Skip to main content
Log in

4D Printing: Future Insight in Additive Manufacturing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Development in additive manufacturing is exceptionally rapid than the expected forecast so far and it has traced out new dimensions in engineering applications. 3D printing technology becomes more glamorous when Skylar Tibbits incorporated the concept of “Time” as a fourth dimension by encapsulating smart materials in current additive manufacturing technique. Materials having an explicit response to external stimuli over a certain time span are designated as smart materials and additive manufacturing of such time-dependent, programmable, and intelligent materials is termed as 4D printing. In 4D printing, primary 3D printed configuration switched exclusively into a transformed shape when exposed to an external stimuli, e.g. heat, light, water, chemical, electric current, magnetic field or pH. Perhaps, additive manufacturing technology seems to be superseded exclusively by this modern technology in forthcoming years, and much effort is demanding from every discipline to actualize this technology. A task-oriented entire landscape of 4D printing followed by a comprehensive smart material perspective is presented in this review. Graphical abstract set forth a route to the complete process comprehension. Moreover, other components of 4D technology like customary techniques, computational challenges, reversibility and current stature of 4D printing are probed through recent experimental and theoretical literature. Finally, potential applications of 4D printing are summarised with promising research directions and outlook.

Graphic Abstract

4D printing: A future insight in additive manufacturing

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Tibbits, 4D printing: multi-material shape change. Archit. Des. 84, 116–121 (2014). https://doi.org/10.1002/ad.1710

    Article  Google Scholar 

  2. Y. Forterre, J.M. Skotheim, J. Dumals, L. Mahadevan, How the Venus flytrap snaps. Nature 433, 421–425 (2005). https://doi.org/10.1038/nature03185

    Article  CAS  Google Scholar 

  3. K. Song, E. Yeom, S.J. Lee, Real-time imaging of pulvinus bending in Mimosa pudica. Sci. Rep. (2014). https://doi.org/10.1038/srep06466

    Article  Google Scholar 

  4. J. Kim, V.V. Varadan, V.K. Varadan, Modeling integrated sensor/actuator functions in realistic environments. vol. 1916, pp. 56–64 (1993). https://doi.org/10.1117/12.148504

  5. F. Momeni, M. Mehdi, N.S. Hassani, X. Liu, J. Ni, A review of 4D printing. Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.02.068

    Article  Google Scholar 

  6. O. Ivanova, A. Elliott, T. Campbell, C.B. Williams, Unclonable security features for additive manufacturing. Addit. Manuf. 1, 24–31 (2014). https://doi.org/10.1016/j.addma.2014.07.001

    Article  Google Scholar 

  7. X. Liu, Y. Zheng, S.R. Peurifoy et al., Optimization of 4D polymer printing within a massively parallel flow-through photochemical microreactor. Polym. Chem. 7, 3229–3235 (2016). https://doi.org/10.1039/C6PY00283H

    Article  CAS  Google Scholar 

  8. A. Zolfagharian, A.Z. Kouzani, S.Y. Khoo et al., Evolution of 3D printed soft actuators. Sens. Actuators A Phys. 250, 258–272 (2016)

    Article  CAS  Google Scholar 

  9. B. Gao, Q. Yang, X. Zhao et al., 4D bioprinting for biomedical applications. Trends Biotechnol. 34(9), 746–756 (2016). https://doi.org/10.1016/j.tibtech.2016.03.004

    Article  CAS  Google Scholar 

  10. E. Pei, 4D Printing: dawn of an emerging technology cycle. Assem. Autom. 34, 310–314 (2014). https://doi.org/10.1108/AA-07-2014-062

    Article  Google Scholar 

  11. H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer 54, 2199–2221 (2013). https://doi.org/10.1016/j.polymer.2013.02.023

    Article  CAS  Google Scholar 

  12. S.M. Felton, M.T. Tolley, B. Shin et al., Self-folding with shape memory composites. Soft. Matter. (2013). https://doi.org/10.1039/c3sm51003d

    Article  Google Scholar 

  13. T.-H. Kwok, C.C.L. Wang, D. Deng et al., Four-dimensional printing for freeform surfaces: design optimization of origami and kirigami structures. J. Mech. Des. 137, 111413 (2015). https://doi.org/10.1115/1.4031023

    Article  Google Scholar 

  14. A. Rashid, Additive manufacturing technologies, in CIRP Encyclopedia of Production Engineering, ed. by S. Chatti, L. Laperrière, G. Reinhart, T. Tolio (Springer, Heidelberg, 2019), pp. 39–46

    Chapter  Google Scholar 

  15. C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography. US Pat 4,575,330. p. 1–16. (1986)https://doi.org/10.1145/634067.634234

  16. A. Mitchell, U. Lafont, M. Hołyńska, C. Semprimoschnig, Additive manufacturing—A review of 4D printing and future applications. Addit. Manuf. 24, 606–626 (2018). https://doi.org/10.1016/j.addma.2018.10.038

    Article  CAS  Google Scholar 

  17. 52900:2015 A, Standard terminology for additive manufacturing—general principles—terminology. ASTM Int. (2015). https://doi.org/10.1520/F2792-12A.2

    Article  Google Scholar 

  18. A. Pandian, C. Belavek, A review of recent trends and challenges in 3D printing, in Proceedings 2016 ASEE North Central Section Conference. pp. 1–17 (2016)

  19. T.Caffry, T. Wohlers, Wohlers report 2018, 3D Printing and Additive Manufacturing State of the Industry: Annual Woldwide Progress Report, Wohlers Associates 2018. Wohlers Assoc (2018)

  20. T.D. Ngo, A. Kashani, G. Imbalzano et al., Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  21. J. Gardan, Smart materials in additive manufacturing: state of the art and trends. Virtual Phys. Prototyp. 14, 1–8 (2019). https://doi.org/10.1080/17452759.2018.1518016

    Article  Google Scholar 

  22. R.T. Shafranek, S.C. Millik, P.T. Smith et al., Stimuli-responsive materials in additive manufacturing. Prog. Polym. Sci 93, 36–67 (2019). https://doi.org/10.1016/j.progpolymsci.2019.03.002

    Article  CAS  Google Scholar 

  23. L. Sun, W.M. Huang, Z. Ding et al., Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012). https://doi.org/10.1016/j.matdes.2011.04.065

    Article  CAS  Google Scholar 

  24. A. Zolfagharian, A. Kaynak, S.Y. Khoo, A. Kouzani, Pattern-driven 4D printing. Sens. Actuators A Phys. (2018). https://doi.org/10.1016/j.sna.2018.03.034

    Article  Google Scholar 

  25. M. Bodaghi, A.R. Damanpack, W.H. Liao, Self-expanding/shrinking structures by 4D printing. Smart Mater. Struct. (2016). https://doi.org/10.1088/0964-1726/25/10/105034

    Article  Google Scholar 

  26. D.G. Bekas, K. Tsirka, D. Baltzis, A.S. Paipetis, Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 87, 92–119 (2016). https://doi.org/10.1016/j.compositesb.2015.09.057

    Article  CAS  Google Scholar 

  27. G. Li, P. Xiao, S. Hou, Y. Huang, Graphene based self-healing materials. Carbon. N Y 146, 371–387 (2019). https://doi.org/10.1016/j.carbon.2019.02.011

    Article  CAS  Google Scholar 

  28. W. Fan, Y. Zhang, W. Li et al., Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating. Chem. Eng. J. 368, 1033–1044 (2019). https://doi.org/10.1016/j.cej.2019.03.027

    Article  CAS  Google Scholar 

  29. X.F. Wang, Z.H. Yang, C. Fang et al., Evaluation of the mechanical performance recovery of self-healing cementitious materials – its methods and future development: a review. Constr. Build. Mater. 212, 400–421 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.117

    Article  CAS  Google Scholar 

  30. P. Rastogi, B. Kandasubramanian, Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Eng. J. Chem. 366, 264–304 (2019). https://doi.org/10.1016/j.cej.2019.02.085

    Article  CAS  Google Scholar 

  31. A. Raza, U. Hayat, T. Rasheed et al., “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J. Mater. Res. Technol. 8, 1497–1509 (2019). https://doi.org/10.1016/j.jmrt.2018.03.007

    Article  CAS  Google Scholar 

  32. S. Tibbits, K. Cheung, Programmable materials for architectural assembly and automation. Assem. Autom. 32, 216–225 (2012). https://doi.org/10.1108/01445151211244348

    Article  Google Scholar 

  33. S. Tibbits, Design to self-assembly. Archit. Des. (2012). https://doi.org/10.1002/ad.1381

    Article  Google Scholar 

  34. W.M. Huang, Z. Ding, C.C. Wang et al., Shape memory materials. Mater. Today. 13, 54–61 (2010). https://doi.org/10.1016/S1369-7021(10)70128-0

    Article  CAS  Google Scholar 

  35. E. Pei, G.H. Loh, Technological considerations for 4D printing: an overview. Prog. Addit. Manuf. (2018). https://doi.org/10.1007/s40964-018-0047-1

    Article  Google Scholar 

  36. P. Popov, D.C. Lagoudas, shape memory alloys. In: Shape Memory Alloy. vol. 1, pp. 49–56 (2008).https://doi.org/10.1007/978-0-387-47685-8

  37. K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys. Intermetallics 7, 511–528 (1999). https://doi.org/10.1016/S0966-9795(98)00070-3

    Article  CAS  Google Scholar 

  38. J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)

    Article  CAS  Google Scholar 

  39. K. Ullakko, Magnetically controlled shape memory alloys: a new class of actuator materials. J. Mater. Eng. Perform. (1996). https://doi.org/10.1007/BF02649344

    Article  Google Scholar 

  40. S. Faehler, An introduction to actuation mechanisms of Magnetic Shape Memory Alloys. ECS Trans. (2007). https://doi.org/10.1149/1.2753250

    Article  Google Scholar 

  41. D.I. Paul, W. McGehee, R.C. O’Handley, M. Richard, Ferromagnetic shape memory alloys: a theoretical approach. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2740328

    Article  Google Scholar 

  42. A. Planes, L. Mañosa, Ferromagnetic shape-memory alloys. Mater. Sci. Forum. 512, 145–152 (2006). https://doi.org/10.4028/www.scientific.net/MSF.512.145

    Article  CAS  Google Scholar 

  43. J. Raasch, M. Ivey, D. Aldrich et al., Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit. Manuf. (2015). https://doi.org/10.1016/j.addma.2015.09.004

    Article  Google Scholar 

  44. Y. Bai, X. Zhang, Q. Wang, T. Wang, A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J. Mater. Chem. A. 2, 4771–4778 (2014). https://doi.org/10.1039/C3TA15117D

    Article  CAS  Google Scholar 

  45. M. Bodaghi, A.R. Damanpack, W.H. Liao, Triple shape memory polymers by 4D printing. Smart. Mater. Struct. (2018). https://doi.org/10.1088/1361-665X/aabc2a

    Article  Google Scholar 

  46. W.M. Huang, Y. Zhao, C.C. Wang et al., Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 19, 9952 (2012). https://doi.org/10.1007/s10965-012-9952-z

    Article  CAS  Google Scholar 

  47. P. Miaudet, A. Derré, M. Maugey et al., Shape and temperature memory of nanocomposites with broadened glass transition. Science 318, 1294–1296 (2007). https://doi.org/10.1126/science.1145593

    Article  CAS  Google Scholar 

  48. C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543 (2007). https://doi.org/10.1039/b615954k

    Article  CAS  Google Scholar 

  49. R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature. 428, 487–492 (2004)

    Article  CAS  Google Scholar 

  50. F. Pilate, A. Toncheva, P. Dubois, J.M. Raquez, Shape-memory polymers for multiple applications in the materials world. Eur. Polym. J. 80, 268–294 (2016). https://doi.org/10.1016/j.eurpolymj.2016.05.004

    Article  CAS  Google Scholar 

  51. C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. (2007). https://doi.org/10.1039/b615954k

    Article  Google Scholar 

  52. H. Xie, K.K. Yang, Y.Z. Wang, Photo-cross-linking: a powerful and versatile strategy to develop shape-memory polymers. Prog. Polym. Sci. 95, 32–64 (2019). https://doi.org/10.1016/j.progpolymsci.2019.05.001

    Article  CAS  Google Scholar 

  53. F. Liu, M.W. Urban, Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35, 3–23 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.002

    Article  CAS  Google Scholar 

  54. Y.J. Liu, L.W. Liu, L. Jinsong, Electroactive polymer and its composites: theory, experiment and applications, in ICCM International Conference on Composite Materials. (2011)

  55. K. Kruusamäe, K. Mukai, T. Sugino, K. Asaka, Impact of viscoelastic properties on bucky-gel actuator performance. J. Intell. Mater. Syst. Struct. 25, 2235–2245 (2014). https://doi.org/10.1177/1045389X14538538

    Article  CAS  Google Scholar 

  56. Y. Osada, A. Matsuda, Shape memory in hydrogels. Nature 376, 219 (1995). https://doi.org/10.1038/376219a0

    Article  CAS  Google Scholar 

  57. H. Tobushi, E. Pieczyska, Y. Ejiri, T. Sakuragi, Thermomechanical properties of shape-memory alloy and polymer and their composites. Mech. Adv. Mater. Struct. 16, 236–247 (2009). https://doi.org/10.1080/15376490902746954

    Article  CAS  Google Scholar 

  58. D.C. Hofmann, Shape memory bulk metallic glass composites. Science 329, 1294–1295 (2010). https://doi.org/10.1126/science.1193522

    Article  CAS  Google Scholar 

  59. J. Wu, C. Yuan, Z. Ding et al., Multi-shape active composites by 3D printing of digital shape memory polymers. Sci. Rep. (2016). https://doi.org/10.1038/srep24224

    Article  Google Scholar 

  60. Q. Ge, H.J. Qi, M.L. Dunn, Active materials by four-dimension printing. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4819837

    Article  Google Scholar 

  61. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)

    Article  CAS  Google Scholar 

  62. R.A. Weiss, E. Izzo, S. Mandelbaum, New design of shape memory polymers: mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules 41, 2978–2980 (2008). https://doi.org/10.1021/ma8001774

    Article  CAS  Google Scholar 

  63. M.D. Dickey, Hydrogel composites: shaped after print. Nat. Mater. 15, 379–380 (2016)

    Article  CAS  Google Scholar 

  64. S. Wang, J.M. Lee, W.Y. Yeong, Smart hydrogels for 3D bioprinting. Int. J. Biopr. 1(1), 3–14 (2015). https://doi.org/10.18063/IJB.2015.01.005

    Article  Google Scholar 

  65. D. Han, C. Farino, C. Yang et al., soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b04250

    Article  Google Scholar 

  66. R. Bogue, Smart materials: a review of capabilities and applications. Assem. Autom. 34, 16–22 (2014). https://doi.org/10.1108/AA-10-2013-094

    Article  Google Scholar 

  67. K. Uchino, Antiferroelectric shape memory ceramics. Actuators. 5, 11 (2016). https://doi.org/10.3390/act5020011

    Article  Google Scholar 

  68. W.M. Huang, B. Yang, Y.Q. Fu, Polyurethane shape memory polymers (CRC Press, Boca Raton, 2012)

    Google Scholar 

  69. B. Yang, W.M. Huang, C. Li, J.H. Chor, Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. Eur. Polym. J. 41, 1123–1128 (2005). https://doi.org/10.1016/j.eurpolymj.2004.11.029

    Article  CAS  Google Scholar 

  70. J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater Sci. 56, 1077–1135 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.001

    Article  CAS  Google Scholar 

  71. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo et al., Biomimetic 4D printing. Nat. Mater. (2016). https://doi.org/10.1038/nmat4544

    Article  Google Scholar 

  72. Campbell T a., Tibbits S, Garrett B (2014) the next wave: 4d printing programming the material world. Atl Counc

  73. S. Tibbits, C. McKnelly, C. Olguin, et al., 4D printing and universal transformation, in ACADIA 14 Design Agency: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (2014)

  74. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010). https://doi.org/10.1002/adma.200904447

    Article  CAS  Google Scholar 

  75. K. Yu, M.L. Dunn, H.J. Qi, Digital manufacture of shape changing components. Extrem. Mech. Lett. 4, 9–17 (2015). https://doi.org/10.1016/j.eml.2015.07.005

    Article  Google Scholar 

  76. O. Kuksenok, A.C. Balazs, Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Mater. Horiz. 3, 53–62 (2016). https://doi.org/10.1039/C5MH00212E

    Article  CAS  Google Scholar 

  77. S.E. Bakarich, R. Gorkin, Panhuis M. In, Spinks G.M. Het, 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. (2015). https://doi.org/10.1002/marc.201500079

    Article  Google Scholar 

  78. D.C. Zuluaga, A. Menges, 3D printed hygroscopic programmable material systems, in Materials Research Society Symposium Proceedings. pp 24–31 (2015)

  79. Q. Zhang, K. Zhang, G. Hu, Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. (2016). https://doi.org/10.1038/srep22431

    Article  Google Scholar 

  80. J.E.M. Teoh, Y. Zhao, J. An et al., Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. Smart Mater. Struct. (2017). https://doi.org/10.1088/1361-665X/aa908a

    Article  Google Scholar 

  81. H. Lv, J. Leng, Y. Liu, S. Du, Shape-memory polymer in response to solution. Adv. Eng. Mater. 10, 592–595 (2008). https://doi.org/10.1002/adem.200800002

    Article  CAS  Google Scholar 

  82. C.M. González-Henríquez, M.A. Sarabia-Vallejos, J. Rodriguez-Hernandez, Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog. Polym. Sci. 94, 57–116 (2019). https://doi.org/10.1016/j.progpolymsci.2019.03.001

    Article  CAS  Google Scholar 

  83. Z. Ding, C. Yuan, X. Peng et al., Direct 4D printing via active composite materials. Sci. Adv. (2017). https://doi.org/10.1126/sciadv.1602890

    Article  Google Scholar 

  84. Z.X. Khoo, J.E.M. Teoh, Y. Liu et al., 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyp. (2015). https://doi.org/10.1080/17452759.2015.1097054

    Article  Google Scholar 

  85. A.Y. Lee, J. An, C.K. Chua, Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 3, 663–674 (2017). https://doi.org/10.1016/J.ENG.2017.05.014

    Article  CAS  Google Scholar 

  86. S. Naficy, R. Gately, R. Gorkin et al., 4D printing of reversible shape morphing hydrogel structures. Macromol. Mater. Eng. (2017). https://doi.org/10.1002/mame.201600212

    Article  Google Scholar 

  87. S. Miao, W. Zhu, N.J. Castro et al., 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. (2016). https://doi.org/10.1038/srep27226

    Article  Google Scholar 

  88. T. DebRoy, H.L. Wei, J.S. Zuback et al., Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  89. T. Zhao, R. Yu, X. Li et al., 4D printing of shape memory polyurethane via stereolithography. Eur. Polym. J. 101, 120–126 (2018). https://doi.org/10.1016/j.eurpolymj.2018.02.021

    Article  CAS  Google Scholar 

  90. Y.Y.C. Choong, S. Maleksaeedi, H. Eng et al., 4D printing of high performance shape memory polymer using stereolithography. Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.04.049

    Article  Google Scholar 

  91. Q. Zhang, K. Zhang, G. Hu, Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. (2016). https://doi.org/10.1038/srep22431

    Article  Google Scholar 

  92. Q. Zhang, D. Yan, K. Zhang, G. Hu, Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep. (2015). https://doi.org/10.1038/srep08936

    Article  Google Scholar 

  93. P. Sitthi-amorn, J. Lan, W. Wang, MultiFab: a machine vision assisted platform for multi-material 3d printing. ACM Trans. Graph. (2015). https://doi.org/10.1145/2766962

    Article  Google Scholar 

  94. K.S. Boparai, R. Singh, H. Singh, Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyp. J. 22, 281–299 (2016). https://doi.org/10.1108/RPJ-04-2014-0048

    Article  Google Scholar 

  95. M. Vaezi, S. Chianrabutra, B. Mellor, S. Yang, Multiple material additive manufacturing—Part 1: a review. Virtual Phys. Prototyp. 8, 19–50 (2013). https://doi.org/10.1080/17452759.2013.778175

    Article  Google Scholar 

  96. L.E. Loh, C.K. Chua, W.Y. Yeong et al., Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int. J. Heat Mass Trans. 80, 288–300 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.014

    Article  CAS  Google Scholar 

  97. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: a review. Prog. Mater Sci. 57, 911–946 (2012)

    Article  CAS  Google Scholar 

  98. S. Dadbakhsh, M. Speirs, J.P. Kruth et al., Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv. Eng. Mater. 16, 1140–1146 (2014). https://doi.org/10.1002/adem.201300558

    Article  CAS  Google Scholar 

  99. M.T. Andani, J. Walker, C. Haberl, M. Elahinia, An investigation of effective process parameters on phase transformation temperature of Nitinol manufactured by selective laser melting, in ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 (2014)

  100. H. Meier, C. Haberland, J. Frenzel, R. Zarnetta, Selective laser melting of NiTi shape memory components, in 4th International Conference on Advanced Research in Virtual Physical Prototyping, VRAP 2009; Leir Port 6 Oct 2009 through 10 Oct 2009; Code 82905 pp. 233–238 (2010)

  101. G.R. Donoso, M. Walczak, E.R. Moore, J.A. Ramos-Grez, Towards direct metal laser fabrication of Cu-based shape memory alloys. Rapid Prototyp. J. 23, 329–336 (2017). https://doi.org/10.1108/RPJ-02-2016-0017

    Article  Google Scholar 

  102. Y. Mao, Z. Ding, C. Yuan et al., 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. (2016). https://doi.org/10.1038/srep24761

    Article  Google Scholar 

  103. D. Kokkinis, M. Schaffner, A.R. Studart, Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. (2015). https://doi.org/10.1038/ncomms9643

    Article  Google Scholar 

  104. M. Zarek, M. Layani, S. Eliazar et al., 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Phys. Prototyp. 11, 263–270 (2016). https://doi.org/10.1080/17452759.2016.1244085

    Article  Google Scholar 

  105. ISO/ASTM 52915 Standard specification for additive manufacturing file format (AMF) version 1. 2 1. ISO/ASTM Stand. (2016). https://doi.org/10.1520/f2915-12.2

  106. E.S.A. Nasr, A. Al-Ahmari, K. Moiduddin, CAD issues in additive manufacturing, in Comprehensive Materials Processing (2014)

  107. Technology GI of S and Development of a Contents Configuration Management System and a Simulator for 3D Printing Using Smart Materials (2017)

  108. S. Chung, S.E. Song, Y.T. Cho, Effective software solutions for 4D printing: a review and proposal. Int. J. Precis. Eng. Manuf. Green Technol. 4, 359–371 (2017). https://doi.org/10.1007/s40684-017-0041-y

    Article  Google Scholar 

  109. F. Momeni, J. Ni, Nature-inspired smart solar concentrators by 4D printing. Renew. Energy 122, 35–44 (2018). https://doi.org/10.1016/j.renene.2018.01.062

    Article  Google Scholar 

  110. F. Momeni, S. Sabzpoushan, R. Valizadeh et al., Plant leaf-mimetic smart wind turbine blades by 4D printing. Renew. Energy 130, 329–351 (2019). https://doi.org/10.1016/j.renene.2018.05.095

    Article  Google Scholar 

  111. J. An, C.K. Chua, V. Mironov, A Perspective on 4D Bioprinting. Int. J. Bioprinting (2016). https://doi.org/10.18063/IJB.2016.01.003

    Article  Google Scholar 

  112. A. Haleem, M. Javaid, 4D printing applications in cardiology. Curr. Med. Res. Pract. (2018). https://doi.org/10.1016/j.cmrp.2018.10.001

    Article  Google Scholar 

  113. Q. Ge, A.H. Sakhaei, H. Lee et al., Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. (2016). https://doi.org/10.1038/srep31110

    Article  Google Scholar 

  114. K. Kuribayashi, K. Tsuchiya, Z. You et al., Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006). https://doi.org/10.1016/j.msea.2005.12.016

    Article  CAS  Google Scholar 

  115. V. Mironov, 4D bioprinting: biofabrication of rod-like and tubular tissue engineered constructs using programmable self-folding bioprinted biomaterials, in International Bioprinting Congress. Biopolis (2014)

  116. R.J. Morrison, S.J. Hollister, M.F. Niedner et al., Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. Transl. Med. (2015). https://doi.org/10.1126/scitranslmed.3010825

    Article  Google Scholar 

  117. K. Hammond, U.K. Ghori, A.I. Musani, Tracheobronchomalacia and Excessive Dynamic Airway Collapse. Clin. Chest Med. 39, 223–228 (2018). https://doi.org/10.1016/j.ccm.2017.11.015

    Article  Google Scholar 

  118. G. Priniotakis, Intelligent/smart materials and textiles: an overview. Anal. Electrochem. Text (2005). https://doi.org/10.1533/9781845690878.3.215

    Article  Google Scholar 

  119. J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. (2011). https://doi.org/10.1016/j.pmatsci.2011.03.001

    Article  Google Scholar 

  120. J.Z. Gul, M. Sajid, M.M. Rehman et al., 3D printing for soft robotics—a review. Sci. Technol. Adv. Mater. 19, 243–262 (2018). https://doi.org/10.1080/14686996.2018.1431862

    Article  CAS  Google Scholar 

  121. A. Sydney Gladman, E.A. Matsumoto, R.G. Nuzzo et al., Biomimetic 4D printing. Nat. Mater. (2016). https://doi.org/10.1038/nmat4544

    Article  Google Scholar 

  122. C.Y. Yap, C.K. Chua, Z.L. Dong et al., Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2, 041101 (2015). https://doi.org/10.1063/1.4935926

    Article  CAS  Google Scholar 

  123. Y. Mao, K. Yu, M.S. Isakov et al., Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. (2015). https://doi.org/10.1038/srep13616

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express sincere gratitude to Tsinghua University and Chinese Scholarship Council for financial aid during his Ph.D.

Funding

The National Key R&D Program of China (2017YFB1103300), State Key Laboratory of Tribology Tsinghua University China (SKLT2018B06) and National Natural Science Foundation of China (51975320) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Qasim Zafar.

Ethics declarations

Conflict of interest

It is solemnly declared that there is no conflict of interest between authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M., Zhao, H. 4D Printing: Future Insight in Additive Manufacturing. Met. Mater. Int. 26, 564–585 (2020). https://doi.org/10.1007/s12540-019-00441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00441-w

Keywords

Navigation