Skip to main content
Log in

Remote Inspection of Internal Delamination in Wind Turbine Blades using Continuous Line Laser Scanning Thermography

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This study proposes a continuous line laser scanning thermography (CLLST) system for remote inspection of internal delamination in wind turbine blades. The CLLST system offers the following advantages: (1) remote delamination inspection can be achieved by mechanically scanning a line laser beam and simultaneously capturing the corresponding thermal waves in nondestructive and noncontact manners; (2) internal delamination and surface damages can be classified by analyzing laser-induced thermal wave propagating patterns; (3) instantaneous delamination detection and quantification can be accomplished without using baseline data which is previously collected from the pristine condition of a target blade. To examine the feasibility of the CLLST system, laboratory and full-scale tests were performed using a carbon fiber reinforced polymer (CFRP) plate, a 10 kW glass fiber reinforced polymer (GFRP) wind turbine blade, and a 3 MW GFRP wind turbine blade. The test results demonstrated that the 10 mm diameter internal delamination located 1 mm underneath the blade surface was successfully detected even 10 m far from the target blade with a laser scanning speed of 2 mm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gay, D. (2014). Composite materials: design and applications. Boca Raton: CRC Press. ISBN: 9780429101038.

    Book  Google Scholar 

  2. Campbell, F. C. (2010). Structural composite materials. Materials Park: ASM International. ISBN: 9781615030378.

    Google Scholar 

  3. Aslan, Z., & Daricik, F. (2016). Effects of multiple delaminations on the compressive, tensile, flexural, and buckling behaviour of E-glass/epoxy composites. Composites Part B: Engineering,100, 186–196.

    Article  Google Scholar 

  4. Zabala, H., Aretxabaleta, L., Castillo, G., Urien, J., & Aurrekoetxea, J. (2014). Impact velocity effect on the delamination of woven carbon–epoxy plates subjected to low-velocity equienergetic impact loads. Composites Science and Technology,94, 48–53.

    Article  Google Scholar 

  5. Tao, C., Qiu, J., Yao, W., & Ji, H. (2016). A novel method for fatigue delamination simulation in composite laminates. Composites Science and Technology,128, 104–115.

    Article  Google Scholar 

  6. Pagano, N. J. (2012). Interlaminar response of composite materials (Vol. 5). North Holland: Elsevier. ISBN: 9780444597205.

    Google Scholar 

  7. Li, D., Ho, S.-C. M., Song, G., Ren, L., & Li, H. (2015). A review of damage detection methods for wind turbine blades. Smart Materials and Structures,24(3), 033001.

    Article  Google Scholar 

  8. Liu, W., Tang, B., Han, J., Lu, X., Hu, N., & He, Z. (2015). The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review. Renewable and Sustainable Energy Reviews,44, 466–472.

    Article  Google Scholar 

  9. Roh, H. D., Lee, H., & Park, Y.-B. (2016). Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement. International Journal of Precision Engineering and Manufacturing-Green Technology,3(3), 311–321.

    Article  Google Scholar 

  10. Ryu, C.-H., Park, S.-H., Kim, D.-H., Jhang, K.-Y., & Kim, H.-S. (2016). Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy. Composite Structures,156, 338–347.

    Article  Google Scholar 

  11. Wang, J., Zhang, J., Chang, T., & Cui, H.-L. (2019). A Comparative Study of Non-destructive Evaluation of Glass Fiber Reinforced Polymer Composites Using Terahertz, X-ray, and Ultrasound Imaging. International Journal of Precision Engineering and Manufacturing,20(6), 963–972.

    Article  Google Scholar 

  12. Liu, Z., Yu, H., Fan, J., Hu, Y., He, C., & Wu, B. (2015). Baseline-free delamination inspection in composite plates by synthesizing non-contact air-coupled Lamb wave scan method and virtual time reversal algorithm. Smart Materials and Structures,24(4), 045014.

    Article  Google Scholar 

  13. Karabutov, A., & Podymova, N. (2014). Quantitative analysis of the influence of voids and delaminations on acoustic attenuation in CFRP composites by the laser-ultrasonic spectroscopy method. Composites Part B: Engineering,56, 238–244.

    Article  Google Scholar 

  14. Park, B., An, Y.-K., & Sohn, H. (2014). Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Composites science and Technology,100, 10–18.

    Article  Google Scholar 

  15. Park, B., Sohn, H., Malinowski, P., & Ostachowicz, W. (2017). Delamination localization in wind turbine blades based on adaptive time-of-flight analysis of noncontact laser ultrasonic signals. Nondestructive Testing and Evaluation,32(1), 1–20.

    Article  Google Scholar 

  16. Sohn, H., Dutta, D., Yang, J., DeSimio, M., Olson, S., & Swenson, E. (2011). Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Materials and Structures,20(4), 045017.

    Article  Google Scholar 

  17. An, Y.-K., Park, B., & Sohn, H. (2013). Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Materials and Structures,22(2), 025022.

    Article  Google Scholar 

  18. Hsu, D. K., Lee, K.-S., Park, J.-W., Woo, Y.-D., & Im, K.-H. (2012). NDE inspection of terahertz waves in wind turbine composites. International Journal of Precision Engineering and Manufacturing,13(7), 1183–1189.

    Article  Google Scholar 

  19. Park, J.-W., Im, K.-H., Yang, I.-Y., Kim, S.-K., Kang, S.-J., Cho, Y.-T., et al. (2014). Terahertz radiation NDE of composite materials for wind turbine applications. International Journal of Precision Engineering and Manufacturing,15(6), 1247–1254.

    Article  Google Scholar 

  20. Kim, D.-H., Ryu, C.-H., Park, S.-H., & Kim, H.-S. (2017). Nondestructive evaluation of hidden damages in glass fiber reinforced plastic by using the terahertz spectroscopy. International Journal of Precision Engineering and Manufacturing-Green Technology,4(2), 211–219.

    Article  Google Scholar 

  21. Schilling, P. J., Karedla, B. R., Tatiparthi, A. K., Verges, M. A., & Herrington, P. D. (2005). X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Composites Science and Technology,65(14), 2071–2078.

    Article  Google Scholar 

  22. Tan, K. T., Watanabe, N., & Iwahori, Y. (2011). X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Composites Part B: Engineering,42(4), 874–884.

    Article  Google Scholar 

  23. Maldague, X. P. (2002). Introduction to NDT by active infrared thermography. Materials Evaluation,60(9), 1060–1073.

    Google Scholar 

  24. Lisle, T., Bouvet, C., Hongkarnjanakul, N., Pastor, M.-L., Rivallant, S., & Margueres, P. (2015). Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermography. Composites Science and Technology,112, 22–33.

    Article  Google Scholar 

  25. Foudazi, A., Edwards, C. A., Ghasr, M. T., & Donnell, K. M. (2016). Active microwave thermography for defect detection of CFRP-strengthened cement-based materials. IEEE Transactions on Instrumentation and Measurement,65(11), 2612–2620.

    Article  Google Scholar 

  26. He, Y., Tian, G., Pan, M., & Chen, D. (2014). Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography. Composite Structures,109, 1–7.

    Article  Google Scholar 

  27. Tang, Q., Dai, J., Bu, C., Qi, L., & Li, D. (2016). Experimental study on debonding defects detection in thermal barrier coating structure using infrared lock-in thermographic technique. Applied Thermal Engineering,107, 463–468.

    Article  Google Scholar 

  28. Doroshtnasir, M., Worzewski, T., Krankenhagen, R., & Röllig, M. (2016). On-site inspection of potential defects in wind turbine rotor blades with thermography. Wind Energy,19(8), 1407–1422.

    Article  Google Scholar 

  29. Ranjit, S., Kang, K., & Kim, W. (2015). Investigation of lock-in infrared thermography for evaluation of subsurface defects size and depth. International Journal of Precision Engineering and Manufacturing,16(11), 2255–2264.

    Article  Google Scholar 

  30. Kim, G., Hong, S., Kim, G. H., & Jhang, K.-Y. (2012). Evaluation of subsurface defects in fiber glass composite plate using lock-in technique. International Journal of Precision Engineering and Manufacturing,13(4), 465–470.

    Article  Google Scholar 

  31. Moran, J., & Rajic, N. (2019). Remote line scan thermography for the rapid inspection of composite impact damage. Composite structures,208, 442–453.

    Article  Google Scholar 

  32. Li, T., Almond, D. P., & Rees, D. A. S. (2011). Crack imaging by scanning pulsed laser spot thermography. NDT & E International,44(2), 216–225.

    Article  Google Scholar 

  33. Li, T., Almond, D. P., & Rees, D. A. S. (2011). Crack imaging by scanning laser-line thermography and laser-spot thermography. Measurement Science and Technology,22(3), 035701.

    Article  Google Scholar 

  34. An, Y.-K., Yang, J., Hwang, S., & Sohn, H. (2015). Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips. Optics and Lasers in Engineering,73, 128–136.

    Article  Google Scholar 

  35. Peeters, J., Ibarra-Castanedo, C., Khodayar, F., Mokhtari, Y., Sfarra, S., Zhang, H., et al. (2018). Optimised dynamic line scan thermographic detection of CFRP inserts using FE updating and POD analysis. Ndt & E International,93, 141–149.

    Article  Google Scholar 

  36. Honner, M., Honnerova, P., Kučera, M., & Martan, J. (2016). Laser scanning heating method for high-temperature spectral emissivity analyses. Applied Thermal Engineering,94, 76–81.

    Article  Google Scholar 

  37. Kreith, F., Manglik, R. M., & Bohn, M. S. (2012). Principles of heat transfer. Stamford: Cengage learning. ISBN: 9781439061862.

    Google Scholar 

  38. https://www.skchemicals.com/business/sf_pop.do?no=1. Accessed 1 October 2019.

  39. Lee, H. G., Kang, M. G., & Park, J. (2015). Fatigue failure of a composite wind turbine blade at its root end. Composite Structures,133, 878–885.

    Article  Google Scholar 

  40. Pascoe, J., Alderliesten, R., & Benedictus, R. (2013). Methods for the prediction of fatigue delamination growth in composites and adhesive bonds—a critical review. Engineering Fracture Mechanics,112, 72–96.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A3B3067987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Kyu An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., An, YK., Yang, J. et al. Remote Inspection of Internal Delamination in Wind Turbine Blades using Continuous Line Laser Scanning Thermography. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 699–712 (2020). https://doi.org/10.1007/s40684-020-00192-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00192-9

Keywords

Navigation