Skip to main content
Log in

Elevated temperature Mg-Al-Sr: Creep resistance, mechanical properties, and microstructure

  • Research Summary
  • High-Temperature Magnesium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mg-Al-Sr-based alloys (AJ alloys) have shown superior creep performance and tensile strength at temperatures as high as 175° with stresses up to 70 MPa. Mg-6Al-2.4Sr (AJ62x) exhibits an optimum combination of creep resistance and excellent castability, while AJ62Lx (strontium <2.1) has better ductility than other AJ formulations. The AJ alloy microstructure is characterized by the Al4Sr-α(Mg) lamellar phase that forms at the interdendritic/grain boundary region of the primary magne sium matrix. Mg-5Al-2Sr (AJ52x) contains a ternary phase that was tentatively named Al3Mg13Sr. When the strontium level is low in AJ62x, the volume fraction of Al4Sr is reduced, the aluminum supersaturation of the magnesium primary phase increases, and Mg17Al12 forms. In this article, a mechanism is proposed whereby the creep resistance decreases with the strontium level but the tensile strength and ductility increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.O. Pekguleryuz and Eric Baril. “Creep Resistant Magnesium Diecasting Alloys Based on Alkaline Earth Elements,” Met. and Matls. Trans., 42 (2001), pp. 1258–1267.

    CAS  Google Scholar 

  2. M.O. Pekguleryuz and Eric Baril, “Development of Creep Resistant Mg-Al-Sr Alloys,” Magnesium Technology 2001, ed. J. Hryn (Warrendale, PA: TMS, 2001), pp. 119–125.

    Google Scholar 

  3. P. Labelle et al., “Heat Resistant Magnesium Alloys for Power-Train Applications.” SAE Technical Paper 2001-01-0424 (Detroit, MI: SAE, 2001).

    Google Scholar 

  4. M.O. Pekguleryuz, P. Labelle, and D. Argo, “Magnesium Die Casting Alloy AJ62x with Superior Creep Resistance, Ductility and Die Castability,” SAE Paper 2003-01-0190 (Detroit, MI: SAE 2003).

    Google Scholar 

  5. A. Beck, The Technology of Magnesium and Its Alloys (London: F.A. Hughes & Co., 1940).

    Google Scholar 

  6. M.S. Dargusch, G.L. Dunlop, and K. Pattersen, “Elevated-Temperature Creep and Microstructure of DiecastMg-Al Alloys,” Magnesium Alloys and Their Applications, ed. B.L. Mordike and K.U. Kainer (Wolfsburg, Germany: Werkstoff-Informationsgesellschaft, 1998), pp. 277–282.

    Google Scholar 

  7. B.R. Powell et al. “Microstructure and Creep Behavior in AE42 Magnesium Die-Casting Alloy,” JOM, 54 (8) (2002), pp. 34–38.

    CAS  Google Scholar 

  8. M.O. Pekguleryuz and M.M. Avedesian “Magnesium Alloying—Some Metallurgical Aspects,” Proc. Intl. Conf. Magnesium Alloys and Applications, ed. B.L. Mordike and F. Hehman (Germany: Materialkunde, 1992).

    Google Scholar 

  9. M.O. Pekguleryuz and J. Renaud, “Creep Resistance in Mg-Al-Ca Alloys,” Magnesium Technology 2000, ed. H. Kaplan, J. Hryn, and B. Clow (Warrendale, PA: TMS, 2000), pp. 279–284.

    Google Scholar 

  10. J.J. Berkmortel et al., “Diecastability Assessment of Magnesium Alloys for High Temperature Applications Part 1 of 2,” SAE World Congress Paper 2000-01-1119 (Detroit, MI: SAE, 2000).

    Google Scholar 

  11. P. Chartrand and A.D. Pelton, “Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the Al-Mg, Al-Sr, Mg-Sr, and Al-Mg-Sr Systems,” Journal of Phase Equilibria, 15 (1994), pp. 591–605.

    Article  CAS  Google Scholar 

  12. A.P. Druschitz and E.R. Showalter, “Bolt Load Compressive Stress Retention Testing of Magnesium Alloys,” SAE Paper 2003-01-0187 (Detroit, MI: SAE, 2003).

    Google Scholar 

  13. A.P. Druschitz et al., “Evaluation of Structural and High Temperature Magnesium Alloys,” SAE Paper 2002-01-0080 (Detroit, MI: SAE, 2002).

    Google Scholar 

  14. E. Landriault, private communication with author, Ecole Polytechnique de Montreal (July 2003).

  15. P. Villars, Pearson’s Handbook-Desk Edition: Crystallographic Data for Intermetallic Phases, (Materials Park, OH: ASM International, 1997).

    Google Scholar 

  16. J.L. Murray, Phase Diagram of Binary Magnesium Alloys (Metal Park, OH: ASM International, 1988).

    Google Scholar 

  17. E. Landriault, Master Degree Thesis (Montreal, Canada: École Polytechnique de Montréal, to be submitted).

  18. J. Goldstein et al., Scanning Electron Microscopy and X-Ray Microanalysis (New York: Plenum Press, 1984).

    Google Scholar 

  19. D.J. Sakkinen, “Physical Metallurgy of Magnesium Die Castings,” SAE Technical Publication No. 940779, (Warrendale, PA: SAE, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Eric Baril, Noranda, Noranda Technologies Centre, 240 Hymus Pointe-Claire (Montréal), Québec, H9R 1G5 Canada; (514) 630-9347; fax (514) 630-9379; e-mail eric.baril@ntc.noranda.com.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baril, E., Labelle, P. & Pekguleryuz, M. Elevated temperature Mg-Al-Sr: Creep resistance, mechanical properties, and microstructure. JOM 55, 34–39 (2003). https://doi.org/10.1007/s11837-003-0207-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0207-7

Keywords

Navigation