Skip to main content

Advertisement

Log in

Current progress of 4D-printing technology

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

The combination of smart materials to print a three-dimensional (3D) product has primarily driven the development of innovative technology, or four-dimensional (4D) printing. 3D-printing technology seems to have provided extensive enhancement with materials, printers, and processes in the past decade. The additive manufacturing (AM) industry is discovering the latest applications, materials, and 3D printers. AM can be defined as a method of formulating 3D parts through compiling the material layer by layer, which is conventionally made of plastics, metals, or ceramics; nevertheless, “smart” materials are also being used these days. These smart materials can be adjusted with printable characteristics or structures when additional stimulants are implemented. These 3D-printed materials modify their shape or properties with time, which is the fourth dimension and can merge with conventional 3D printing. 4D printing is the system whereby a 3D-printed object changes itself into a different structure as the result of the impact of environmental stimuli such as temperature, light, or other factors. 4D printing will open new possibilities that are convenient in significant applications, will work in extreme surroundings, and will help create a transformable structure. The objective of this review is to examine and assess the reputation and development of 4D-printing technology, including the 4D-printing process, materials, and potential applications. This review determines that 4D-printing technology has potential applications in various fields, but more research work will be essential for prospective accomplishments of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9:174–190. https://doi.org/10.1002/term.1635

    Article  Google Scholar 

  2. Chua ZY, Ahn IH, Moon SK (2017) Process monitoring and inspection systems in metal additive manufacturing: status and applications. Int J Precis Eng Manuf Green Technol 4:235–245. https://doi.org/10.1007/s40684-017-0029-7

    Article  Google Scholar 

  3. Subeshan B, Alonayni A, Rahman MM, Asmatulu E (2018) Investigating compression strengths of 3D printed polymeric infill specimens of various geometries. In: Nano-, Bio-, Info-Tech sensors, and 3D systems II, vol 10597. p 105970N. Accessed 23 Mar 2018

  4. Kang HS, Lee JY, Choi S et al (2016) Smart manufacturing: Past research, present findings, and future directions. Int J Precis Eng Manuf Technol 3:111–128

    Article  Google Scholar 

  5. Yap YL, Yeong WY (2014) Additive manufacture of fashion and jewellery products: a mini review: this paper provides an insight into the future of 3D printing industries for fashion and jewellery products. Virtual Phys Prototyp 9:195–201. https://doi.org/10.1080/17452759.2014.938993

    Article  Google Scholar 

  6. Zarek M, Layani M, Eliazar S et al (2016) 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Phys Prototyp 11:263–270. https://doi.org/10.1080/17452759.2016.1244085

    Article  Google Scholar 

  7. Pei E, Shen J, Watling J (2015) Direct 3D printing of polymers onto textiles: Experimental studies and applications. Rapid Prototyp J 21:556–571. https://doi.org/10.1108/RPJ-09-2014-0126

    Article  Google Scholar 

  8. Kadimisetty K, Mosa IM, Malla S et al (2016) 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron 77:188–193. https://doi.org/10.1016/j.bios.2015.09.017

    Article  Google Scholar 

  9. Jiang Y, Wang Q (2016) Highly-stretchable 3D-architected mechanical metamaterials. Sci Rep 6:34147

    Article  Google Scholar 

  10. Vatani M, Lu Y, Engeberg ED, Choi JW (2015) Combined 3D printing technologies and material for fabrication of tactile sensors. Int J Precis Eng Manuf 16:1375–1383. https://doi.org/10.1007/s12541-015-0181-3

    Article  Google Scholar 

  11. Stanton MM, Trichet-Paredes C, Sánchez S (2015) Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip 15:1634–1637. https://doi.org/10.1039/c5lc90019k

    Article  Google Scholar 

  12. Yoo DJ, Kim KH (2015) An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function. Int J Precis Eng Manuf 16:2021–2032. https://doi.org/10.1007/s12541-015-0263-2

    Article  Google Scholar 

  13. ISO/ASTM (2015) International Standard ISO/ASTM 52900 additive manufacturing—general principles—terminology. Int Organ Stand 5:1–26

    Google Scholar 

  14. Lamichhane S, Bashyal S, Keum T et al (2019) Complex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J Pharm Sci 14:465–479. https://doi.org/10.1016/j.ajps.2018.11.008

    Article  Google Scholar 

  15. Diegel O, Nordin A, Motte D (2019) Additive manufacturing technologies. https://proto3000.com/service/3d-printing-services/technologies/. Accessed 10 Aug 2019

  16. Nam S, Pei E (2019) A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers. Prog Addit Manuf 4:167–184. https://doi.org/10.1007/s40964-019-00079-5

    Article  Google Scholar 

  17. Khondoker MAH, Sameoto D (2019) Direct coupling of fixed screw extruders using flexible heated hoses for FDM printing of extremely soft thermoplastic elastomers. Prog Addit Manuf 4:197–209. https://doi.org/10.1007/s40964-019-00088-4

    Article  Google Scholar 

  18. Breger JC, Yoon C, Xiao R et al (2015) Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces 7:3398–3405. https://doi.org/10.1021/am508621s

    Article  Google Scholar 

  19. Lee Y, Lee H, Hwang T et al (2015) Sequential folding using light-activated polystyrene sheet. Sci Rep 5:16544. https://doi.org/10.1038/srep16544

    Article  Google Scholar 

  20. Pei E, Loh GH (2018) Technological considerations for 4D printing: an overview. Prog Addit Manuf 3:95–107. https://doi.org/10.1007/s40964-018-0047-1

    Article  Google Scholar 

  21. Leist SK, Zhou J (2016) Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp 11:249–262. https://doi.org/10.1080/17452759.2016.1198630

    Article  Google Scholar 

  22. Momeni F, Mehdi M, Hassani NS, Liu X, Ni J (2017) A review of 4D printing. Mater Des 122:42–79. https://doi.org/10.1016/j.matdes.2017.02.068

    Article  Google Scholar 

  23. McAlpine K 4D-printed structure changes shape when placed in water | Harvard Gazette. http://news.harvard.edu/gazette/story/2016/01/4d-printed-structure-changes-shape-when-placed-in-water/. Accessed 11 Oct 2019

  24. Kwok TH, Wang CCL, Deng D et al (2015) Four-dimensional printing for freeform surfaces: design optimization of Origami and Kirigami structures. J Mech Des Trans ASME. https://doi.org/10.1115/1.4031023

    Article  Google Scholar 

  25. Zhou Y, Huang WM, Kang SF et al (2015) From 3D to 4D printing: approaches and typical applications. J Mech Sci Technol 29:4281–4288. https://doi.org/10.1007/s12206-015-0925-0

    Article  Google Scholar 

  26. Kirillova A, Ionov L (2019) Shape-changing polymers for biomedical applications. J Mater Chem B 7:1597–1624

    Article  Google Scholar 

  27. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120. https://doi.org/10.1016/j.progpolymsci.2015.04.001

    Article  Google Scholar 

  28. Piedade AP (2019) 4D printing: the shape-morphing in additive manufacturing. J Funct Biomater 10:9

    Article  Google Scholar 

  29. Zeng M, Zhang Y (2019) Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. J Mater Chem A 7:23301–23336. https://doi.org/10.1039/c9ta07552f

    Article  Google Scholar 

  30. Rayate A, Jain PK (2018) A review on 4D printing material composites and their applications. Mater Today Proc 5:20474–20484. https://doi.org/10.1016/j.matpr.2018.06.424

    Article  Google Scholar 

  31. Kamila S (2013) Introduction, classification and applications of smart materials: an overview. Am J Appl Sci 10:876–880. https://doi.org/10.3844/ajassp.2013.876.880

    Article  Google Scholar 

  32. Dadbakhsh S, Speirs M, Kruth JP et al (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16:1140–1146. https://doi.org/10.1002/adem.201300558

    Article  Google Scholar 

  33. Yu K, Ritchie A, Mao Y et al (2015) Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Procedia IUTAM 12:193–203. https://doi.org/10.1016/j.piutam.2014.12.021

    Article  Google Scholar 

  34. Kim K, Zhu W, Qu X et al (2014) 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano 8:9799–9806. https://doi.org/10.1021/nn503268f

    Article  Google Scholar 

  35. Rajabi AH, Jaffe M, Arinzeh TL (2015) Piezoelectric materials for tissue regeneration: a review. Acta Biomater 24:12–23. https://doi.org/10.1016/j.actbio.2015.07.010

    Article  Google Scholar 

  36. Exarchos DA, Dalla PT, Tragazikis IK et al (2018) SMA-coated aluminum structural elements with enhanced-thermo-mechanical performance. Adv Compos Lett 27:146–167. https://doi.org/10.1177/096369351802700404

    Article  Google Scholar 

  37. Najah Saud Al-Humairi S (2020) Cu-Based shape memory alloys: Modified structures and their related properties. In: Vikraman D, Karuppasamy K (eds) Recent advancements in the metallurgical engineering and electrodeposition. IntechOpen. Division of Electronics and ElectricalEngineering, Dongguk University-Seoul, Seoul 04620, Korea

  38. Zarek M, Layani M, Cooperstein I et al (2016) 3D printing: 3D printing of shape memory polymers for flexible electronic devices (Adv. Mater. 22/2016). Adv Mater 28:4166. https://doi.org/10.1002/adma.201670148

    Article  Google Scholar 

  39. Miao S, Zhu W, Castro NJ et al (2016) 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep 6:27226. https://doi.org/10.1038/srep27226

    Article  Google Scholar 

  40. Jamróz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res 35:176. https://doi.org/10.1007/s11095-018-2454-x

    Article  Google Scholar 

  41. Palza H, Zapata PA, Angulo-Pineda C (2019) Electroactive smart polymers for biomedical applications. Materials (Basel) 12:277. https://doi.org/10.3390/ma12020277

    Article  Google Scholar 

  42. Teoh JEM, An J, Feng X et al (2018) Design and 4D printing of cross-folded origami structures: a preliminary investigation. Materials (Basel) 11:376. https://doi.org/10.3390/ma11030376

    Article  Google Scholar 

  43. Derakhshanfar S, Mbeleck R, Xu K et al (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 3:144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008

    Article  Google Scholar 

  44. Liu F, Chen Q, Liu C et al (2018) Natural polymers for organ 3D bioprinting. Polymers (Basel) 10:1278. https://doi.org/10.3390/polym10111278

    Article  Google Scholar 

  45. Rider P, Kačarević ŽP, Alkildani S et al (2018) Bioprinting of tissue engineering scaffolds. J Tissue Eng 9:2041731418802090. https://doi.org/10.1177/2041731418802090

    Article  Google Scholar 

  46. Ivanova O, Elliott A, Campbell T, Williams CB (2014) Unclonable security features for additive manufacturing. Addit Manuf 1:24–31. https://doi.org/10.1016/j.addma.2014.07.001

    Article  Google Scholar 

  47. Wan Z, Zhang P, Liu Y et al (2020) Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater 101:26–42. https://doi.org/10.1016/j.actbio.2019.10.038

    Article  Google Scholar 

  48. Raviv D, Zhao W, McKnelly C et al (2014) Active printed materials for complex self-evolving deformations. Sci Rep 4:7422. https://doi.org/10.1038/srep07422

    Article  Google Scholar 

  49. Bodaghi M, Damanpack AR, Liao WH (2016) Self-expanding/shrinking structures by 4D printing. Smart Mater Struct 25:105034. https://doi.org/10.1088/0964-1726/25/10/105034

    Article  Google Scholar 

  50. Momeni F, Ni J (2020) Laws of 4D printing. Engineering

  51. Miao S, Castro N, Nowicki M et al (2017) 4D printing of polymeric materials for tissue and organ regeneration. Mater Today 20:577–591. https://doi.org/10.1016/j.mattod.2017.06.005

    Article  Google Scholar 

  52. Singholi AKS, Sharma A (2019) Finding capabilities of 4D printing. Int J Eng Adv Technol 8:1095–1110

    Google Scholar 

  53. Gardan J (2019) Smart materials in additive manufacturing: state of the art and trends. Virtual Phys Prototyp 14:1–18. https://doi.org/10.1080/17452759.2018.1518016

    Article  Google Scholar 

  54. Economia DDI (2018) Economia e management additive manufacturing: analysis of the economic context and evaluation of the indoor air quality, with a total quality management approach

  55. Suriano R, Bernasconi R, Magagnin L, Levi M (2019) 4D printing of smart stimuli-responsive polymers. J Electrochem Soc 166:B3274–B3281. https://doi.org/10.1149/2.0411909jes

    Article  Google Scholar 

  56. Qureshi HJ, Saleem MU (2018) Flexural and shear strain characteristics of carbon fiber reinforced polymer composite adhered to a concrete surface. Materials (Basel) 11:2596. https://doi.org/10.3390/ma11122596

    Article  Google Scholar 

  57. Hales S, Tokita E, Neupane R et al (2020) 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology. https://doi.org/10.1088/1361-6528/ab5f29

    Article  Google Scholar 

  58. Ligon SC, Liska R, Stampfl J et al (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  59. Boydston AJ, Cao B, Nelson A et al (2018) Additive manufacturing with stimuli-responsive materials. J Mater Chem A 6:20621–20645. https://doi.org/10.1039/C8TA07716A

    Article  Google Scholar 

  60. Baker AB, Bates SRG, Llewellyn-Jones TM et al (2019) 4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Mater Des 163:107544. https://doi.org/10.1016/j.matdes.2018.107544

    Article  Google Scholar 

  61. Bodaghi M, Noroozi R, Zolfagharian A et al (2019) 4D printing self-morphing structures. Materials (Basel) 12:1353. https://doi.org/10.3390/ma12081353

    Article  Google Scholar 

  62. Ding Z, Weeger O, Qi HJ, Dunn ML (2018) 4D rods: 3D structures via programmable 1D composite rods. Mater Des 137:256–265. https://doi.org/10.1016/j.matdes.2017.10.004

    Article  Google Scholar 

  63. Bodaghi M, Damanpack AR, Liao WH (2018) Triple shape memory polymers by 4D printing. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aabc2a

    Article  Google Scholar 

  64. Choong YYC, Maleksaeedi S, Eng H et al (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126:219–225. https://doi.org/10.1016/j.matdes.2017.04.049

    Article  Google Scholar 

  65. Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38:1600628. https://doi.org/10.1002/marc.201600628

    Article  Google Scholar 

  66. Naficy S, Spinks GM, Wallace GG (2014) Thin, tough, pH-sensitive hydrogel films with rapid load recovery. ACS Appl Mater Interfaces 6:4109–4114. https://doi.org/10.1021/am405708v

    Article  Google Scholar 

  67. Ding Z, Yuan C, Peng X et al (2017) Direct 4D printing via active composite materials. Sci Adv. https://doi.org/10.1126/sciadv.1602890

    Article  Google Scholar 

  68. Wu J, Yuan C, Ding Z et al (2016) Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep 6:24224. https://doi.org/10.1038/srep24224

    Article  Google Scholar 

  69. Wei H, Zhang Q, Yao Y et al (2017) Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces 9:876–883. https://doi.org/10.1021/acsami.6b12824

    Article  Google Scholar 

  70. Miao S, Zhu W, Castro NJ et al (2016) Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C Methods 22:952–963. https://doi.org/10.1089/ten.tec.2015.0542

    Article  Google Scholar 

  71. Sydney Gladman A, Matsumoto EA, Nuzzo RG et al (2016) Biomimetic 4D printing. Nat Mater 15:413–418. https://doi.org/10.1038/nmat4544

    Article  Google Scholar 

  72. Zhang Q, Zhang K, Hu G (2016) Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci Rep 6:22431. https://doi.org/10.1038/srep22431

    Article  Google Scholar 

  73. Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114. https://doi.org/10.1016/j.matdes.2016.02.018

    Article  Google Scholar 

  74. Nadgorny M, Xiao Z, Chen C, Connal LA (2016) Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer. ACS Appl Mater Interfaces 8:28946–28954. https://doi.org/10.1021/acsami.6b07388

    Article  Google Scholar 

  75. Au AK, Bhattacharjee N, Horowitz LF et al (2015) 3D-printed microfluidic automation. Lab Chip 15:1934–1941. https://doi.org/10.1039/c5lc00126a

    Article  Google Scholar 

  76. Bakarich SE, Gorkin R, In PM, Het SGM (2015) 4D printing with mechanically robust, thermally actuating hydrogels. Macromol Rapid Commun 36:1211–1217. https://doi.org/10.1002/marc.201500079

    Article  Google Scholar 

  77. Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6:8643. https://doi.org/10.1038/ncomms9643

    Article  Google Scholar 

  78. Ge Q, Dunn CK, Qi HJ, Dunn ML (2014) Active origami by 4D printing. Smart Mater Struct 23:94007. https://doi.org/10.1088/0964-1726/23/9/094007

    Article  Google Scholar 

  79. Wu JJ, Huang LM, Zhao Q, Xie T (2018) 4D Printing: history and recent progress. Chin J Polym Sci English Ed 36:563–575. https://doi.org/10.1007/s10118-018-2089-8

    Article  Google Scholar 

  80. Baddam Y, Uddin MN, Don T, Asmatulu E (2019) Integrating 4D printing processes into STEM education. pp 1–11

  81. Mao Y, Ding Z, Yuan C et al (2016) 3D printed reversible shape changing components with stimuli responsive materials. Sci Rep 6:24761. https://doi.org/10.1038/srep24761

    Article  Google Scholar 

  82. Mao Y, Yu K, Isakov MS et al (2015) Sequential self-folding structures by 3D printed digital shape memory polymers. Sci Rep 5:13616. https://doi.org/10.1038/srep13616

    Article  Google Scholar 

  83. Huang L, Jiang R, Wu J et al (2017) Ultrafast digital printing toward 4D shape changing materials. Adv Mater 29:1605390. https://doi.org/10.1002/adma.201605390

    Article  Google Scholar 

  84. Jamal M, Kadam SS, Xiao R et al (2013) Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv Healthc Mater 2:1142–1150. https://doi.org/10.1002/adhm.201200458

    Article  Google Scholar 

  85. Zhang Z, Demir KG, Gu GX (2019) Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int J Smart Nano Mater 10:205–224. https://doi.org/10.1080/19475411.2019.1591541

    Article  Google Scholar 

  86. Tofail SAM, Koumoulos EP, Bandyopadhyay A et al (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21:22–37. https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  87. Zafar MQ, Zhao H (2020) 4D printing: future insight in additive manufacturing. Met Mater Int 26:564–585. https://doi.org/10.1007/s12540-019-00441-w

    Article  Google Scholar 

  88. Espera AH, Dizon JRC, Chen Q, Advincula RC (2019) 3D-printing and advanced manufacturing for electronics. Prog Addit Manuf 4:245–267. https://doi.org/10.1007/s40964-019-00077-7

    Article  Google Scholar 

  89. Tairidis GK, Foutsitzi G, Stavroulakis GE (2019) Optimal design of smart composites. Approximation and Optimization. Springer, Cham, pp 185–217

    Chapter  Google Scholar 

  90. Han T, Kundu S, Nag A, Xu Y (2019) 3D printed sensors for biomedical applications: a review. Sensors (Switzerland). https://doi.org/10.3390/s19071706

    Article  Google Scholar 

  91. Jiang J, Xu X, Stringer J (2018) Support structures for additive manufacturing: a review. J Manuf Mater Process 2:64. https://doi.org/10.3390/jmmp2040064

    Article  Google Scholar 

  92. Lui YS, Sow WT, Tan LP et al (2019) 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater 92:19–36. https://doi.org/10.1016/j.actbio.2019.05.005

    Article  Google Scholar 

  93. Shie MY, Shen YF, Astuti SD et al (2019) Review of polymeric materials in 4D printing biomedical applications. Polymers (Basel) 11:1864. https://doi.org/10.3390/polym11111864

    Article  Google Scholar 

  94. Chung S, Song SE, Cho YT (2017) Effective software solutions for 4D printing: a review and proposal. Int J Precis Eng Manuf Green Technol 4:359–371. https://doi.org/10.1007/s40684-017-0041-y

    Article  Google Scholar 

  95. Ahmed K, Shiblee MNI, Khosla A et al (2020) Review—recent progresses in 4D printing of gel materials. J Electrochem Soc 167:037563. https://doi.org/10.1149/1945-7111/ab6e60

    Article  Google Scholar 

  96. Sun YC, Wan Y, Nam R et al (2019) 4D-printed hybrids with localized shape memory behaviour: implementation in a functionally graded structure. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-55298-1

    Article  Google Scholar 

  97. Uchida T, Onoe H (2019) 4D printing of multi-hydrogels using direct ink writing in a supporting viscous liquid. Micromachines 10:433. https://doi.org/10.3390/mi10070433

    Article  Google Scholar 

  98. Asmatulu E, Subeshan B, Twomey J, Overcash M (2020) Increasing the lifetime of products by nanomaterial inclusions—life cycle energy implications. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-020-01794-w

    Article  Google Scholar 

  99. Sánchez-Somolinos C (2020) 4 D printing: an enabling technology for soft robotics. Mech Responsive Mater Soft Robot. https://doi.org/10.1002/9783527822201.ch14

    Article  Google Scholar 

  100. López-Valdeolivas M, Liu D, Broer DJ, Sánchez-Somolinos C (2018) 4D printed actuators with soft-robotic functions. Macromol Rapid Commun 39:1700710. https://doi.org/10.1002/marc.201700710

    Article  Google Scholar 

  101. Müller K, Bugnicourt E, Latorre M et al (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7:74. https://doi.org/10.3390/nano7040074

    Article  Google Scholar 

  102. Bagheri A, Jin J (2019) Photopolymerization in 3D Printing. ACS Appl Polym Mater 1:593–611. https://doi.org/10.1021/acsapm.8b00165

    Article  Google Scholar 

  103. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  Google Scholar 

  104. Li J, Wu C, Chu PK, Gelinsky M (2020) 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep 140:100543. https://doi.org/10.1016/j.mser.2020.100543

    Article  Google Scholar 

  105. Lin YH, Chuang TY, Chiang WH et al (2019) The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Mater Sci Eng C 104:109887. https://doi.org/10.1016/j.msec.2019.109887

    Article  Google Scholar 

  106. Apsite I, Biswas A, Li Y, Ionov L (2020) Microfabrication using shape-transforming soft materials. Adv Funct Mater 30:1908028. https://doi.org/10.1002/adfm.201908028

    Article  Google Scholar 

  107. Noroozi R, Bodaghi M, Jafari H et al (2020) Shape-adaptive metastructures with variable bandgap regions by 4D printing. Polymers (Basel) 12:519. https://doi.org/10.3390/polym12030519

    Article  Google Scholar 

  108. Tetsuka H, Shin SR (2020) Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B 8:2930–2950. https://doi.org/10.1039/d0tb00034e

    Article  Google Scholar 

  109. Miao S, Cui H, Esworthy T et al (2020) 4D self-morphing culture substrate for modulating cell differentiation. Adv Sci 7:1902403. https://doi.org/10.1002/advs.201902403

    Article  Google Scholar 

  110. Mandon CA, Blum LJ, Marquette CA (2017) 3D–4D printed objects: new bioactive material opportunities. Micromachines 8:102. https://doi.org/10.3390/mi8040102

    Article  Google Scholar 

  111. Joshi S, Rawat K, Karunakaran C et al (2020) 4D printing of materials for the future: opportunities and challenges. Appl Mater Today 18:100490. https://doi.org/10.1016/j.apmt.2019.100490

    Article  Google Scholar 

  112. Wu J, Zhao Z, Kuang X et al (2018) Reversible shape change structures by grayscale pattern 4D printing. Multifunct Mater 1:15002. https://doi.org/10.1088/2399-7532/aac322

    Article  Google Scholar 

  113. Khoo ZX, Teoh JEM, Liu Y et al (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10:103–122. https://doi.org/10.1080/17452759.2015.1097054

    Article  Google Scholar 

  114. Mehrpouya M, Dehghanghadikolaei A, Fotovvati B et al (2019) The potential of additive manufacturing in the smart factory industrial 4.0: a review. Appl Sci 9:3865. https://doi.org/10.3390/app9183865

    Article  Google Scholar 

  115. Momeni F, Sabzpoushan S, Valizadeh R et al (2019) Plant leaf-mimetic smart wind turbine blades by 4D printing. Renew Energy 130:329–351. https://doi.org/10.1016/j.renene.2018.05.095

    Article  Google Scholar 

  116. Chen Z, Li Z, Li J et al (2019) 3D printing of ceramics: a review. J Eur Ceram Soc 39:661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  Google Scholar 

  117. Khanpara P, Tanwar S (2020) Additive manufacturing: concepts and technologies. pp 171–185

  118. Melly SK, Liu L, Liu Y, Leng J (2020) Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects. J Mater Sci 55:10975–11051. https://doi.org/10.1007/s10853-020-04761-w

    Article  Google Scholar 

  119. Khan F, Tanaka M (2018) Designing smart biomaterials for tissue engineering. Int J Mol Sci 19:17. https://doi.org/10.3390/ijms19010017

    Article  Google Scholar 

  120. Jin H, Abu-Raya YS, Haick H (2017) Advanced materials for health monitoring with skin-based wearable devices. Adv Healthc Mater 6:1700024. https://doi.org/10.1002/adhm.201700024

    Article  Google Scholar 

  121. González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J (2019) Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci 94:57–116. https://doi.org/10.1016/j.progpolymsci.2019.03.001

    Article  Google Scholar 

  122. Shen B, Erol O, Fang L, Kang SH (2019) Programming the time into 3D printing: current advances and future directions in 4D printing. Multifunct Mater 3:12001. https://doi.org/10.1088/2399-7532/ab54ea

    Article  Google Scholar 

  123. Chen YW, Chen CC, Ng HY et al (2019) Additive manufacturing of nerve decellularized extracellular matrix-contained polyurethane conduits for peripheral nerve regeneration. Polymers (Basel) 11:1612. https://doi.org/10.3390/polym11101612

    Article  Google Scholar 

  124. Kantareddy SNR, Simpson TW, Ounaies Z, Frecker M (2016) 3D printing of shape changing polymer structures: design and characterization of materials. In: Solid freeform fabrication 2016: proceedings of the 27th annual international solid freeform fabrication symposium—an additive manufacturing conference, SFF 2016. pp 2224–2235

  125. Guo J, Zhang R, Zhang L, Cao X (2018) 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett 7:442–446. https://doi.org/10.1021/acsmacrolett.7b00957

    Article  Google Scholar 

  126. Zhu P, Yang W, Wang R et al (2018) 4D printing of complex structures with a fast response time to magnetic stimulus. ACS Appl Mater Interfaces 10:36435–36442. https://doi.org/10.1021/acsami.8b12853

    Article  Google Scholar 

  127. Zolfagharian A, Kaynak A, Khoo SY, Kouzani A (2018) Pattern-driven 4D printing. Sensors Actuators A Phys 274:231–243

    Article  Google Scholar 

  128. Ni J, Ling H, Zhang S et al (2019) Three-dimensional printing of metals for biomedical applications. Mater Today Bio 3:100024. https://doi.org/10.1016/j.mtbio.2019.100024

    Article  Google Scholar 

  129. Roach DJ, Hamel CM, Dunn CK et al (2019) The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures. Addit Manuf 29:100819. https://doi.org/10.1016/j.addma.2019.100819

    Article  Google Scholar 

  130. Ge Q, Qi HJ, Dunn ML (2013) Active materials by four-dimension printing. Appl Phys Lett 103:131901. https://doi.org/10.1063/1.4819837

    Article  Google Scholar 

  131. Mitchell A, Lafont U, Hołyńska M, Semprimoschnig C (2018) Additive manufacturing—a review of 4D printing and future applications. Addit Manuf 24:606–626. https://doi.org/10.1016/j.addma.2018.10.038

    Article  Google Scholar 

  132. Ntouanoglou K, Stavropoulos P, Mourtzis D (2018) 4D printing prospects for the aerospace industry: a critical review. Procedia Manuf 18:120–129. https://doi.org/10.1016/j.promfg.2018.11.016

    Article  Google Scholar 

  133. Miao JT, Ge M, Peng S et al (2019) Dynamic imine bond-based shape memory polymers with permanent shape reconfigurability for 4D printing. ACS Appl Mater Interfaces 11:40642–40651. https://doi.org/10.1021/acsami.9b14145

    Article  Google Scholar 

  134. Momeni F, Ni J (2018) Nature-inspired smart solar concentrators by 4D printing. Renew Energy 122:35–44. https://doi.org/10.1016/j.renene.2018.01.062

    Article  Google Scholar 

  135. Burela RG, Kamineni JN, Harursampath D (2019) Multifunctional polymer composites for 3D and 4D printing. In: Sadasivuni K, Deshmukh K, Almaadeed MA (eds) 3D and 4D printing of polymer nanocomposite materials: processes, applications, and challenges. Elsevier, pp 231–257

    Google Scholar 

  136. Shin DG, Kim TH, Kim DE (2017) Review of 4D printing materials and their properties. Int J Precis Eng Manuf Green Technol 4:349–357. https://doi.org/10.1007/s40684-017-0040-z

    Article  Google Scholar 

  137. Wang G, Yang H, Yan Z, Gecer Ulu N, Tao Y, Gu J, Kara LB, Yao L (2018) 4D Mesh: 4D printing morphing non-developable mesh surfaces. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, pp 623–635. Accessed 11 Oct 2018

  138. Ali MH, Abilgaziyev A, Adair D (2019) 4D printing: a critical review of current developments, and future prospects. Int J Adv Manuf Technol 105:701–717. https://doi.org/10.1007/s00170-019-04258-0

    Article  Google Scholar 

  139. Li A, Challapalli A, Li G (2019) 4D printing of recyclable lightweight architectures using high recovery stress shape memory polymer. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-44110-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eylem Asmatulu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subeshan, B., Baddam, Y. & Asmatulu, E. Current progress of 4D-printing technology. Prog Addit Manuf 6, 495–516 (2021). https://doi.org/10.1007/s40964-021-00182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-021-00182-6

Keywords

Navigation