Skip to main content

Advertisement

Log in

Effect of Squeeze Casting and Combined Addition of Calcium and Strontium on Microstructure and Mechanical Properties of AZ91 Magnesium Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present work, the effect of squeezing at 100 MPa during AZ91 Mg alloy casting has been studied, where the microstructure, texture, and mechanical properties of gravity die-cast (GC) and squeeze cast (SC) AZ91 alloy samples have been compared. Also, the effect of the combined addition of calcium (Ca) and strontium (Sr) on microstructure and mechanical properties of AZ91 alloy fabricated by SC has been investigated. The SC AZ91 alloy samples exhibited weaker texture than that of GC AZ91 alloy with a reduction in maximum texture intensity. The squeeze casting resulted in the refinement of the secondary phase (β-Mg17Al12) in the microstructure by reducing its segregation at the grain boundaries. The volume fraction of β-Mg17Al12 was more suppressed with Ca and Sr alloy addition due to the formation of new Al2Ca and Al4Sr intermetallics. The tensile properties of SC AZ91 samples were found to be better than that of GC AZ91 samples. Further improvements in mechanical properties were obtained after alloying with Ca and Sr, and the best combination of all tensile properties was obtained at (1% Ca + 0.9% Sr) addition. Higher Sr addition than 0.9% Sr degraded the strength as it induced brittleness in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. A. Bankoti, A. Mondal, S. Kumar, B. Ray, Individual and combined additions of calcium and antimony on microstructure and mechanical properties of squeeze-cast AZ91D magnesium alloy. Mater. Sci. Eng. A 626, 186–194 (2015). https://doi.org/10.1016/j.msea.2014.12.068

    Article  CAS  Google Scholar 

  2. H. Borkar, M. Hoseini, M. Pekguleryuz, Effect of strontium on the texture and mechanical properties of extruded Mg–1% Mn alloys. Mater. Sci. Eng. A 549, 168–175 (2012). https://doi.org/10.1016/j.msea.2012.04.029

    Article  CAS  Google Scholar 

  3. L. Wang, R. Lett, S. Felicelli, J. Berry, J. Jordon, D. Penrod, Microstructure and performance of four casting processes for magnesium alloy AZ91. Int. J. Met. 5, 37–46 (2011). https://doi.org/10.1007/BF03355521

    Article  Google Scholar 

  4. Y. Zhao, Z. Pu, L. Wang, D. Liu, Modeling of grain refinement and nucleation behavior of Mg-4Y-0.5Zr (wt.%) alloy via cellular Automaton model. Int. J. Met. 16, 945–961 (2022). https://doi.org/10.1007/s40962-021-00654-z

    Article  CAS  Google Scholar 

  5. B. Mordike, T. Ebert, Magnesium: properties-applications-potential. Mater. Sci. Eng. A 302(1), 37–45 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  6. A. Luo, M. Pekguleryuz, Cast magnesium alloys for elevated temperature applications. J. Mater. Sci. 29, 5259–5271 (1994). https://doi.org/10.1007/BF01171534

    Article  CAS  Google Scholar 

  7. L. Urtekin, H.B. Özerkan, C. Cogun, A. Genc, Z. Esen, F. Bozkurt, Experimental investigation on wire electric discharge machining of biodegradable AZ91 Mg alloy. J. Mater. Eng. Perform. 30(10), 7752–7761 (2021). https://doi.org/10.1007/s11665-021-05939-2

    Article  CAS  Google Scholar 

  8. F. Czerwinski, Controlling the ignition and flammability of magnesium for aerospace applications. Corros. Sci. 86, 1–16 (2014). https://doi.org/10.1016/j.corsci.2014.04.047

    Article  CAS  Google Scholar 

  9. S.J. Huang, S. Diwan Midyeen, M. Subramani, C.C. Chiang, Microstructure evaluation, quantitative phase analysis, strengthening mechanism and influence of hybrid reinforcements (β-sicp, bi and sb) on the collective mechanical properties of the AZ91 magnesium matrix. Metals 11, 898 (2021). https://doi.org/10.3390/met11060898

    Article  CAS  Google Scholar 

  10. E. Tolouie, R. Jamaati, Effect of β–Mg17Al12 phase on microstructure, texture and mechanical properties of AZ91 alloy processed by asymmetric hot rolling. Mater. Sci. Eng. A 738, 81–89 (2018). https://doi.org/10.1016/j.msea.2018.09.086

    Article  CAS  Google Scholar 

  11. L. Zhang, Q. Wang, W. Liao, W. Guo, B. Ye, H. Jiang, W. Ding, Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy. J. Mater. Sci. Technol. 33, 935–940 (2017). https://doi.org/10.1016/j.jmst.2017.01.015

    Article  CAS  Google Scholar 

  12. Y. Cubides, A.I. Karayan, M. Vaughan, I. Karaman, H. Castaneda, Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: the role of bimodal grain structure and β-Mg17Al12 precipitates. Mater. 13, 100840 (2020). https://doi.org/10.1016/j.mtla.2020.100840

    Article  CAS  Google Scholar 

  13. A. Bankoti, A. Mondal, C.S. Perugu, B. Ray, S. Kumar, Correlation of microstructure and electrochemical corrosion behavior of squeeze-cast Ca and Sb added AZ91 Mg alloys. Metall. Mater. Trans. A 48, 5106–5121 (2017). https://doi.org/10.1007/s11661-017-4244-1

    Article  CAS  Google Scholar 

  14. M. Khosroaghayani, M. Khorasanian, S.R. Alavi Zaree, M. Eskandari, Investigation of microstructure and mechanical properties of AZ91 magnesium alloy produced by directional solidification method in different angles using cafe simulation. Int. J. Met. (2022). https://doi.org/10.1007/s40962-022-00766-0

    Article  Google Scholar 

  15. A. Elsayed, C. Ravindran, B.S. Murty, Effect of aluminum-titanium-boron based grain refiners on AZ91E magnesium alloy grain size and microstructure. Int. J. Met. 5, 29–41 (2011). https://doi.org/10.1007/BF03355470

    Article  CAS  Google Scholar 

  16. S. Saha, C. Ravindran, Grain refinement of AZ91E and Mg-9 wt.% Al binary alloys using zinc oxide. Int. J. Met. 9, 33–42 (2015). https://doi.org/10.1007/BF03355600

    Article  Google Scholar 

  17. A. Azad, L. Bichler, A. Elsayed, Effect of a novel Al-SiC grain refiner on the microstructure and properties of AZ91E magnesium alloy. Int. J. Met. 7, 49–59 (2013). https://doi.org/10.1007/BF03355564

    Article  CAS  Google Scholar 

  18. A. Koltygin, V. Bazhenov, U. Mahmadiyorov, Influence of Al–5Ti–1B master alloy addition on the grain size of AZ91 alloy. J. Magnes. Alloy. 5, 313–319 (2017). https://doi.org/10.1016/j.jma.2017.08.002

    Article  CAS  Google Scholar 

  19. Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai, Y. Zhu, Effects of rare earths on the microstructure, properties and fracture behavior of Mg–Al alloys. Mater. Sci. Eng. A 278, 66–76 (2000). https://doi.org/10.1016/S0921-5093(99)00604-8

    Article  Google Scholar 

  20. W. Qudong, L. Yizhen, Z. Xiaoqin, D. Wenjiang, Z. Yanping, L. Qinghua, L. Jie, Study on the fluidity of AZ91+ xRE magnesium alloy. Mater. Sci. Eng. A 271, 109–115 (1999). https://doi.org/10.1016/S0921-5093(99)00185-9

    Article  Google Scholar 

  21. P. Cui, M. Hu, Z. Ji, X. Hongyu, L. Naizhi, Y. Zhehua, Effect of La/Nd ratio on the microstructure and corrosion behaviors of squeeze-cast Mg–Al–Zn–La–Nd alloys. Int. J. Met. (2022). https://doi.org/10.1007/s40962-022-00767-z

    Article  Google Scholar 

  22. E. Baril, P. Labelle, M. Pekguleryuz, Elevated temperature Mg-Al-Sr: creep resistance, mechanical properties, and microstructure. JOM 55, 34–39 (2003). https://doi.org/10.1007/s11837-003-0207-7

    Article  CAS  Google Scholar 

  23. B. Jing, S. Yangshan, X. Shan, X. Feng, Z. Tianbai, Microstructure and tensile creep behavior of Mg–4Al based magnesium alloys with alkaline-earth elements Sr and Ca additions. Mater. Sci. Eng. A 419, 181–188 (2006). https://doi.org/10.1016/j.msea.2005.12.017

    Article  CAS  Google Scholar 

  24. J. Yan, Y. Sun, F. Xue, J. Bai, S. Xue, W. Tao, Creep deformation mechanism of magnesium-based alloys. J. Mater. Sci. 43, 6952–6959 (2008). https://doi.org/10.1007/s10853-008-2968-4

    Article  CAS  Google Scholar 

  25. I. Gokalp, A. Incesu, Effect of Ca addition to the elevated temperature mechanical properties of AZ series magnesium alloys. Int. J. Met. (2022). https://doi.org/10.1007/s40962-022-00872-z

    Article  Google Scholar 

  26. I.A. Anyanwu, Y. Gokan, S. Nozawa, A. Suzuki, S. Kamado, Y. Kojima, S. Takeda, T. Ishida, Development of new die-castable Mg-Zn-Al-Ca-RE alloys for high temperature applications. Mater. Trans. 44, 562–570 (2003). https://doi.org/10.2320/matertrans.44.562

    Article  CAS  Google Scholar 

  27. I.A. Anyanwu, Y. Gokan, A. Suzuki, S. Kamado, Y. Kojima, S. Takeda, T. Ishida, Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg–Zn–Al–Ca–RE alloys. Mater. Sci. Eng. A 380, 93–99 (2004). https://doi.org/10.1016/j.msea.2004.03.039

    Article  CAS  Google Scholar 

  28. X. Feng, M. Xuegang, S. Yangshan, Microstructures and mechanical properties of AZ91 alloy with combined additions of Ca and Si. J. Mater. Sci. 41, 4725–4731 (2006). https://doi.org/10.1007/s10853-006-0060-5

    Article  CAS  Google Scholar 

  29. Y. Zhang, G. Wu, W. Liu, L. Zhang, S. Pang, Y. Wang, W. Ding, Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Mater. Sci. Eng. A 595, 109–117 (2014). https://doi.org/10.1016/j.msea.2013.12.014

    Article  CAS  Google Scholar 

  30. M. O. Pekguleryuz, E. Baril, Magnesium Technology, J.N. Hryn ed., 2001, pp. 283–289

  31. Y. Fan, G. H. Wu, C. Q. Zhai, Effect of strontium on mechanical properties and corrosion resistance of AZ91D. Mater. Sci. Forum (Trans. Tech. Publ.), 546–549, 67-570 (2007). https://doi.org/10.4028/www.scientific.net/MSF.546-549.567

  32. P. Zhao, Q. Wang, C. Zhai, Y. Zhu, Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys. Mater. Sci. Eng. A 444, 318–326 (2007). https://doi.org/10.1016/j.msea.2006.08.111

    Article  CAS  Google Scholar 

  33. H. Borkar, M. Hoseini, M. Pekguleryuz, Effect of strontium on flow behavior and texture evolution during the hot deformation of Mg–1 wt% Mn alloy. Mater. Sci. Eng. A 537, 49–57 (2012). https://doi.org/10.1016/j.msea.2012.01.029

    Article  CAS  Google Scholar 

  34. J. Bai, Y. Sun, F. Xue, J. Qiang, Microstructures and creep properties of Mg–4Al–(1–4) La alloys produced by different casting techniques. Mater. Sci. Eng. A 552, 472–480 (2012). https://doi.org/10.1016/j.msea.2012.05.072

    Article  CAS  Google Scholar 

  35. H. Yu, S. Chen, W. Yang, Y. Zhang, S. Chen, Effects of rare element and pressure on the microstructure and mechanical property of AZ91D alloy. J. Alloys Compd. 589, 479–484 (2014). https://doi.org/10.1016/j.jallcom.2013.12.019

    Article  CAS  Google Scholar 

  36. M. Horynová, J. Zapletal, P. Doležal, P. Gejdoš, Evaluation of fatigue life of AZ31 magnesium alloy fabricated by squeeze casting. Mater. Des. 45, 253–264 (2013). https://doi.org/10.1016/j.matdes.2012.08.079

    Article  CAS  Google Scholar 

  37. T.M. Yue, H. Ha, N. Musson, Grain size effects on the mechanical properties of some squeeze cast light alloys. J. Mater. Sci. 30, 2277–2283 (1995). https://doi.org/10.1007/BF01184573

    Article  CAS  Google Scholar 

  38. M. Masoumi, H. Hu, Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg–Al–Ca alloy. Mater. Sci. Eng. A 528, 3589–3593 (2011). https://doi.org/10.1016/j.msea.2011.01.032

    Article  CAS  Google Scholar 

  39. S. Kleiner, O. Beffort, A. Wahlen, P. Uggowitzer, Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg–Al alloys. J. Light Met. 2, 277–280 (2002). https://doi.org/10.1016/S1471-5317(03)00012-9

    Article  Google Scholar 

  40. T. Le, Q. Wei, J. Wang, P. Jin, M. Chen, J. Ma, Effect of different casting techniques on the microstructure and mechanical properties of AE44-2 magnesium alloy. Mater. Res. Express 7, 116513 (2020). https://doi.org/10.1088/2053-1591/abc721

    Article  CAS  Google Scholar 

  41. J. Sheng, L. Wang, Y. Zhao, S. Xu, X. Liu, W. Fei, Effect of solution treatment on the texture and tensile properties of Mg2B2O5W/2024Al composite. J. Alloys Compd. 701, 716–721 (2017). https://doi.org/10.1016/j.jallcom.2017.01.080

    Article  CAS  Google Scholar 

  42. H. Borkar, M. Pekguleryuz, Microstructure and texture evolution in Mg–1 %Mn–Sr alloys during extrusion. J. Mater. Sci. 48, 1436–1447 (2013). https://doi.org/10.1007/s10853-012-6896-y

    Article  CAS  Google Scholar 

  43. G.E. Dieter, Mechanical Metallurgy, SI, metric. (McGraw-Hill Book Co., London, 1988)

    Google Scholar 

  44. R. Ninomiya, T. Ojiro, K. Kubota, Improved heat resistance of Mg-Al alloys by the Ca addition. Acta Metall. Mater. 43(2), 669–674 (1995). https://doi.org/10.1016/0956-7151(94)00269-N

    Article  CAS  Google Scholar 

  45. J. Catterall, R. Pleasance, The constitution of magnesium-rich magnesium-aluminum-calcium alloys. J. Inst. Metals 86 (1957)

  46. M.O. Pekguleryuz, A.A. Kaya, Creep resistant magnesium alloys for powertrain applications. Adv. Eng. Mater. 5, 866–878 (2003). https://doi.org/10.1002/adem.200300403

    Article  CAS  Google Scholar 

  47. M. Parvez, M. Medraj, E. Essadiqi, A. Muntasar, G. Denes, Experimental study of the ternary magnesium–aluminium–strontium system. J. Alloys Compd. 402, 170–185 (2005). https://doi.org/10.1016/j.jallcom.2005.04.173

    Article  CAS  Google Scholar 

  48. G. Wu, Y. Fan, H. Gao, C. Zhai, Y.P. Zhu, The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng. A 408, 255–263 (2005). https://doi.org/10.1016/j.msea.2005.08.011

    Article  CAS  Google Scholar 

  49. L. Shang, S. Yue, R. Verma, P. Krajewski, C. Galvani, E. Essadiqi, Effect of microalloying (Ca, Sr, and Ce) on elevated temperature tensile behavior of AZ31 magnesium sheet alloy. Mater. Sci. Eng. A 528(10–11), 3761–3770 (2011). https://doi.org/10.1016/j.msea.2011.01.094

    Article  CAS  Google Scholar 

  50. W. Qudong, C. Wenzhou, Z. Xiaoqin, L. Yizhen, D. Wenjiang, Z. Yanping, X. Xiaoping, Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy. J. Mater. Sci. 36, 3035–3040 (2001). https://doi.org/10.1023/A:1017927109291

    Article  Google Scholar 

  51. A. Sadeghi, M. Pekguleryuz, Microstructure, mechanical properties and texture evolution of AZ31 alloy containing trace levels of strontium. Mater. Charact. 62, 742–750 (2011). https://doi.org/10.1016/j.matchar.2011.05.006

    Article  CAS  Google Scholar 

  52. J.-X. Zhou, W. Jie, W. Jing, Y.-S. Yang, Effects of RE and Sr additions on dendrite growth and phase precipitation in AZ91D magnesium alloy. Trans. Nonferrous Met. Soc. China 20, s331–s335 (2010). https://doi.org/10.1016/S1003-6326(10)60492-X

    Article  CAS  Google Scholar 

  53. F. Hehmann, F. Sommer, B. Predel, Extension of solid solubility in magnesium by rapid solidification. Mater. Sci. Eng. A 125, 249–265 (1990). https://doi.org/10.1016/0921-5093(90)90175-3

    Article  Google Scholar 

  54. C.H. Caceres, C. Davidson, J. Griffiths, C. Newton, Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A 325, 344–355 (2002). https://doi.org/10.1016/S0921-5093(01)01467-8

    Article  Google Scholar 

  55. W. Chen, J. Kong, W. Chen, Effect of rare earth Ce on the microstructure, physical properties and thermal stability of a new lead-free solder. J. Min. Metall. B Metall. 47, 11–21 (2011). https://doi.org/10.2298/JMMB1101011C

    Article  CAS  Google Scholar 

  56. H.L. Zhao, S. Guan, F. Zheng, Effects of Sr and B addition on microstructure and mechanical properties of AZ91 magnesium alloy. J. Mater. Res. 22, 2423–2428 (2007). https://doi.org/10.1557/jmr.2007.0331

    Article  CAS  Google Scholar 

  57. A. Afsharnaderi, M. Lotfpour, H. Mirzadeh, M. Emamy, M. Malekan, Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE-Sr addition and hot extrusion. Mater. Sci. Eng. A 792, 139817 (2020). https://doi.org/10.1016/j.msea.2020.139817

    Article  CAS  Google Scholar 

  58. Y.A. Chen, J. Gao, Y. Song, Y. Wang, The influences of Sr on the microstructure and mechanical properties of Mg-5Zn-2Al alloy. Mater. Sci. Eng. A 671, 127–134 (2016). https://doi.org/10.1016/j.msea.2016.06.033

    Article  CAS  Google Scholar 

  59. H. Xi, C. Jihua, Y. Hongge, S. Bin, Z. Guanghao, M. Chongming, Effects of minor Sr addition on microstructure and mechanical properties of the as-cast Mg–4.5 Zn–4.5 Sn–2Al-based alloy system. J. Alloys Compd. 579, 39-44 (2013). https://doi.org/10.1016/j.jallcom.2013.05.036

  60. Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W. Kim, A. Bahmani, Tailoring the mechanical properties of Mg–Zn magnesium alloy by calcium addition and hot extrusion process. Mater. Sci. Eng. A 774, 138929 (2020). https://doi.org/10.1016/j.msea.2020.138929

    Article  CAS  Google Scholar 

  61. L. Chen, M. Liang, G. Zhao, J. Zhou, C. Zhang, Microstructure evolution of AZ91 alloy during hot extrusion process with various ram velocity. Vaccuum 150, 136–143 (2018). https://doi.org/10.1016/j.vacuum.2018.01.036

    Article  CAS  Google Scholar 

  62. J. Zhang, Z. Leng, M. Zhang, J. Meng, R. Wu, Effect of Ce on microstructure, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al-based alloy. J. Alloys Compd. 509(3), 1069–1078 (2011). https://doi.org/10.1016/j.jallcom.2010.09.185

    Article  CAS  Google Scholar 

  63. Q. Qin, Y. Zhao, W. Zhou, P. Cong, Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite. Mater. Sci. Eng. A 447(1–2), 186–191 (2007). https://doi.org/10.1016/j.msea.2006.10.076

    Article  CAS  Google Scholar 

  64. D. Zhang, D. Zhang, F. Bu, X. Li, K. Guan, Q. Yang, S. Liu, X. Liu, J. Meng, Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5 RE based alloy, Mater. Sci. Eng. A 693, 51–59 (2017). https://doi.org/10.1016/j.msea.2017.03.055

  65. K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi, Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater. Sci. Eng. A 403, 276–280 (2005). https://doi.org/10.1016/j.msea.2005.05.028

    Article  CAS  Google Scholar 

  66. H. Zengin, Y. Turen, L.A. Elen, Comparative study on microstructure, mechanical and tribological properties of A4, AE41, AS41 and AJ41 magnesium alloys. J. Mater. Eng. Perform. 28, 4647–4657 (2019). https://doi.org/10.1007/s11665-019-04223-8

    Article  CAS  Google Scholar 

  67. C. Yim, K. Shin, Changes in microstructure and hardness of rheocast AZ91HP magnesium alloy with stirring conditions. Mater. Sci. Eng. A 395, 226–232 (2005). https://doi.org/10.1016/j.msea.2004.12.050

    Article  CAS  Google Scholar 

  68. G. M. Lule Senoz, T. A. Yilmaz, Optimization of Equal Channel Angular Pressing Parameters for Improving the Hardness and Microstructure Properties of Al–Zn–Mg Alloy by Using Taguchi Method. Met. Mater. Int. 27, 436–448 (2021). https://doi.org/10.1007/s12540-020-00730-9

  69. Y. Xu, F. Gensch, Z. Ren, K.U. Kainer, N. Hort, Effects of Gd solutes on hardness and yield strength of Mg alloys. Prog. Nat. Sci. Mater. Int. 28, 724–730 (2018). https://doi.org/10.1016/j.pnsc.2018.10.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Ankush S. Marodkar would like to thank the Ministry of Education, Government of India, for providing teaching assistantship for doctoral studies. The authors express their gratitude to the sophisticated instrumentation centre (SIC), IIT Indore, for providing the facilities for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankush S. Marodkar.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marodkar, A.S., Patil, H., Borkar, H. et al. Effect of Squeeze Casting and Combined Addition of Calcium and Strontium on Microstructure and Mechanical Properties of AZ91 Magnesium Alloy. Inter Metalcast 17, 2252–2270 (2023). https://doi.org/10.1007/s40962-022-00943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00943-1

Keywords

Navigation