Mill. seed: fractionation, characterization and effects on human keratinocytes and fibroblasts. Evid Based Complement Altern Med 5:1–12. https://doi.org/10.1155/2013/391247

    Article  Google Scholar 

  9. Orhevba BA, Jinadu AO (2011) Determination of physico-chemical properties and nutritional contents of avocado pear (Persea americana M.). Acad Res Int 1(3):372

    Google Scholar 

  10. Yasir M, Das S, Kharya MD (2010) The phytochemical and pharmacological profile of Persea americana Mill. Pharmacogn Rev 4:77. https://doi.org/10.4103/0973-7847.65332

    Article  Google Scholar 

  11. Han JI, Park SJ, Kim SG, Park HM (2015) Antimicrobial effects of topical skin cream containing natural oil mixtures against Staphylococcus pseudintermedius and Malassezia pachydermatis. Vet Med 60:202–207. https://doi.org/10.17221/8108-VETMED

    Article  Google Scholar 

  12. Lima CR, Vasconcelos CFB, Coasta-Silva JH, Maranhao CA, Costa J, Batista TM (2012) Anti-diabetic activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozocin induced diabetic rats. J Ethnopharmacol 141:517–525. https://doi.org/10.1016/j.jep.2012.03.026

    Article  Google Scholar 

  13. Mbang O, Smith J, Herbert C (2005) Vasorelaxant action of aqueous extract of the leaves of Persea americana on isolated thoracic rat aorta. Fitoterapia 76:567–573. https://doi.org/10.1016/j.fitote.2005.04.020

    Article  Google Scholar 

  14. Muniyappan N, Nagarajan NS (2014) Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem 49:1054–1061. https://doi.org/10.1016/j.procbio.2014.03.015

    Article  Google Scholar 

  15. Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47:1351–1357. https://doi.org/10.1016/j.procbio.2012.04.025

    Article  Google Scholar 

  16. Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 3:30–36. https://doi.org/10.1186/2228-5326-3-30

    Article  Google Scholar 

  17. Rajeshkumar S, Ponnanikajamideen M, Malarkodi C, Malini M, Annadurai G (2014) Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J Nanostruct Chem 4:96–102. https://doi.org/10.1007/s40097-014-0096-z

    Article  Google Scholar 

  18. Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A: Mol Biomol Spectrosc 137:236–243. https://doi.org/10.1016/j.saa.2014.08.030

    Article  Google Scholar 

  19. Nazeruddin GM, Prasad NR, Waghmare SR, Garadkar KM, Mulla IS (2014) Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity. J Alloys Compd 583:272–277. https://doi.org/10.1016/j.jallcom.2013.07.111

    Article  Google Scholar 

  20. Gopinath K, Venkatesh KS, Ilangovan R, Sankara-narayanan K, Arumugam A (2013) Green synthesis of gold nanoparticlesfrom leaf extract of Terminalia arjuna, for the enhanced mitoticcell division and pollen germination activity. Ind Crops Prod 50:737–742. https://doi.org/10.1016/j.indcrop.2013.08.060

    Article  Google Scholar 

  21. Lateef A, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016) Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J Cluster Sci 27(5):1561–1577

    Article  Google Scholar 

  22. Fayaz AM, Balaji K, Girilal M, Yadaz R, Kalaichelvam PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109. https://doi.org/10.1016/j.nano.2009.04.006

    Article  Google Scholar 

  23. Niraimathi KL, Sudha V, Lavanya R, Brindha P (2013) Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B: Biointerfaces 102:288–291. https://doi.org/10.1016/j.colsurfb.2012.08.041

    Article  Google Scholar 

  24. Adebayo EA, Martinez-Carrera D, Molrales P, Sobal M, Escudero H, Menesses ME, Avila-Nava A, Castillo I, Bonilla A (2018) Comparative study of antioxidant and antimicrobial properties of edible mushrooms, Pleurotus levis, P. ostreatus, P. plumonarius and P. tuber-regium. Int J Food Sci Technol 53:1316–1330. https://doi.org/10.1111/ijfs.13712

    Article  Google Scholar 

  25. Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS (2015) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5(1):29–35. https://doi.org/10.1007/s40089-014-0133-4

    Article  Google Scholar 

  26. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB (2018) Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2017.0299

    Article  Google Scholar 

  27. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB (2018) Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 9(8):1273–1287

    Google Scholar 

  28. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Aina DA, Beukes LS, Gueguim-Kana EB (2018) Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-018-0540-2

    Article  Google Scholar 

  29. Prasannaraj G, Venkatachalam P (2017) Enhanced antibacterial, antibiofilm and antioxidant (ROS) activities of biomolecules engineered silver nanoparticles against clinically isolated Gram positive and Gram negative microbial pathogens. J Clust Sci 28:645–664. https://doi.org/10.1007/s10876-017-1160-x

    Article  Google Scholar 

  30. Khatami M, Pourseyedi S, Hamidi H, Zaeifi M, Soltani L (2015) Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource and evaluation of their antifungal activity. Bioresour Bioproc 2(19):1–7. https://doi.org/10.1186/s40643-015-0043-y

    Article  Google Scholar 

  31. Williams BW, Cuverlier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Food Sci Technol LWT 28:25–30

    Article  Google Scholar 

  32. Olajire AA, Azeez L (2011) Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. Afr J Food Sci Technol 20:22–029

    Google Scholar 

  33. Ozturk M, Duru ME, Kivrak S, Mercan-Dogan N, Turkoglu A, Ozler MA (2011) In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem Toxicol 49:1353–1360. https://doi.org/10.1016/j.fct.2011.03.019

    Article  Google Scholar 

  34. Ramakrishna M, Babu DR, Gengan RM, Chandra S, Rao GN (2016) Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostruct Chem 6:1–13. https://doi.org/10.1007/s40097-015-0173-y

    Article  Google Scholar 

  35. Lateef A, Ojo SA, Akinwale AS, Azeez L, Gueguim-Kana EB, Beukes LS (2015) Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia 70(10):1295–1306. https://doi.org/10.1515/biolog-2015-0164

    Article  Google Scholar 

  36. Netala VR, Kotakadi VS, Domdi L, Gaddam SA, Bobbu P, Venkata SK, Ghosh SB, Tartte V (2015) Biogenic silver nanoparticles: efficient and effective antifungal agents. Appl Nanosci 6(4):475–484. https://doi.org/10.1007/s13204-015-0463-1

    Article  Google Scholar 

  37. Malathi S, Ezhilarasu T, Abiraman T, Balasubramanian S (2014) One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch. Carbohydr Polym 111:734–743. https://doi.org/10.1016/j.carbpol.2014.04.105

    Article  Google Scholar 

  38. Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126. https://doi.org/10.1007/s13205-013-0130-8

    Article  Google Scholar 

  39. Emeka EE, Ojiefoh OC, Aleruchi C, Hassan LA, Christiana OM, Rebecca M, Dare EO, Temitope AE (2014) Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron 57:1–5. https://doi.org/10.1016/j.micron.2013.09.003

    Article  Google Scholar 

  40. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B: Biointerf 107:227–234. https://doi.org/10.1016/j.colsurfb.2013.02.004

    Article  Google Scholar 

  41. Inbakandan D, Venkatesan R, Khan SA (2010) Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf B Biointerfaces 81:634–639. https://doi.org/10.1016/j.colsurfb.2010.08.016

    Article  Google Scholar 

  42. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800. https://doi.org/10.1021/la9502711

    Article  Google Scholar 

  43. Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 137:185–192. https://doi.org/10.1016/j.saa.2014.08.079

    Article  Google Scholar 

  44. Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P (2013) Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci 3:229–233. https://doi.org/10.1007/s13204-012-0125-5

    Article  Google Scholar 

  45. Priyadarshini S, Gopinath V, Priyadharsshini NM, Ali DM, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its application. Colloids Surf B: Biointerfaces 102:232–237. https://doi.org/10.1016/j.colsurfb.2012.08.018

    Article  Google Scholar 

  46. Becheri A, Durr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  Google Scholar 

  47. Anandalakshmi K, Venugobal J, Ramasamy V (2015) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. https://doi.org/10.1007/s13204-015-0449-z

    Article  Google Scholar 

  48. Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016) Biomedical and catalytic application of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobiosci 15:433–442. https://doi.org/10.1109/TNB.2016.2559161

    Article  Google Scholar 

  49. Arumugam S, Adithan A, Chinnapan S, Kandasamy S, Palanisamy S, Muthusamy G, Koildhasan M, Thanggaswamy S (2015) Synthesis and characterization of Solanum nigrum mediated silver nanoparticles and its protective effect on alloxan induced diabetic rats. J. Nanostruct Chem 6(1):41–48. https://doi.org/10.1007/s40097-015-0178-6

    Article  Google Scholar 

  50. Kim JS, Kuk E, Kyeong NY, Jong-Ho K, Sung JP, Hu JL, Kim SH, Young KP, Yong HP, Cheol-Yong H, Yong-Kwon K, Yoon-Sik L, Dae HJ, Myung-Haing C (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  Google Scholar 

  51. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles:biomolecule-nanoparticle organizations targetingantimicrobial activity. RSC Adv 9:2673–2702

    Article  Google Scholar 

  52. Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA, López-Esparza J, Donohué-Cornejo A, Cuevas-González JC, Espinosa-Cristóbal LF, Reyes-López SY (2017) Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater. https://doi.org/10.1155/2017/4752314

    Article  Google Scholar 

  53. Gurunathan S, Han JW, Kwon D-N, Kim J-H (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9:373

    Article  Google Scholar 

  54. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Abbas SH, Beukes LS, Gueguim-Kana EB (2019) Silver-gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Prog. https://doi.org/10.1002/btpr.2829

    Article  Google Scholar 

  55. Kanmani P, Lim ST (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 48:1099–1106. https://doi.org/10.1016/j.procbio.2013.05.011

    Article  Google Scholar 

  56. Gopal J, Chun S, Anthonydhason V, Jung S, Mwang’ombe BN, Muthu M, Sivanesan I (2018) Assays evaluating antimicrobial activity of nanoparticles: a myth buster. J Clust Sci 29:207–213

    Article  Google Scholar 

  57. Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Ahmed J, Al-Shihri AS (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 48:12–20. https://doi.org/10.1016/j.materresbull.2012.09.069

    Article  Google Scholar 

  58. Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B: Biointerfaces 101:162–170

    Article  Google Scholar 

  59. Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, Sundaramanickam A (2014) Biosynthesis of silver nanoparticles from the marine seaweed Sargas sumwightii and their antibacterial activity against some human pathogens. Appl Nanosci 4:881–888

    Article  Google Scholar 

  60. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M (2016) Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci 6:755–766. https://doi.org/10.1007/s13204-015-0473-z

    Article  Google Scholar 

  61. Nakkala JR, Bhagat E, Suchiang K, Sadras SR (2015) Comparative study of antioxidant and catalytic activity of silver and gold nanoparticles synthesized from Costus pictus leaf extract. J Mater Sci Technol 31(10):986–994. https://doi.org/10.1016/j.jmst.2015.07.002

    Article  Google Scholar 

  62. Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S, Perez ZEJ, Hurh J, Yang DCN (2016) Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51 T isolated from Korean kimchi. Enzym Microb Technol 95:85–93. https://doi.org/10.1016/j.enzmictec.2016.08.018

    Article  Google Scholar 

  63. Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR (2017) Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J Photochem Photobiol B: Biol 173:250–257

    Article  Google Scholar 

  64. Suganthy N, Ramkumar VS, Pugazhendhi A, Benelli G, Archunan G (2017) Biogenic synthesis of gold nanoparticles from Terminaliaarjunabark extract: assessment of safety aspectsand neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res 5:2. https://doi.org/10.1007/s11356-017-9789-4

    Article  Google Scholar 

  65. Ahmad N, Abhay KS, Seema S, Imran K, Dhananjay KS, Ayesha S, Kumar TRS, Mahendra S (2018) Biosynthesized composites of Au–Ag nanoparticles using Trapa peel extract induced ROS-mediated independent apoptosis in cancer cells. Drug Chem Toxicol 53:2. https://doi.org/10.1080/01480545.2018.1463241

    Article  Google Scholar 

Download references

Acknowledgements

EAA thanked authority of LAUTECH, Ogbomoso, for providing fund for some aspects of this work through the TETFund Research Project Intervention (ARPUB14/TETFund/2017/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adegoke E. Adebayo.

Ethics declarations

Conflict of interest

No conflicts of interest have declared by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebayo, A.E., Oke, A.M., Lateef, A. et al. Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnol. Environ. Eng. 4, 13 (2019). https://doi.org/10.1007/s41204-019-0060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-019-0060-8

Keywords

Navigation