Skip to main content
Log in

Synthesis, Microstructure, Physical and Mechanical Characterization of AA6061/B4C/TiO2 Hybrid Composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Aluminium alloys are the most popular and widely used materials in the industrial field because of their significant economic range and lower-density nature. In order to extend its utilization, it is necessary to enhance its mechanical properties. As a result, an attempt was made in this work to synthesize an AA6061 aluminium alloy reinforced with stir cast hybrid combinations of 2.5 wt% boron carbide (B4C) and 2.5, 5, and 7.5 wt% titanium oxide (TiO2) microparticles. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis are used to characterize the fabricated AA6061 hybrid composites. SEM visuals of prepared hybrid composites certified the consistent distribution of B4C and TiO2 microparticles in the AA6061 matrix. The EDS spectra and XRD pattern are used to analyse the presence of hybrid reinforcements in the matrix. The physical and mechanical properties such as tensile, hardness, and impact are tested for the hybrid composites as per ASTM standards. The tensile fractured samples are also analysed by using SEM. The highest tensile, hardness, and impact test results were obtained for the AA6061/2.5wt%B4C/7.5wt%TiO2 sample. The present study indicates that the presence and concentration of reinforcement addition correspondingly increased the mechanical strength of the hybrid composites and is observed up to 7.5 wt% of TiO2 reinforcements. The fabricated AA6061/2.5wt%B4C/7.5wt%TiO2 hybrid composite attained better performances and is promising for use in automotive and its structural parts applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A.H. Idrisi, A.H. Ismail Mourad, Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. J. Alloys Compd. 805, 502–508 (2019)

    Article  CAS  Google Scholar 

  2. D.B. Miracle, Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005)

    Article  CAS  Google Scholar 

  3. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Int. J. Metals 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  4. I.G. Watson, M.F. Forster, P.D. Lee, R.J. Dashwood, R.W. Hamilton, A. Chirazi, Investigation of the clustering behaviour of titanium diboride particles in aluminium. Compos. Part. A: Appl. Sci. Manuf. 36(9), 1177–1187 (2005)

    Article  Google Scholar 

  5. R.P. Barot, M.P. Sutaria, R.P. Desai, Recycling of aluminium matrix composites (AMCS): a review and the way forward. Int. Metalcast (2022). https://doi.org/10.1007/s40962-022-00905-7

    Article  Google Scholar 

  6. G.K. Sigworth, The modification of Al–Si casting alloys: important practical and theoretical aspects. Int. Metalcast. 2, 19–40 (2008). https://doi.org/10.1007/BF03355425

    Article  CAS  Google Scholar 

  7. R.M. Sakthi Sadhasivam, K. Ramanathan, M. Ravichandran, C. Jayaseelan, Experimental investigations on microstructure, properties and workability behavior of zinc oxide reinforced Al–Si–Mg matrix composites. SILICON 14, 2175–2187 (2022)

    Article  CAS  Google Scholar 

  8. R.M. Sakthi Sadhasivam, K. Ramanathan, B.V. Bhuvaneswari, R. Raja, A study on tribological behaviour and analysis of ZnO reinforced AA6061 matrix composites fabricated by stir casting route. Ind. Lub. Trib. 73(4), 642–651 (2021)

    Article  Google Scholar 

  9. Y. Pazhouhanfar, B. Eghbali, Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater. Sci. Eng. A 710, 172–180 (2018)

    Article  CAS  Google Scholar 

  10. H. Aydın, A. Bayram, A. Uğuz, K.S. Akay, Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state. Mater. Des. 30(6), 2211–2221 (2009)

    Article  Google Scholar 

  11. G. Pitchayyapillai, P. Seenikannan, K. Raja, K. Chandrasekaran, Al6061 hybrid metal matrix composite reinforced with alumina and molybdenum disulphide. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/6127624

    Article  Google Scholar 

  12. T. Alemneh Wubieneh, S. Tenager Tegegne, Fabrication and characterization of aluminum (Al-6061) matrix composite reinforced with waste glass for engineering applications. J. Nanomaterial (2022). https://doi.org/10.1155/2022/8409750

    Article  Google Scholar 

  13. C. Ramesh Kumar, R. Ravi Raja Malarvannan, V. JaiGanesh, Role of SiC on mechanical, tribological and thermal expansion characteristics of B4C/Talc-reinforced Al-6061 hybrid composite. SILICON 12, 1491–1500 (2020)

    Article  Google Scholar 

  14. C. Saravanan, K. Subramanian, V. Ananda Krishnan, R. Sankara Narayanan, Effect of particulate reinforced aluminium metal matrix composite—a review. Mech. Mech. Eng. 19(1), 23–30 (2015)

    Google Scholar 

  15. S. Suresh Kumar, M. Uthayakumar, S. Thirumalai Kumaran, P. Parameswaran, Electrical discharge machining of Al (6351)–SiC–B4C hybrid composite. Mater. Man. Process. 29(11–12), 1395–1400 (2014)

    Article  Google Scholar 

  16. R. Jojith, N. Radhika, Mechanical and tribological properties of LM13/TiO2/MoS2 hybrid metal matrix composite synthesized by stir casting. Part. Sci. Technol. 37(5), 570–582 (2019)

    Article  CAS  Google Scholar 

  17. P. Morampudi, V.S.N. Venkata Ramana, K. Sri Ram Vikas, R. Rahul, C. Prasad, Effect of nano ZrB2 particles on physical, mechanical and corrosion properties of Al6061 metal-matrix nano composites through stir casting route. Eng. Res. Express. (2022). https://doi.org/10.1088/2631-8695/ac5f66

    Article  Google Scholar 

  18. M. Shayan, B. Eghbali, B. Niroumand, Synthesis and characterization of AA2024-SiO2 nanocomposites through the vortex method. Int. Metalcast. 15, 1427–1440 (2021). https://doi.org/10.1007/s40962-021-00574-y

    Article  CAS  Google Scholar 

  19. John Samson Khalkho, Suresh Vidyasagar Chevuri, Benny Karunakar Dagarapu, Evaluation of microstructure and mechanical properties of TiO2 reinforced aluminium composites developed through multi-step stir casting. Int. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00760-6

    Article  Google Scholar 

  20. G. Kumaresan, B. Arul Kumar, Investigations on mechanical properties of micro- and nano-particulates (Al2O3/B4C) reinforced in Al7075 matrix composite. Int. Metalcast. 16, 1932–1939 (2022). https://doi.org/10.1007/s40962-021-00741-1

    Article  CAS  Google Scholar 

  21. R. Soundararajan, A. Sathishkumar, S. Sivasankaran, G. Shanthosh, S. Karthik, Evaluation of microstructures, mechanical and dry-sliding wear performance of A356-(Fly Ash/SiCp) hybrid composites. Inter Metalcast. 16, 2079–2096 (2022). https://doi.org/10.1007/s40962-021-00731-3

    Article  CAS  Google Scholar 

  22. J. Hernandez-Sandoval, A.M. Samuel, F.H. Samuel, S. Valtierra, Effect of additions of SiC and Al2O3 particulates on the microstructure and tensile properties of Al–Si–Cu–Mg cast alloys. Inter Metalcast. 10, 253–263 (2016). https://doi.org/10.1007/s40962-016-0035-5

    Article  Google Scholar 

  23. A. Abebe Emiru, D. Kumar Sinha, Fabrication and characterization of hybrid aluminium (Al6061) metal matrix composite reinforced with SiC, B4C and MoS2 via stir casting. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00800-1

    Article  Google Scholar 

  24. S. Kumar Soni, Benedict Thomas, Influence of TiO2 and MWCNT Nanoparticles dispersion on microstructure and mechanical properties of Al6061 matrix hybrid nanocomposites Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab5dfe

    Article  Google Scholar 

  25. D.S. Ebenezer Jacob Dhas, C. Velmurugan, K. Leo Dev Wins, K.P. Boopathi Raja, Effect of Tungsten carbide, Silicon carbide and Graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites. Ceram Intl 45(1), 614–621 (2019)

    Article  Google Scholar 

  26. S. Rajesh, C. Velmurugan, D.S. Ebenezer Jacob Dhas, P.S. Samuel Ratna-Kumar, Studies on the tribological behaviour of exsitu—synthesized AlMg1SiCu/titanium carbide/molybdenum disulfide hybrid composites. Res. Express Mater (2019). https://doi.org/10.1088/2053-1591/ab5f1e

    Article  Google Scholar 

  27. N.M. Siddesh Kumar, N.U. Dheeraj, M. Dhruthi, T.N. Sadashiva, A.K. Shashank, P.K. Rohatgi, Coatings on reinforcements in aluminum metal matrix composites. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00831-8

    Article  Google Scholar 

  28. W.Y. Zhang, Y.H. Du, P. Zhang, Vortex-free stir casting of Al-1.5 wt% Si-SiC composite. J. Alloys Compd. 787, 206–215 (2019)

    Article  CAS  Google Scholar 

  29. G.B. Ghorbal, A. Tricoteaux, A. Thuault, G. Louis, D. Chicot, Comparison of conventional Knoop and Vickers hardness of ceramic materials. J. Eur. Cer. Soc. 37(6), 2531–2535 (2017)

    Article  Google Scholar 

  30. K. Amouri, Sh. Kazemi, A. Momeni, M. Kazazic, Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique. Mater. Sci. Eng. A 674, 569–578 (2016)

    Article  CAS  Google Scholar 

  31. Y. Han, X. Liu, X. Bian, In situ TiB2 particulate reinforced near eutectic Al–Si alloy composites. Compos. Part A: Appl. Sci. Manuf. 33(3), 439–444 (2002)

    Article  Google Scholar 

  32. S. Mozammil, J. Karloopia, R. Raviraj Verma, P.K. Jha, Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J. Alloys Compd. 793, 454–466 (2019)

    Article  CAS  Google Scholar 

  33. E. Ghasali, M. Alizadeh, T. Ebadzadeh, Amir hossein Pakseresht, Ali Rahbari, Investigation on microstructural and mechanical properties of B4C–aluminum matrix composites prepared by microwave sintering. J. Mat. Res. Tech. 4(4), 411–415 (2015)

    Article  CAS  Google Scholar 

  34. J. Liu, Q. Guo, Yu. Mei, S. Li, Effect of TiO2 nanostructures on specific capacitance of Al2O3–TiO2 composite film on etched aluminum foil formed by the sol–gel and anodizing. Cer. Inter. 40(2), 3687–3692 (2014)

    Article  CAS  Google Scholar 

  35. R. Kalaivani, M. Maruthupandya, T. Muneeswaran, A. Hameedha Beevi, M. Anand, C.M. Ramakritinan, A.K. Kumaragurua, Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Fro. Lab. Med. 2(1), 30–35 (2018)

    Article  Google Scholar 

  36. M. Sambathkumar, P. Navaneethakrishnan, K. Ponappa, K.S.K. Sasikumar, Mechanical and Corrosion Behavior of Al7075 (Hybrid) Metal Matrix Composites by Two Step Stir Casting Process. Lat. Ame. J. Sol. Stru. 14(2), 243–255 (2017)

    Article  Google Scholar 

  37. S.M. Aqida, M.I. Ghazali, J. Hashim, The effects of stirring speed and reinforcement particles on porosity formation in cast MMC. Jurnal Mekanikal. 16(2), 22–30 (2003)

    Google Scholar 

  38. A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater. Sci. Eng. A 531, 112–118 (2012)

    Article  CAS  Google Scholar 

  39. N. Hansen, Hall-Petch relation and boundary strengthening. Scripta Mater. 51(8), 801–806 (2004)

    Article  CAS  Google Scholar 

  40. P. Madhukar, N. Selvaraj, C.S.P. Rao, G.B. Veeresh Kumar, Fabrication and characterization two step stir casting with ultrasonic assisted novel AA7150-hBN nanocomposites. J. Alloys Compd. 815, 1–11 (2020)

    Article  Google Scholar 

  41. S.-J. Huang, A. Abbas, Effects of tungsten disulfide on microstructure and mechanical properties of AZ91magnesium alloy manufactured by stir casting. J. Alloys Compd. 817, 153321 (2020). https://doi.org/10.1016/j.jallcom.2019.153321

    Article  CAS  Google Scholar 

  42. M.A. Maleque, A.A. Adebisi, N. Izzati, Analysis of fracture mechanism for Al-Mg/SiCp composite materials. IOP Conf. Ser.: Mater. Sci. Eng. 184, 1–8 (2017)

    Article  Google Scholar 

  43. A.M. Razzaq, D.L. Majid, M.R. Ishak, U.M. Basheer, Effect of fly ash addition on the physical and mechanical properties of AA6063 alloy reinforcement. Met. 7(11), 1–15 (2017)

    Google Scholar 

  44. V. Kilicli, N. Akar, M. Erdogan, K. Kocatepe, Tensile fracture behavior of AA7075 alloy produced by thixocasting. Trans. Nonfer. Metals Soc. China 26(5), 1222–1231 (2016)

    Article  CAS  Google Scholar 

  45. J.J. Moses, I. Dinaharan, J.S. Sekhar, Production and characterization of titanium carbide particulate reinforced AA6061 aluminum alloy composites using stir casting. Kovo. Mater. 54(4), 257–267 (2016)

    CAS  Google Scholar 

  46. S.V. Alagarsamy, M. Ravichandran, Synthesis, microstructure and properties of TiO2 reinforced AA7075 matrix composites via stir casting route. Mater. Res. Exp. 6, 086519 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors express their sincere thanks to Alagappa Chettiar Government College of Engineering & Technology, Karaikudi, Tamilnadu, India, for the support provided to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramanathan.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for Publication

Consent was obtained from all the authors for the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, R., Ramanathan, K., Sakthi Sadhasivam, R. et al. Synthesis, Microstructure, Physical and Mechanical Characterization of AA6061/B4C/TiO2 Hybrid Composites. Inter Metalcast 17, 2904–2916 (2023). https://doi.org/10.1007/s40962-023-00969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-00969-z

Keywords

Navigation