Skip to main content
Log in

Creep deformation mechanism of magnesium-based alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two heat-resistant magnesium alloys AJC421 and Mg-2Nd were prepared. Both as-cast Mg-2Nd and AJC421 alloys exhibited good creep resistance in comparison with commonly used magnesium alloys. The improvement in creep properties through Nd addition to pure magnesium is attributed to both solid solution and precipitation hardening. The stress exponents of 4.5–5.5 and activation energies of 70.0–96.0 kJ/mol obtained from the as-cast Mg-2Nd alloy at low temperatures and low stresses indicate the five power law can be used for predicting the creep mechanism. The additions of alkaline earth elements Sr and Ca into Mg–Al alloys suppress the discontinuous precipitation of Mg17Al12 and form thermal-stable intermediate phases at grain boundaries, leading to effective restriction to grain boundary sliding and migration. However, the mechanism responsible for creep deformation of Mg–Al based alloys with Ca and Sr additions is not consistent with the results of microstructure observations performed on the alloys before and after creep tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luo AA (2004) Int Mater Rev 49:13. doi:https://doi.org/10.1179/095066004225010497

    Article  CAS  Google Scholar 

  2. Lu YZ, Wang QD, Zeng XQ et al (2000) Mater Sci Eng A 278:66. doi:https://doi.org/10.1016/S0921-5093(99)00604-8

    Article  Google Scholar 

  3. Pekguleryuz MO, Kaya AA (2003) Adv Eng Mater 5:866. doi:https://doi.org/10.1002/adem.200300403

    Article  CAS  Google Scholar 

  4. Blawert C, Hort N, Kainer KU (2004) Trans Indian Inst Metab 57:397

    CAS  Google Scholar 

  5. Mordike BL (2002) Mater Sci Eng A 324:103. doi:https://doi.org/10.1016/S0921-5093(01)01290-4

    Article  Google Scholar 

  6. Bai J, Sun YS, Xue S et al (2006) Mater Sci Eng A 419:181. doi:https://doi.org/10.1016/j.msea.2005.12.017

    Article  Google Scholar 

  7. Sherby OD, Burke PM (1968) Prog Mater Sci 13:323. doi:https://doi.org/10.1016/0079-6425(68)90024-8

    Article  Google Scholar 

  8. Couret A, Caillard D (1985) Acta Mater 33:1447. doi:https://doi.org/10.1016/0001-6160(85)90045-8

    Article  CAS  Google Scholar 

  9. Evangelista E, Gariboldi E, Lohne O et al (2004) Mater Sci Eng A 387–389:41. doi:https://doi.org/10.1016/j.msea.2004.02.077

    Article  Google Scholar 

  10. Evans RW, Wilshire B (1985) Creep of metals and alloys. The Institute of Metals, New York

    Google Scholar 

  11. Xue S, Sun YS, Zhu TB et al (2005) Trans Nonferr Met Soc 15:863

    CAS  Google Scholar 

  12. Wang JG, Hsiung LM, Nieh TG et al (2001) Mater Sci Eng A 315:81. doi:https://doi.org/10.1016/S0921-5093(01)01209-6

    Article  Google Scholar 

  13. Nagasaki S, Hirabayashi M (2002) Binary alloy phase-diagrams. AGNE Gijutsu Center Co Ltd, Tokyo

    Google Scholar 

  14. American Society for Metals (1973) Metals handbook. Metals Park, Ohio

  15. Nabarro FRN (2007) Encyclopedia of materials: science and technology. Elsevier Science Ltd, Oxford, p 1788

    Google Scholar 

  16. Dargush MS, Dunlop GL, Pettersen K (1998) In Mordike BL, Kainer KU (eds) Proceedings volume sponsored by Volkswagen AG. Werkstoff-Informationsgesellschaft, Frankfurt, p 277

  17. Shi L, Northwood DO (1994) Acta Metall Mater 42:871. doi:https://doi.org/10.1016/0956-7151(94)90282-8

    Article  CAS  Google Scholar 

  18. Kassner ME, Kumar P, Blum W (2007) Int J Plast 23:980. doi:https://doi.org/10.1016/j.ijplas.2006.10.006

    Article  CAS  Google Scholar 

  19. Kassner ME, Pérez-Prado M-T (2004) Fundamentals of creep in metals and alloys. Elsevier Science Ltd, Oxford

    Google Scholar 

  20. Weertman J (1957) J Appl Phys 28:362. doi:https://doi.org/10.1063/1.1722747

    Article  CAS  Google Scholar 

  21. Jones RB, Harris JE (1963) Joint international conference on Creep, Part 3A. Inst Mech Eng Proc, NewYork

  22. Tegart WJ (1961) Acta Metall 9:614. doi:https://doi.org/10.1016/0001-6160(61)90166-3

    Article  CAS  Google Scholar 

  23. Crossland IG, Jones RB (1972) Met Sci J 6:162

    Article  CAS  Google Scholar 

  24. Crossland IG, Jones RB (1977) Met Sci J 11:504

    Article  CAS  Google Scholar 

  25. Nabarro FRN (1967) Philos Mag 16:231. doi:https://doi.org/10.1080/14786436708229736

    Article  CAS  Google Scholar 

  26. Sherby OD, Weertman J (1979) Acta Metall 27:387. doi:https://doi.org/10.1016/0001-6160(79)90031-2

    Article  CAS  Google Scholar 

  27. Mordike BL, Stulikova I (1983) In: Proceedings of the international conference on metallic light alloys. Institution of Metallurgists, London, p 146

  28. Suzuki M, Sato H, Maruyama K et al (2001) Mater Sci Eng A 319–321:751. doi:https://doi.org/10.1016/S0921-5093(01)01005-X

    Article  Google Scholar 

  29. Zhao P, Wang QD, Zhai CQ et al (2007) Mater Sci Eng A 444:318. doi:https://doi.org/10.1016/j.msea.2006.08.111

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Natural Science Foundation of Jiangsu Province (No. BK2004208) and the Foundation for Excellent Doctoral Dissertation of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangshan Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Sun, Y., Xue, F. et al. Creep deformation mechanism of magnesium-based alloys. J Mater Sci 43, 6952–6959 (2008). https://doi.org/10.1007/s10853-008-2968-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2968-4

Keywords

Navigation