Skip to main content
Log in

Critical Overview of Coatings Technology for Metal Matrix Composites

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

In recent years, coating technology has come into existence to fulfil the industrial demands. The coated product must be capable of operating in the extreme environment to face the various challenges posed by friction, corrosion, fatigue, temperature, erosion, and abrasion. The coating is applied to protect metallic surfaces to make sure lifelong safety for the performance of the product. Presently, there is a strong need to develop the advance and smart coating technology for corrosion protection for various applications. Thus, this review highlights the advance in coating technologies and their processes by considering their importance for corrosion protection of metal in all-around technical applications. Various coating techniques, such as thermal spray, electrochemical deposition, spark plasma sintering, along with state of the art technologies were discussed. Special attention is dedicated to analyzing the process and to enhance properties, such as mechanical strength, corrosion resistance, etc. A study of many conventional and recent surface modification techniques of composite material are reviewed and presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hunt WH, Miracle DB (2001) Automotive applications of metal matrix composites. Composites 21:1029–1032

    Google Scholar 

  2. Miracle D (2005) Metal matrix composites-from science to technological significance. Compos Sci Technol 65(15–16):2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  CAS  Google Scholar 

  3. Miracle DB, Donaldson SL (2001) Introduction to composites. In: Donaldson SL (ed) ASM handbook: Composites, vol 21. ASM International, Materials Park, pp 3–17

    Google Scholar 

  4. Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2019.09.068

    Article  Google Scholar 

  5. Nazir MH, Khan ZA, Saeed A, Siddaiah A, Menezes PL (2018) Synergistic wear-corrosion analysis and modelling of nanocomposite coatings. Tribol Int 121:30–44. https://doi.org/10.1016/j.triboint.2018.01.027

    Article  CAS  Google Scholar 

  6. Zweben C (2001) Thermal management and electronic packaging applications. Composites 21:1078–1084

    Google Scholar 

  7. Ahmed A (2015) Deposition and analysis of composite coating on aluminum using Ti–B4C powder metallurgy tools in EDM. Mater Manuf Process 31(4):467–474. https://doi.org/10.1080/10426914.2015.1025967

    Article  CAS  Google Scholar 

  8. Wan S, Li H, Tieu K, Xue Q, Zhu H (2019) Mechanical and tribological assessments of high-vanadium high-speed steel by the conventional powder metallurgy process. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03547-y

    Article  Google Scholar 

  9. Gan KK, Chen N, Wang Y, Gu MY (2007) SiC/Cu composites with tungsten coating prepared by powder metallurgy. Mater Sci Technol 23(1):119–122. https://doi.org/10.1179/174328407x158532

    Article  CAS  Google Scholar 

  10. Zhan Y, Xu Y, Yu Z, Wang Y, Xie H, Shi X (2006) Cu–Cr–Zr alloy matrix composite prepared by powder metallurgy method. Powder Metall 49(3):253–257. https://doi.org/10.1179/174329006x96030

    Article  CAS  Google Scholar 

  11. Yu CJ, Eifert HH, Banhart J, Baumeister J (1998) Metal foaming by a powder metallurgy method: production, properties and applications. Mater Res Innov 2(3):181–188. https://doi.org/10.1007/s100190050082

    Article  CAS  Google Scholar 

  12. Sadighikia S, Abdolhosseinzadeh S, Asgharzadeh H (2014) Production of high porosity Zn foams by powder metallurgy method. Powder Metall 58(1):61–66. https://doi.org/10.1179/1743290114y.0000000109

    Article  Google Scholar 

  13. Aydin M, Koç R, Akkoyunlu A (2015) Fabrication and characterisation of Mg-nano B4C and B composites by powder metallurgy method. Adv Mater Process Technol 1(1–2):181–191. https://doi.org/10.1080/2374068x.2015.1116295

    Article  Google Scholar 

  14. Tekeli S, Gural A (2007) Microstructural characterisation of intercritically annealed 0.5 wt%Ni and Mn added steels prepared by powder metallurgy method. Mater Sci Technol 23(1):72–78. https://doi.org/10.1179/174328407x158442

    Article  CAS  Google Scholar 

  15. Moazami-Goudarzi M, Akhlaghi F (2013) Effect of SiC nanoparticles content and Mg addition on the characteristics of Al/SiC composite powders produced via in situ powder metallurgy method. Part Sci Technol 31(3):234–240. https://doi.org/10.1080/02726351.2012.715615

    Article  CAS  Google Scholar 

  16. Hosseini VP, Abdizadeh H, Baghchesara MA (2015) Fabrication of TiB2 nanoparticulates-reinforced aluminum matrix composites by powder metallurgy route. J Compos Mater 49(25):3115–3125. https://doi.org/10.1177/0021998314560382

    Article  CAS  Google Scholar 

  17. Senthilkumar J, Balasubramanian M, Balasubramanian V (2009) Effect of metallurgical factors on corrosion behavior of Al-sicp composites fabricated by powder metallurgy. J Reinf Plast Compos 28(9):1087–1098. https://doi.org/10.1177/0731684407087005

    Article  CAS  Google Scholar 

  18. Mahdavi S, Akhlaghi F (2013) Fabrication and characteristics of Al6061/SiC/Gr hybrid composites processed by in situ powder metallurgy method. J Compos Mater 47(4):437–447. https://doi.org/10.1177/0021998312440898

    Article  CAS  Google Scholar 

  19. Carneiro Í, Viana F, Vieira MF, Fernandes JV, Simões S (2019) EBSD analysis of metal matrix nanocomposite microstructure produced by powder metallurgy. Nanomaterials 9(6):878. https://doi.org/10.3390/nano9060878

    Article  CAS  Google Scholar 

  20. Chenglin C, Jingchuan Z, Zhongda Y, Shidong W (1999) Hydroxyapatite–Ti functionally graded biomaterial fabricated by powder metallurgy. Mater Sci Eng A 271(1–2):95–100. https://doi.org/10.1016/s0921-5093(99)00152-5

    Article  Google Scholar 

  21. Chen Y, Zhang L, Sun H, Chen F, Qu X (2018) Thixotropic properties of multi-functional binder and compaction behaviour of the low alloyed binder-treated powder. Powder Metall 62(1):22–29. https://doi.org/10.1080/00325899.2018.1542773

    Article  CAS  Google Scholar 

  22. Zhang H, Zhang L, Dong G, Liu Z, Qin M, Qu X (2016) Effects of warm die on high velocity compaction behaviour and mechanical properties of iron based PM alloy. Powder Metall 59(2):100–106. https://doi.org/10.1179/1743290115y.0000000019

    Article  CAS  Google Scholar 

  23. Rajabi J, Sulong AB, Muhamad N, Raza MR (2015) Powder compaction of bimaterials: stainless steel 316L and nanocrystalline yttria stabilised zirconia. Mater Technol 30(5):313–320. https://doi.org/10.1179/1753555715y.0000000020

    Article  CAS  Google Scholar 

  24. Jangg G (1964) Amalgams from the point of view of powder metallurgy and sintering technology. Powder Metall 7(14):241–250. https://doi.org/10.1179/pom.1964.7.14.010

    Article  CAS  Google Scholar 

  25. Dufek V, Navrátil A, Mičulek J (1996) Pressure-sintering of metal/ceramic friction materials: a special process in powder metallurgy. Powder Metall 9(18):141–150. https://doi.org/10.1179/pom.1966.9.18.001

    Article  Google Scholar 

  26. Bakshi SR, Lahir D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev 55(1):41–64. https://doi.org/10.1179/095066009X12572530170543

    Article  CAS  Google Scholar 

  27. He G, Liu F, Huang L, Jiang L (2016) Analysis of forging cracks during hot compression of powder metallurgy nickel-based superalloy on simulation and experiment. Adv Eng Mater 18(10):1823–1832. https://doi.org/10.1002/adem.201600270

    Article  CAS  Google Scholar 

  28. Chen Y, Shi Y, Ruan X, Long X, Kang Y, Deng K (2015) The effects of spark plasma sintering on fluorine-substituted hydroxyapatite/zirconia composites. Mater Res Innov 19(sup2):35–40. https://doi.org/10.1179/1432891715z.00000000013

    Article  Google Scholar 

  29. Diouf S, Menapace C, D’Incau M, Molinari A, Ischia G (2013) Spark plasma sintering of cryomilled copper powder. Powder Metall 56(5):420–426. https://doi.org/10.1179/1743290113y.0000000065

    Article  CAS  Google Scholar 

  30. Chua AS, Brochu M, Bishop DP (2014) Spark plasma sintering of prealloyed aluminium powders. Powder Metall 58(1):51–60. https://doi.org/10.1179/1743290114y.0000000105

    Article  Google Scholar 

  31. Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838. https://doi.org/10.1016/j.scriptamat.2008.12.059

    Article  CAS  Google Scholar 

  32. Hewitt RL, Wallace W, Malherbe MC (1974) Plastic deformation in metal powder compaction. Powder Metall 17(33):1–12. https://doi.org/10.1179/pom.1974.17.33.001

    Article  Google Scholar 

  33. Clough RB, Schaefer RJ (1993) Effects of shear stress and change in void shape on distortion and densification of powder compacts. Mater Sci Technol 9(4):328–335. https://doi.org/10.1179/mst.1993.9.4.328

    Article  CAS  Google Scholar 

  34. Lynam C, Milani AS, Trudel-Boucher D, Borazghi H (2013) Predicting dimensional distortions in roll forming of comingled polypropylene/glass fiber thermoplastic composites: on the effect of matrix viscoelasticity. J Compos Mater 48(28):3539–3552. https://doi.org/10.1177/0021998313511650

    Article  Google Scholar 

  35. McQueen HJ, Myshlaev M, Sauerborn M, Mwembela A (2013) Flow stress microstructures and modeling in hot extrusion of magnesium alloys. Magnes Technol 2000:355–362. https://doi.org/10.1002/9781118808962.ch50

    Article  Google Scholar 

  36. Pourbahari B, Mirzadeh H, Emamy M, Roumina R (2018) Enhanced ductility of a fine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion. Adv Eng Mater 20(8):1701171. https://doi.org/10.1002/adem.201701171

    Article  CAS  Google Scholar 

  37. Mishra RK, Gupta AK, Sikand R, Sachdev AK, Jin L (2011) Formability enhancement in hot extruded magnesium alloys. Magnes Technol. https://doi.org/10.1002/9781118062029.ch67

    Article  Google Scholar 

  38. Anish R, Mariappan V, Suresh S (2018) Experimental investigation on melting and solidification behaviour of erythritol in a vertical double spiral coil thermal energy storage system. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2018.10.012

    Article  Google Scholar 

  39. Blen K, Takgil F, Kaygusuz K (2008) Thermal energy storage behavior of CaCl2.6H2O during melting and solidification. Energy Sour Part A 30(9):775–787. https://doi.org/10.1080/15567030601082175

    Article  CAS  Google Scholar 

  40. Bianchi FF, Yoshimura HN, Goldenstein H (1998) Infiltration diffusional solidification: a new route for processing metal matrix composites. Mater Sci Technol 14(9–10):887–891. https://doi.org/10.1179/mst.1998.14.9-10.887

    Article  CAS  Google Scholar 

  41. SreeManu KM, AjayRaag L, Rajan TPD, Gupta M, Pai BC (2016) Liquid metal infiltration processing of metallic composites: a critical review. Metall Mater Trans B 47(5):2799–2819. https://doi.org/10.1007/s11663-016-0751-5

    Article  CAS  Google Scholar 

  42. Etemadi R, Wang B, Pillai KM, Niroumand B, Omrani E, Rohatgi P (2018) Pressure infiltration processes to synthesize metal matrix composites–A review of metal matrix composites, the technology and process simulation. Mater Manuf Process 33(12):1261–1290. https://doi.org/10.1080/10426914.2017.1328122

    Article  CAS  Google Scholar 

  43. Kountouras DT, Stergioudi F, Tsouknidas A, Vogiatzis CA, Skolianos SM (2015) Properties of high volume fraction fly ash/Al alloy composites produced by infiltration process. J Mater Eng Perform 24(9):3315–3322. https://doi.org/10.1007/s11665-015-1612-0

    Article  CAS  Google Scholar 

  44. Xie L, Wang A, Yue S, He A, Chang C, Li Q, Liu CT (2019) Significant improvement of soft magnetic properties for Fe-based nanocrystalline alloys by inhibiting surface crystallization via a magnetic field assisted melt-spinning process. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2019.03.110

    Article  Google Scholar 

  45. Gutfleisch O, Willard MA, Bruck E, Chen CH, Sankar SG, Liu JP (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821–842

    Article  CAS  Google Scholar 

  46. Tuladhar R, Yin S (2019) Production of recycled polypropylene (PP) fibers from industrial plastic waste through melt spinning process. In: Pacheco-Torgal F, Khatib J, Colangelo F, Tuladhar R (eds) ) Use of recycled plastics in eco-efficient concrete. Woodhead Publishing, Sawston, pp 69–84. https://doi.org/10.1016/b978-0-08-102676-2.00004-9

    Chapter  Google Scholar 

  47. Li YB, Ya Q, Wei BQJ, Liang WuDH (1998) Processing of carbon nanotubes Fe82P18 metallic glass composite. J Mater Sci Lett 17(7):607–609

    Article  CAS  Google Scholar 

  48. Poirier D, Legoux JG, Irissou E, Gallant D, Jiang J, Potter T, Boileau J (2018) Performance assessment of protective thermal spray coatings for lightweight al brake rotor disks. J Therm Spray Technol 28(1–2):291–304. https://doi.org/10.1007/s11666-018-0805-0

    Article  CAS  Google Scholar 

  49. Heuss R, Muller N, Sintern W, Starke A, Tschiesner A (2012) Lightweight, heavy impact. Mckinsey & Company, New York

    Google Scholar 

  50. Yung TY, Chen TC, Tsai KC, Lu WF, Huang JY, Liu TY (2019) Thermal spray coatings of Al, ZnAl and inconel 625 alloys on SS304L for anti-saline corrosion. Coatings 9(1):32. https://doi.org/10.3390/coatings9010032

    Article  CAS  Google Scholar 

  51. Esmaeil S, Nicolaie M (2017) Electrochemical behavior of bilayer thermal-spray coatings in low-temperature corrosion protection. Coatings 7(10):162. https://doi.org/10.3390/coatings7100162

    Article  CAS  Google Scholar 

  52. Arai S, Fujimori A, Murai M, Endo M (2008) Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater Lett 62(20):3545–3548. https://doi.org/10.1016/j.matlet.2008.03.047

    Article  CAS  Google Scholar 

  53. Gürbüz M, Günkaya G, Doğan A (2015) Electrospray deposition of SnO2films from precursor solution. Surf Eng 32(10):725–732. https://doi.org/10.1080/02670844.2015.1108048

    Article  CAS  Google Scholar 

  54. Fu HY, Wang ZY, Li YH, Zhang YF (2015) Electrochemical deposition of mesoporous NiCo2O4 nanosheets on Ni foam as high-performance electrodes for super capacitors. Mater Res Innov 19(sup4):S255–S259. https://doi.org/10.1179/1432891715z.00000000015

    Article  CAS  Google Scholar 

  55. Méndez-Albores A, González-Arellano SG, Reyes-Vidal Y, Torres J, Ţălu Ş, Cercado B, Trejo G (2017) Electrodeposited chrome/silver nanoparticle (Cr/AgNPs) composite coatings: characterization and antibacterial activity. J Alloy Compd 710:302–311. https://doi.org/10.1016/j.jallcom.2017.03.226

    Article  CAS  Google Scholar 

  56. Ogihara H, Wang H, Saji T (2014) Electrodeposition of Ni–B/SiC composite films with high hardness and wear resistance. Appl Surf Sci 296:108–113. https://doi.org/10.1016/j.apsusc.2014.01.057

    Article  CAS  Google Scholar 

  57. Villa-Mondragón A, Martínez-Hernández A, Manríquez F, Meas Y, Pérez-Bueno JJ, Rodríguez-Valadez FJ, Trejo G (2019) Electrodeposition of Co-B/SiC composite coatings: characterization and evaluation of wear volume and hardness. Coatings 9(4):279. https://doi.org/10.3390/coatings9040279

    Article  CAS  Google Scholar 

  58. Martínez-Hernández A, Meas Y, Perez-Bueno J, Ortiz-Frade L, Flores-Segura J, Mendez-Albores A, Trejo G (2017) Electrodeposition of Co-B hard coatings: characterization and tribological properties. Int J Electrochem Sci 12:1863–1873. https://doi.org/10.20964/2017.03.59

    Article  CAS  Google Scholar 

  59. Monteiro OR, Murugesan S, Khabashesku V (2015) Electroplated Ni–B films and Ni–B metal matrix diamond nanocomposite coatings. Surf Coat Technol 272:291–297. https://doi.org/10.1016/j.surfcoat.2015.03.049

    Article  CAS  Google Scholar 

  60. Wang Z, Du L (2019) Stabilization of a novel mixed solution precursor used for preparing YSZ abradable sealing coatings. Colloids Surf A 562:354–360. https://doi.org/10.1016/j.colsurfa.2018.11.053

    Article  CAS  Google Scholar 

  61. Aussavy D, Bolot R, Montavon G, Peyraut F, Szyndelman G, Gurt-Santanach J, Selezneff S (2016) YSZ-polysterabradable coatings manufactured by APS. J Therm Spray Technol 25:252–263

    Article  CAS  Google Scholar 

  62. Era M, Shimizu A (2001) Incorporation of bulky chromophore into PbBr-based layered perovskite organic/inorganic superlattice by mixing of chromophore-linked ammonium and alkyl ammonium molecules. Mol Cryst Liq Cryst Sci Technol 371(1):199–202. https://doi.org/10.1080/10587250108024721

    Article  CAS  Google Scholar 

  63. Sirignano WA (1987) Molecular mixing in a turbulent flow: some fundamental considerations. Combust Sci Technol 51(4–6):307–322. https://doi.org/10.1080/00102208708960327

    Article  CAS  Google Scholar 

  64. Cha SI, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381. https://doi.org/10.1002/adma.200401933

    Article  CAS  Google Scholar 

  65. Nie H, Fu L, Zhu J, Yang W, Li D, Zhou L (2018) Excellent tribological properties of lower reduced graphene oxide content copper composite by using a one-step reduction molecular-level mixing process. Materials 11(4):600. https://doi.org/10.3390/ma11040600

    Article  CAS  Google Scholar 

  66. Abu-Thabit NY, Makhlouf ASH (2015) Handbook of nanoceramic and nanocomposite coatings and materials. Butterworth-Heinemann, Oxford, pp 515–549

    Book  Google Scholar 

  67. Huang W, Chen H, Zuo JM (2006) One-dimensional self-assembly of metallic nanostructures on single-walled carbon-nanotube bundles. Small 2(12):1418–1421. https://doi.org/10.1002/smll.200600241

    Article  CAS  Google Scholar 

  68. Ci L, Ryu Z, Jin-Phillipp NY, Ruhle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54(20):5367–5375. https://doi.org/10.1016/j.actamat.2006.06.031

    Article  CAS  Google Scholar 

  69. Barshilia HC, Prakash MS, Poojari A, Rajam KS (2004) Corrosion behaviour of TiN/a-C superhard nanocomposite coatings prepared by a reactive DC magnetron sputtering process. Trans IMF 82(3–4):123–128. https://doi.org/10.1080/00202967.2004.11871573

    Article  CAS  Google Scholar 

  70. Mazur M, Szymańska M, Kalisz M, Kaczmarek D, Domaradzki J (2014) Surface and mechanical characterization of ITO coatings prepared by microwave-assisted magnetron sputtering process. Surf Interface Anal 46(10–11):827–831. https://doi.org/10.1002/sia.5386

    Article  CAS  Google Scholar 

  71. Lu C, Lin S (2018) Microstructures and photovoltaic performances of bismuth-ion doped Cu (In, Ga)Se2 films prepared via sputtering process. J Am Ceram Soc. https://doi.org/10.1111/jace.16164

    Article  Google Scholar 

  72. Arab PY, Lizarraga Vernoux, Billard Briois (2019) Catalytic properties of double substituted lanthanum cobaltite nanostructured coatings prepared by reactive magnetron sputtering. Catalysts 9(4):381. https://doi.org/10.3390/catal9040381

    Article  CAS  Google Scholar 

  73. Ji X, Li X, Yu H, Zhang W, Dong H (2019) Study on the carbon nanotubes reinforced nanocomposite coatings. Diam Relat Mater 91:247–254. https://doi.org/10.1016/j.diamond.2018.11.027

    Article  CAS  Google Scholar 

  74. Siddaiah A, Kumar P, Henderson A, Misra M, Menezes PL (2019) Surface energy and tribology of electrodeposited Ni and Ni–Graphene coatings on steel. Lubricants 7:87. https://doi.org/10.3390/lubricants7100087

    Article  Google Scholar 

  75. Upadhyay RK, Kumaraswamidhas LA (2016) Effect of surfactant assisted suspension on PVD coatings. Surf Eng 32(4):289–293. https://doi.org/10.1179/1743294415y.0000000109

    Article  CAS  Google Scholar 

  76. Muthuraja A, Naik S, Rajak DK, Pruncu CI (2019) Experimental investigation on chromium-diamond like carbon (Cr-DLC) coating through plasma enhanced chemical vapour deposition (PECVD) on the nozzle needle surface. Diam Relat Mater. https://doi.org/10.1016/j.diamond.2019.107588

    Article  Google Scholar 

  77. Gupta G, Tyagi RK (2019) Investigation of titanium as thin film deposited material thereon effect on mechanical properties. Advances in Industrial and Production Engineering. Springer, Singapore, pp 315–323. https://doi.org/10.1007/978-981-13-6412-9_30

    Chapter  Google Scholar 

  78. Metzner C, Scheffel B (2001) Special aspects concerning the electron beam deposition of multi-component alloys. Surf Coat Technol 146:491–497

    Article  Google Scholar 

  79. Quazi MM, Ishak M, Arslan A, Nasir Bashir M, Ali I (2017) Scratch adhesion and wear failure characteristics of PVD multilayer CrTi/CrTiN thin film ceramic coating deposited on AA7075-T6 aerospace alloy. J Adhes Sci Technol 32(6):625–641. https://doi.org/10.1080/01694243.2017.1373988

    Article  CAS  Google Scholar 

  80. Xiang X, Wang X, Zhang G, Tang T, Lai X (2015) Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: a review. Int J Hydrogen Energy 40(9):3697–3707. https://doi.org/10.1016/j.ijhydene.2015.01.052

    Article  CAS  Google Scholar 

  81. Veprek S, Reiprich S, Shizhi L (1995) Super hard nanocrystalline composite materials: the TiN/Si3N4 system. Appl Phys Lett 66:2640–2642

    Article  CAS  Google Scholar 

  82. Veprek S, Niederhofer A, Moto K, Bolom T, Mannling HD, Nesladek P, Dollinger G, Bergmaier A (2000) Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc- TiSi2 nanocomposites with Hv = 80 to ≥ 105 GPa. Surf Coat Technol 133–134:152–159

    Article  Google Scholar 

  83. Veprek S, Zhang RF, Veprek-Heijman MGJ, Sheng SH, Argon AS (2010) Sunanocomposites: origin of hardness enhancement, properties and applications. Surf Coat Technol 204:1898–1906

    Article  CAS  Google Scholar 

  84. Choy KL (2019) Chemical vapour deposition (CVD): advances, technology and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  85. Gietl H, Riesch J, Coenen JW, Hoschen T, Neu R (2019) Production of tungsten-fibre reinforced tungsten composites by a novel continuous chemical vapour deposition process. Fus Eng Des. https://doi.org/10.1016/j.fusengdes.2019.02.097

    Article  Google Scholar 

  86. Sengupta J, Das K, Nandi UN, Jacob C (2019) Substrate free synthesis of graphene nanoflakes by atmospheric pressure chemical vapour deposition using Ni powder as a catalyst. Bull Mater Sci 42(4):136. https://doi.org/10.1007/s12034-019-1818-0

    Article  CAS  Google Scholar 

  87. Qiu L, Du Y, Wang S, Li K, Yin L, Wu L, Albir L (2019) Mechanical properties and oxidation resistance of chemically vapor deposited TiSiN nanocomposite coating with thermodynamically designed compositions. Int J Refract Metal Hard Mater 80:30–39. https://doi.org/10.1016/j.ijrmhm.2018.12.018

    Article  CAS  Google Scholar 

  88. Henao HM, Chu C, Solis JP, Nogita K (2018) Experimental determination of the Sn-Cu-Ni phase diagram for pb-free solder applications. Metall Mater Trans B 50(1):502–516. https://doi.org/10.1007/s11663-018-1456-8

    Article  CAS  Google Scholar 

  89. Pawlowski L (2008) The science and engineering of thermal spray coatings. Wiley, Hoboken

    Book  Google Scholar 

  90. Lee B, Koo MY, Jin SH, Kim KT, Hong SH (2014) Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process. Carbon 78:212–219. https://doi.org/10.1016/j.carbon.2014.06.074

    Article  CAS  Google Scholar 

  91. Yang GJ, Suo X (2019) Advanced nanomaterials and coatings by thermal spray: multi-dimensional design of micro-nano thermal spray coatings. Elsevier, Amsterdam

    Google Scholar 

  92. Tilden DS, Roy ME, Whiteside LA (2019) Enhanced adhesion of plasma-sprayed commercially pure titanium porous coatings to polished Mg-PSZ ceramic substrates. J Biomed Mater Res Part A. https://doi.org/10.1002/jbm.a.36694

    Article  Google Scholar 

  93. Singh B, Singh G, Sidhu BS (2019) Analysis of corrosion behaviour and surface properties of plasma-sprayed composite coating of hydroxyapatite–tantalum on biodegradable Mg alloy ZK60. J Compos Mater. https://doi.org/10.1177/0021998319839127

    Article  Google Scholar 

  94. Khushdeep G (2019) Mechanical properties and erosive behaviour of 10TiO2-Cr2O3coated CA6NM turbine steel under accelerated conditions. World J Eng 16(1):64–70. https://doi.org/10.1108/WJE-08-2018-0262

    Article  Google Scholar 

  95. Ivannikov AY, Kalita VI, Komlev DI, Radyuk AA, Mikhailova AB, Alpatov AV (2019) Goldberg MA. Investigation into improving microstructure and properties of plasma sprayed Ni coating via electromechanical treatment. J Mater Process Technol 266:442–449. https://doi.org/10.1016/j.jmatprotec.2018.11.02

    Article  CAS  Google Scholar 

  96. Wang W, Qi W, Xie L, Yang X, Li J, Zhang Y (2019) Microstructure and corrosion behavior of (CoCrFeNi) 95Nb5 high-entropy alloy coating fabricated by plasma spraying. Materials 12(5):694. https://doi.org/10.3390/ma12050694

    Article  CAS  Google Scholar 

  97. Cao Y, Wang Q, Liu Y, Ning X (2018) High-Temperature Thermal Properties of Ba (Ni1/3Ta2/3) O3 ceramic and characteristics of plasma-sprayed coatings. J Therm Spray Technol. https://doi.org/10.1007/s11666-018-0796-x

    Article  Google Scholar 

  98. Doleker KM, Karaoglanli AC (2016) Comparison of oxidation behavior of shot-peened plasma spray coatings with cold gas dynamic spray coatings. Oxid Met 88(1–2):121–132. https://doi.org/10.1007/s11085-016-9691-3

    Article  CAS  Google Scholar 

  99. Xu W, Niu Y, Ji H, Li H, Chang C, Zheng X (2018) Effect of Ni addition on microstructure and tribological properties of plasma-sprayed MoSi2 coatings. J Therm Spray Technol. https://doi.org/10.1007/s11666-018-0791-2

    Article  Google Scholar 

  100. Yoo HI, Kim HS, Hong BG, Sihn IC, Lim KH, Lim BJ, Moon SY (2016) Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a vacuum plasma spray coating method. J Eur Ceram Soc 36(7):1581–1587. https://doi.org/10.1016/j.jeurceramsoc.2016.01.032

    Article  CAS  Google Scholar 

  101. Sun JY, Kanungo BP, Duan RG, Noorbakhsh H, Yuh J, Lubomirsky D (2016) U.S. Patent No. 9,394,615. Washington, DC: U.S. Patent and Trademark Office

  102. Schmitt MP, Harder BJ, Wolfe DE (2016) Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition (PS-PVD) thermal barrier coatings. Surf Coat Technol 297:11–18. https://doi.org/10.1016/j.surfcoat.2016.04.029

    Article  CAS  Google Scholar 

  103. Vardelle A, Moreau C, Themelis NJ, Chazelas C (2014) A perspective on plasma spray technology. Plasma Chem Plasma Process 35(3):491–509. https://doi.org/10.1007/s11090-014-9600-y

    Article  CAS  Google Scholar 

  104. Vietro N, Belforte L, Lambertini VG, Fracassi F (2014) Low pressure plasma modified polycarbonate: a transparent, low reflective and scratch resistant material for automotive applications. Appl Surf Sci 307:698703

    Article  Google Scholar 

  105. Dragatogiannis DA, Koumoulos E, Ellinas K, Tserepi A, Gogolides E, Charitidis CA (2015) Nanoscale mechanical and tribological properties of plasma nanotextured cop surfaces with hydrophobic coatings. Plasma Process Polym 12:12711283

    Article  Google Scholar 

  106. Anand V, Thomas R, Thulasi Raman KH, Gowravaram MR (2019) Plasma-induced polymeric coatings. In: Anand V (ed) Non-thermal plasma technology for polymeric materials. Elsevier, Amsterdam, pp 129–157. https://doi.org/10.1016/b978-0-12-813152-7.00005-6

    Chapter  Google Scholar 

  107. Lohmann D, Chabrecek P, Höpken J (2001) U.S. Patent No. 6,169,127. Washington, DC: U.S. Patent and Trademark Office

  108. Kredl J, Kolb J, Schnabel U, Polak M, Weltmann KD, Fricke K (2016) Deposition of antimicrobial copper-rich coatings on polymers by atmospheric pressure jet plasmas. Materials 9(4):274. https://doi.org/10.3390/ma9040274

    Article  CAS  Google Scholar 

  109. Walschus U, Hoene A, Patrzyk M, Lucke S, Finke B, Polak M, Schlosser M (2017) A cell-adhesive plasma polymerized allylamine coating reduces the in vivo inflammatory response induced by Ti6Al4V modified with plasma immersion ion implantation of copper. J Funct Biomater 8(3):30. https://doi.org/10.3390/jfb8030030

    Article  CAS  Google Scholar 

  110. Grace JM, Gerenser LJ (2003) Plasma treatment of polymers. J Dispers Sci Technol 24(3–4):305–341. https://doi.org/10.1081/dis-120021793

    Article  CAS  Google Scholar 

  111. Chen Q, Dai L, Gao M, Huang S, Mau A (2001) Plasma activation of carbon nanotubes for chemical modification. J Phys Chem B 105(3):618–622. https://doi.org/10.1021/jp003385g

    Article  CAS  Google Scholar 

  112. Liston EM, Martinu L, Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhes Sci Technol 7(10):1091–1127. https://doi.org/10.1163/156856193x00600

    Article  CAS  Google Scholar 

  113. Wang K, Du D, Liu G, Chang B, Hong Y (2019) Microstructure and properties of WC reinforced Ni-based composite coatings with Y2O3 addition on titanium alloy by laser cladding. Sci Technol Weld Join. https://doi.org/10.1080/13621718.2019.1580441

    Article  Google Scholar 

  114. Liang J, Liu Y, Li J, Zhou Y, Sun X (2018) Epitaxial growth and oxidation behavior of an overlay coating on a Ni-base single-crystal superalloy by laser cladding. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2018.10.011

    Article  Google Scholar 

  115. Luo KY, Xu X, Zhao Z, Zhao SS, Cheng ZG, Lu JZ (2019) Microstructural evolution and characteristics of bonding zone in multilayer laser cladding of Fe-based coating. J Mater Process Technol 263:50–58. https://doi.org/10.1016/j.jmatprotec.2018.08.005

    Article  CAS  Google Scholar 

  116. Ibrahim MZ, Sarhan AAD, Shaikh MO, Kuo TY, Yusuf F, Hamdi M (2018) Investigate the effects of the laser cladding parameters on the microstructure, phases formation, mechanical and corrosion properties of metallic glasses coatings for biomedical implant application. Addit Manuf Emerg Mater. https://doi.org/10.1007/978-3-319-91713-9_10

    Article  Google Scholar 

  117. Kuo TY, Chien CS, Liu CW, Lee TM (2018) Comparative investigation into effects of ZrO2 and Al2O3 addition in fluorapatite laser-clad composite coatings on Ti6Al4V alloy. Proc Inst Mech Eng. https://doi.org/10.1177/0954411918816113

    Article  Google Scholar 

  118. Wu F, Chen T, Wang H, Liu D (2017) Effect of Mo on microstructures and wear properties of in situ synthesized Ti(C, N)/Ni-based composite coatings by laser cladding. Materials 10(9):1047. https://doi.org/10.3390/ma10091047

    Article  CAS  Google Scholar 

  119. Chien CS, Liu CW, Kuo TY (2016) Effects of laser power level on microstructural properties and phase composition of laser-clad fluorapatite/zirconia composite coatings on Ti6Al4V substrates. Materials 9(5):380. https://doi.org/10.3390/ma9050380

    Article  CAS  Google Scholar 

  120. He Y, Zhang J, Zhang H, Song G (2017) Effects of different levels of boron on microstructure and hardness of CoCrFeNiAlxCu0.7Si0.1 By high-entropy alloy coatings by laser cladding. Coatings 7(1):7. https://doi.org/10.3390/coatings7010007

    Article  CAS  Google Scholar 

  121. Toyserkani E, Khajepour A, Corbin SF (2004) Laser cladding. CRC Press, Boca Raton. https://doi.org/10.1201/9781420039177

    Book  Google Scholar 

  122. Gopinath M, Thota P, Nath AK (2019) Role of molten pool thermo cycle in laser surface alloying of AISI 1020 steel with in situ synthesized TiN. Surf Coat Technol 362:150–166. https://doi.org/10.1016/j.surfcoat.2019.01.104

    Article  CAS  Google Scholar 

  123. Qu S, Wang X, Zhang M, Zou Z (2008) Microstructure and wear properties of Fe–TiC surface composite coating by laser cladding. J Mater Sci 43(5):1546–1551. https://doi.org/10.1007/s10853-007-2350-y

    Article  CAS  Google Scholar 

  124. Pawlowski L (1999) Thick laser coatings: a review. J Therm Spray Technol 8(2):279–295. https://doi.org/10.1361/105996399770350502

    Article  CAS  Google Scholar 

  125. Han B, Li M, Wang Y (2013) Microstructure and wear resistance of laser clad Fe-Cr3C2 composite coating on 35CrMo steel. J Mater Eng Perform 22(12):3749–3754. https://doi.org/10.1007/s11665-013-0708-7

    Article  CAS  Google Scholar 

  126. Quazi MM, Fazal MA, Haseeb ASMA, Yusof F, Masjuki HH, Arslan A (2016) A review to the laser cladding of self-lubricating composite coatings. Lasers Manuf Mater Process 3(2):67–99. https://doi.org/10.1007/s40516-016-0025-8

    Article  Google Scholar 

  127. Xu X, Han J, Wang C, Huang A (2016) Laser claddings of composite bioceramic coatings on titanium alloy. J Mater Eng Perform 25(2):656–667. https://doi.org/10.1007/s11665-015-1868-4

    Article  CAS  Google Scholar 

  128. Ocelik V, Oliveira D, Boer M, Hosson JTM (2007) Ick Co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties. Surf Coat Technol 201:5875–5883

    Article  CAS  Google Scholar 

  129. Liu H, Chen P, Yang H, Hao J, Tian X, He X, Yu G (2019) Processing window and microstructure of NiCoCrAlY coating deposited on cast iron using multilayer laser cladding. J Spectrosc 2019:1–15. https://doi.org/10.1155/2019/9308294

    Article  CAS  Google Scholar 

  130. Abioye TE, McCartney DG, Clare AT (2017) Laser cladding of inconel 625 wires for corrosion protection. J Mater Process Technol 217:232–240. https://doi.org/10.1016/j.jmatprotec.2014.10.024

    Article  CAS  Google Scholar 

  131. Kim JM, Ha TH, Kim IH, Kim HG (2017) Microstructure and oxidation behavior of CrAl laser-coated zircaloy-4 alloy. Metals 7(2):59. https://doi.org/10.3390/met7020059

    Article  CAS  Google Scholar 

  132. Liu Y, Qu W, Su Y (2016) TiC reinforcement composite coating produced using graphite of the cast iron by laser cladding. Materials 9(10):815. https://doi.org/10.3390/ma9100815

    Article  CAS  Google Scholar 

  133. Zhuang Q, Zhang P, Li M, Yan H, Yu Z, Lu Q (2017) Microstructure, wear resistance and oxidation behavior of Ni-Ti-Si coatings fabricated on Ti6Al4V by laser cladding. Materials 10(11):1248. https://doi.org/10.3390/ma10111248

    Article  CAS  Google Scholar 

  134. Wang K, Chang B, Lei Y, Fu H, Lin Y (2017) Effect of cobalt on microstructure and wear resistance of Ni-based alloy coating fabricated by laser cladding. Metals 7(12):551. https://doi.org/10.3390/met7120551

    Article  CAS  Google Scholar 

  135. Kaiming W, Yulong L, Hanguang F, Yongping L, Zhenqing S, Pengfei M (2016) A study of laser cladding NiCrBSi/Mo composite coatings. Surf Eng 34(4):267–275. https://doi.org/10.1080/02670844.2016.1259096

    Article  CAS  Google Scholar 

  136. Diao Y, Zhang K (2015) Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. Appl Surf Sci 352:163–168. https://doi.org/10.1016/j.apsusc.2015.04.030

    Article  CAS  Google Scholar 

  137. Weng F, Chen C, Yu H (2014) Research status of laser cladding on titanium and its alloys: a review. Mater Des 58:412–425. https://doi.org/10.1016/j.matdes.2014.01.077

    Article  CAS  Google Scholar 

  138. Lu D, Liu S, Zhang X, Zhang W (2014) Effect of Y2O3on microstructural characteristics and wear resistance of cobalt-based composite coatings produced on TA15 titanium alloy surface by laser cladding. Surf Interface Anal 47(2):239–244. https://doi.org/10.1002/sia.5697

    Article  CAS  Google Scholar 

  139. Qiao H, Li QT, Fu HG, Lei YP (2014) Microstructure and micro-hardness of in situ synthesized TiC particles reinforced Fe-based alloy composite coating by laser cladding. Materialwissenschaft and Werkstofftechnik 45(2):85–90. https://doi.org/10.1002/mawe.201400188

    Article  CAS  Google Scholar 

  140. Genna S, Trovalusci F, Ucciardello N, Tagliaferri V (2019) Improving performance of open cell aluminium foam through electro-deposition of nickel. Materials 12(1):133. https://doi.org/10.3390/ma12010133

    Article  CAS  Google Scholar 

  141. Kim K (2017) Statistical determination of a fretting-induced failure of an electro-deposited coating. Coatings 7(4):48. https://doi.org/10.3390/coatings7040048

    Article  CAS  Google Scholar 

  142. Yang Z, Liu X, Tian Y (2019) Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electro deposition process. Colloids Surf A 560:205–212. https://doi.org/10.1016/j.colsurfa.2018.10.024

    Article  CAS  Google Scholar 

  143. Raghavendra CR, Basavarajappa S, Sogalad I (2018) Optimization of wear parameters on Ni–Al2O3 nanocomposite coating by electrodeposition process. SN Appl Sci 1(1):131. https://doi.org/10.1007/s42452-018-0135-3

    Article  CAS  Google Scholar 

  144. Saini A, Pabla B, Dhami S (2019) Preparation and characterization of electrodeposited Ni–TiC, Ni–TiN, and Ni–TiC–TiN composite coatings on tungsten carbide cutting tool. Proc Inst Mech Eng. https://doi.org/10.1177/1350650119841214

    Article  Google Scholar 

  145. Kazimierczak H, Szymkiewicz K, Gileadi E, Eliaz N (2019) The effect of direct and pulsed current in the presence of surfactants on the electrodeposition of Zn–SiC nanocomposite coatings. Coatings 9(2):93. https://doi.org/10.3390/coatings9020093

    Article  CAS  Google Scholar 

  146. Raghavendra CR, Basavarajappa S, Sogalad I (2016) Electrodeposition of Ni–Al2O3 nano composite coating and evaluation of wear characteristics. IOP Sci. https://doi.org/10.1088/1757-899x/149/1/012110

    Article  Google Scholar 

  147. Fashu S, Khan R (2019) Recent work on electrochemical deposition of Zn-Ni (-X) alloys for corrosion protection of steel. Anti-Corros Methods Mater 66(1):45–60. https://doi.org/10.1108/ACMM-06-2018-1957

    Article  CAS  Google Scholar 

  148. Hadipour A, Bahrololoom ME (2018) Theoretical study of hardness variation with pulse parameters in composite coatings electrodeposited by pulsed currents. Trans IMF 97(1):43–47. https://doi.org/10.1080/00202967.2019.1551297

    Article  CAS  Google Scholar 

  149. Kovalska N, Hansal WEG, Tsyntsaru N, Cesiulis H, Gebert A, Kautek W (2019) Electrodeposition and corrosion behaviour of nanocrystalline Fe–P coatings. Trans IMF 97(2):89–94. https://doi.org/10.1080/00202967.2019.1578130

    Article  CAS  Google Scholar 

  150. Bottcher R, Valitova A, Ispas A, Bund A (2019) Electrodeposition of aluminium from ionic liquids on high strength steel. Trans IMF 97(2):82–88. https://doi.org/10.1080/00202967.2019.1573941

    Article  CAS  Google Scholar 

  151. Mellor BG (2006) Surface coatings for protection against wear. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  152. Thiemig D, Bund A, Talbot JB (2009) Infuence of hydrodynamics and pulse plating parameters on the electrodeposition of nickel–alumina nanocomposite films. Electrochim Acta 54:2491–2498

    Article  CAS  Google Scholar 

  153. Molin S (2017) Evaluation of electrodeposited Mn-Co protective coatings on Crofer 22 APU steel. Int J Appl Ceram Technol 15(2):349–360. https://doi.org/10.1111/ijac.12816

    Article  CAS  Google Scholar 

  154. Ben JN, Drevet R, Fauré J, Demangel C, Potiron S, Tara A, Benhayoune H (2015) A new process for the thermal treatment of calcium phosphate coatings electrodeposited on Ti6Al4V substrate. Adv Eng Mater 17(11):1608–1615. https://doi.org/10.1002/adem.201400572

    Article  CAS  Google Scholar 

  155. Kovalska N, Tsyntsaru N, Cesiulis H, Gebert A, Fornell J, Pellicer E, Kautek W (2019) Electrodeposition of nanocrystalline Fe-P coatings: influence of bath temperature and glycine concentration on structure, mechanical and corrosion behavior. Coatings 9(3):189. https://doi.org/10.3390/coatings9030189

    Article  CAS  Google Scholar 

  156. Ralph B, Yuen HC, Lee WB (1997) The processing of metal matrix composites-an overview. J Mater Process Technol 63(1–3):339–353. https://doi.org/10.1016/s0924-0136(96)02645-3

    Article  Google Scholar 

  157. Rajesh AM, Kaleemulla KM, Saleemsab D, Bharath KN (2019) Generation of mechanically mixed layer during wear in hybrid aluminum MMC under as-cast and age hardened conditions. SN Appl Sci 1(8):860. https://doi.org/10.1007/s42452-019-0906-5

    Article  CAS  Google Scholar 

  158. Sadagopan P, Natarajan HK, Kumar P (2017) Study of silicon carbide-reinforced aluminum matrix composite brake rotor for motorcycle application. Int J Adv Manuf Technol 94(1–4):1461–1475. https://doi.org/10.1007/s00170-017-0969-7

    Article  Google Scholar 

  159. Kaleemulla M, Doddamani S (2019) Material characterization of SiC and Al2O3–reinforced hybrid aluminum metal matrix composites on wear behaviour. Adv Compos Lett 28:096369351985635. https://doi.org/10.1177/0963693519856356

    Article  Google Scholar 

  160. Jamwal A, Vates UK, Gupta P, Aggarwal A, Sharma BP (2019) Fabrication and characterization of Al2O3–TiC-reinforced aluminum matrix composites. Die Anasthesiologie. https://doi.org/10.1007/978-981-13-6412-9_33

    Article  Google Scholar 

  161. Sharma A, Belokar RM, Kumar S (2018) Dry sliding wear characterization of red mud reinforced aluminium composite. J Braz Soc Mech Sci Eng 40(6):294. https://doi.org/10.1007/s40430-018-1223-4

    Article  CAS  Google Scholar 

  162. Purohit R, Qureshi M, Rana RS (2017) The effect of hot forging and heat treatment on wear properties of Al6061-Al2O3 nano composites. Mater Today Proc 4(2):4042–4048. https://doi.org/10.1016/j.matpr.2017.02.306

    Article  Google Scholar 

  163. Wan Y, Xue Q (1996) Effect of phosphorus-containing additives on the wear of aluminum in the lubricated aluminum-on-steel contact. Tribol Lett 2(1):37–45. https://doi.org/10.1007/bf00182546

    Article  CAS  Google Scholar 

  164. Kumar M, Megalingam A (2017) Tribological characterization of Al6061/alumina/graphite/redmud hybrid composite for brake rotor application. Part Sci Technol. https://doi.org/10.1080/02726351.2017.1367747

    Article  Google Scholar 

  165. Chong P, Man H, Yue T (2001) Microstructure and wear properties of laser surface-cladded Mo–WC MMC on AA6061 aluminum alloy. Surf Coat Technol 145(1–3):51–59. https://doi.org/10.1016/s0257-8972(01)01286-5

    Article  CAS  Google Scholar 

  166. Upadhyay RK, Kumaraswamidhas LA (2016) Friction and wear response of nitride coating deposited through PVD magnetron sputtering. Tribol Mater Surf Interface 10(4):196–205. https://doi.org/10.1080/17515831.2016.1260791

    Article  CAS  Google Scholar 

  167. Upadhyay RK, Kumaraswamidhas LA (2014) Investigation of monolayer–multilayer PVD nitride coating. Surf Eng 31(2):123–133. https://doi.org/10.1179/1743294414y.0000000344

    Article  Google Scholar 

  168. Man HC, Kwok CT, Yue TM (2000) Cavitation erosion and corrosion behaviour of laser surface alloyed MMC of SiC and Si3N4 on Al alloy AA6061. Surf Coat Technol 132:11–20. https://doi.org/10.1016/S0257-8972(00)00729-5

    Article  CAS  Google Scholar 

  169. Upadhyay RK, Kumaraswamidhas LA (2014) Surface modification by multi-layered W/W2N coating. Surf Eng 30(7):475–482. https://doi.org/10.1179/1743294414y.0000000260

    Article  CAS  Google Scholar 

  170. Reddy GM, Rao KS, Mohandas T (2009) Friction surfacing: novel technique for metal matrix composite coating on aluminium–silicon alloy. Surf Eng 25(1):25–30. https://doi.org/10.1179/174329408x298238

    Article  CAS  Google Scholar 

  171. Zhou H, Yao P, Xiao Y, Fan K, Zhang Z, Gong T, Ling P (2018) Friction and wear maps of copper metal matrix composites with different iron volume content. Tribol Int. https://doi.org/10.1016/j.triboint.2018.11.027

    Article  Google Scholar 

  172. Boz M, Kurt A (2007) The effect of Al2O3 on the friction performance of automotive brake friction materials. Tribol Int 40(7):1161–1169

    Article  CAS  Google Scholar 

  173. Weber L, Tavangar R (2007) On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scr Mater 57(11):988–991. https://doi.org/10.1016/j.scriptamat.2007.08.007

    Article  CAS  Google Scholar 

  174. Schubert T, Ciupinski L, Zielinski W, Michalski A, Weißgärber T, Kieback B (2018) Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scr Mater 58(4):263–266. https://doi.org/10.1016/j.scriptamat.2007.10.011

    Article  CAS  Google Scholar 

  175. Schubert T, Trindade B, Weißgärber T, Kieback B (2008) Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater Sci Eng A 475(1–2):39–44. https://doi.org/10.1016/j.msea.2006.12.146

    Article  CAS  Google Scholar 

  176. Xia Y, Song Y, Lin C, Cui S (2009) Fang Z (2009) Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials. Trans Nonferrous Met Soc China 19(5):1161–1166. https://doi.org/10.1016/s1003-6326(08)60422-7

    Article  CAS  Google Scholar 

  177. Chu K, Liu Z, Jia C, Chen H, Liang X, Gao W, Guo H (2010) Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles. J Alloy Compd 490(1–2):453–458. https://doi.org/10.1016/j.jallcom.2009.10.040

    Article  CAS  Google Scholar 

  178. Leon CA, Drew RAL (2000) J Mater Sci 35(19):4763–4768. https://doi.org/10.1023/a:1004860326071

    Article  CAS  Google Scholar 

  179. Chung WS, Lin SJ (1996) Ni-coated SiCp reinforced aluminum composites processed by vacuum infiltration. Mater Res Bull 31(12):1437–1447. https://doi.org/10.1016/s0025-5408(96)00150-x

    Article  CAS  Google Scholar 

  180. Hima GC, Durga PKG, Ramji K, Vinay PV (2018) Mechanical characterization of aluminium metal matrix composite reinforced with aloe vera powder. Mater Today Proc 5:3289–3297

    Article  Google Scholar 

  181. Bauri R, Yadav D, Bauri R, Yadav D (2018) Introduction to metal matrix composites. In: Bauri R, Yadav D (eds) Metal matrix composites by friction stir processing. Butterworth-Heinemann, Oxford, pp 1–16. https://doi.org/10.1016/B978-0-12-813729-1.00001-2

    Chapter  Google Scholar 

  182. Chung DDL, Chung DDL (2017) Metal-matrix composites. Carbon composites. Elsevier, Amsterdam, pp 532–562

    Chapter  Google Scholar 

  183. Chelliah NM, Singh H, Surappa MK (2017) Microstructural evolution and strengthening behavior in in situ magnesium matrix composites fabricated by solidification processing. Mater Chem Phys 194:65–76

    Article  CAS  Google Scholar 

  184. Dezfuli SN, Leeflang S, Huan Z, Chang J, Zhou J (2017) Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradation. J Mech Behav Biomed Mater 67:74–86

    Article  CAS  Google Scholar 

  185. Abdo HS, Khalil KA, El-Rayes MM, Marzouk WW, Hashem AFM, Abdel-Jaber GT (2019) Ceramic nanofibers versus carbon nanofibers as a reinforcement for magnesium metal matrix to improve the mechanical properties. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2019.03.008

    Article  Google Scholar 

  186. Chen X, Zhang G, Chen C, Zhou L, Li S, Li X (2003) Carbon nanotube composite deposits with high hardness and high wear resistance. Adv Eng Mater 5(7):514–518. https://doi.org/10.1002/adem.200300348

    Article  CAS  Google Scholar 

  187. Shao H, Wang Y, Xu H, Li X (2004) Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction. Mater Sci Eng B 110(2):221–226. https://doi.org/10.1016/j.mseb.2004.03.013

    Article  CAS  Google Scholar 

  188. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358. https://doi.org/10.1038/35104634

    Article  CAS  Google Scholar 

  189. Yan X, Gao X, Li Y, Liu Z, Wu F, Shen Y, Song D (2003) The surface decoration and electrochemical hydrogen storage of carbon nanofibers. Chem Phys Lett 372(3–4):336–341. https://doi.org/10.1016/s0009-2614(03)00427-5

    Article  CAS  Google Scholar 

  190. Gundiah G, Govindaraj A, Rajalakshmi N, Dhathathreyan KS, Rao CNR (2002) Hydrogen storage in carbon nanotubes and related materials. J Mater Chem 13(2):209–213. https://doi.org/10.1039/b207107j

    Article  CAS  Google Scholar 

  191. Skowronski JM, Scharff P, Pfänder N, Cui S (2003) room temperature electrochemical opening of carbon nanotubes followed by hydrogen storage. Adv Mater 15(1):55–57. https://doi.org/10.1002/adma.200390010

    Article  CAS  Google Scholar 

  192. Jacobson N, Tegner B, Schroder E, Hyldgaard P, Lundqvist BI (2002) Hydrogen dynamics in magnesium and graphite. Comput Mater Sci 24(1–2):273–277. https://doi.org/10.1016/s0927-0256(02)00175-1

    Article  CAS  Google Scholar 

  193. Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite. J Alloy Compd 291(1–2):295–299. https://doi.org/10.1016/s0925-8388(99)00268-6

    Article  CAS  Google Scholar 

  194. Gennari F, Castro F, Urretavizcaya G (2001) Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. J Alloy Compd 321(1):46–53. https://doi.org/10.1016/s0925-8388(00)01460-2

    Article  CAS  Google Scholar 

  195. Friedlmeier G, Groll M (1997) Experimental analysis and modelling of the hydriding kinetics of Ni-doped and pure Mg. J Alloy Compd 253–254:550–555. https://doi.org/10.1016/s0925-8388(96)03003-4

    Article  Google Scholar 

  196. Bogdanovic B, Hofmann H, Neuy A, Reiser A, Schlichte K, Spliethoff B, Wessel S (1999) Ni-doped versus undoped Mg–MgH2 materials for high temperature heat or hydrogen storage. J Alloy Compd 292(1–2):57–71. https://doi.org/10.1016/s0925-8388(99)00109-7

    Article  CAS  Google Scholar 

  197. Gennari FC, Castro FJ, Urretavizcaya G, Meyer G (2002) Catalytic effect of Ge on hydrogen desorption from MgH2. J Alloy Compd 334(1–2):277–284. https://doi.org/10.1016/s0925-8388(01)01786-8

    Article  CAS  Google Scholar 

  198. Guoxian L, Erde W, Shoushi F (1995) Hydrogen absorption and desorption characteristics of mechanically milled Mg 35wt. %FeTi1.2 powders. J Alloy Compd 223(1):111–114. https://doi.org/10.1016/0925-8388(94)01465-5

    Article  Google Scholar 

  199. Hu YQ, Zhang HF, Wang AM, Ding BZ, Hu ZQ (2003) Preparation and hydriding/dehydriding properties of mechanically milled Mg–composite. J Alloy Compd 354(1–2):296–302. https://doi.org/10.1016/s0925-8388(02)01363-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Kumar Rajak.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajak, D.K., Wagh, P.H., Menezes, P.L. et al. Critical Overview of Coatings Technology for Metal Matrix Composites. J Bio Tribo Corros 6, 12 (2020). https://doi.org/10.1007/s40735-019-0305-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-019-0305-x

Keywords

Navigation