Skip to main content

A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades

  • Conference paper
  • First Online:
Proceedings of 1st International Conference on Structural Damage Modelling and Assessment

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 110))

Abstract

With increasing turbine size, monitoring of blades becomes increasingly important, in order to prevent catastrophic damages and unnecessary maintenance, minimize the downtime and labor cost and improving the safety issues and reliability. The present work provides a review and classification of various structural health monitoring (SHM) methods as strain measurement utilizing optical fiber sensors and Fiber Bragg Gratings (FBG’s), active/passive acoustic emission method, vibration‒based method, thermal imaging method and ultrasonic methods, based on the recent investigations and promising novel techniques. Since accuracy, comprehensiveness and cost-effectiveness are the fundamental parameters in selecting the SHM method, a systematically summarized investigation encompassing methods capabilities/limitations and sensors types, is needed. Furthermore, the damages which are included in the present work are fiber breakage, matrix cracking, delamination, fiber debonding, crack opening at leading/trailing edge and ice accretion. Taking into account the types of the sensors relevant to different SHM methods, the advantages/capabilities and disadvantages/limitations of represented methods are nominated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soua S, Van Lieshout P, Perera A, Gan TH, Bridge B (2013) Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring. Renew Energy 51:175–181

    Article  Google Scholar 

  2. Liu WY, Tang BP, Han JG, Lu XN, Hu NN, He ZZ (2015) The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review. Renew Sustain Energy Rev 44:466–472

    Article  Google Scholar 

  3. Simani S, Farsoni S, Castaldi P (2015) Fault diagnosis of a wind turbine benchmark via identified fuzzy models. IEEE Trans Ind Electron 62:3775–3782

    Article  MATH  Google Scholar 

  4. Martinez-Luengo M, Kolios A, Wang L (2016) Structural health monitoring of offshore wind turbines: a review through the statistical pattern recognition paradigm. Renew Sustain Energy Rev 64:91–105

    Article  Google Scholar 

  5. Kim H, Melhem H (2004) Damage detection of structures under earthquake excitation using discrete wavelet analysis. Eng Struct 26:347–362

    Article  Google Scholar 

  6. Yang W, Tavner PJ, Crabtree CJ, Wilkinson M (2010) Cost-effective condition monitoring for wind turbines. IEEE Trans Ind Electron 57:263–271

    Article  Google Scholar 

  7. Zhou HF, Dou HY, Qin LZ, Chen Y, Ni YQ, Ko JM (2014) A review of full-scale structural testing of wind turbine blades. Renew Sustain Energy Rev 33:177–187

    Article  Google Scholar 

  8. Yang R, He Y, Zhang H Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renew Sustain Energy Rev

    Google Scholar 

  9. Yang B, Sun D (2013) Testing, inspecting and monitoring technologies for wind turbine blades: a survey. Renew Sustain Energy Rev 22:515–526

    Article  Google Scholar 

  10. Ciang CC, Lee J-R, Bang H-J (2008) Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas Sci Technol

    Google Scholar 

  11. Lian J, Cai O, Dong X, Jiang Q, Zhao Y (2019) Health monitoring and safety evaluation of the offshore wind turbine structure: a review and discussion of future development. Sustainability 11:494

    Article  Google Scholar 

  12. Farrar CR, Sohn H (2000) Pattern recognition for structural health monitoring. Workshop on mitigation of earthquake disaster by advanced technologies (Las Vegas, NV, USA, 30 Nov.–1 Dec. 2000)

    Google Scholar 

  13. Ghoshal A, Sundaresan MJ, Schulz MJ, Pai PF (2000) Structural health monitoring techniques for wind turbine blades. J Wind Eng Ind Aerodyn 85:309–324

    Article  Google Scholar 

  14. Adedipe O, Brennan F, Kolios AJ (2016) Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renew Sustain Energy Rev 61:141–154

    Article  Google Scholar 

  15. Larsen FMF, Sorensen T (2003) New lightning qualification test procedure for large wind turbine blades. Int Confe Lightning 36:1–10

    Google Scholar 

  16. Schulz MJ, Sundaresan MJ (2006) Smart sensor system for structural condition monitoring of wind turbines. Subcontract report NREL/SR-500-40089, National Renewable Energy Laboratory, CO, USA

    Google Scholar 

  17. Caselitz P, Giebhardt J, Mevenkamp M (1994) On-line fault detection and prediction in wind energy converters. Proc. EWEC (Thessaloniki, Greece) pp 623–7

    Google Scholar 

  18. Schubel PJ, Crossley RJ, Boateng EKG, Hutchinson JR (2013) Review of structural health and cure monitoring techniques for large wind turbine blades. Renew Energy 51:113–123

    Article  Google Scholar 

  19. Caithness Windfarm Information Forum (2005) Wind turbine accident Data to December 31st 2005, https://www.caithnesswindfarms.co.uk/

  20. Flemming ML, Troels S (2003) New lightning qualification test procedure for large wind turbine blades. Int. Conf. Lightning and Static Electricity (Blackpool, UK) pp 36.1–10

    Google Scholar 

  21. Rosenbloom E (2006) A Problem with Wind Power www.aweo.org

  22. Zangenberg J, Brøndsted P, Koefoed M (2014) Design of a fibrous composite preform for wind turbine rotor blades. Mater Des 56:635–641. https://doi.org/10.1016/j.matdes.2013.11.036

    Article  Google Scholar 

  23. Jureczko M, Pawlak M, Mezyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167:463–471

    Article  Google Scholar 

  24. Sørensen BF, Jørgensen E, Debel CP, Jensen FM, Jensen HM, Jacobsen TK, Halling KM (2004) Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1). Summary report (Risø-R Report) Risø National Laboratory, Denmark

    Google Scholar 

  25. Sundaresan MJ, Schulz MJ, Ghoshal A (2002) Structural health monitoring static test of a wind turbine blade. Subcontract report NREL/SR-500-28719, National renewable energy laboratory, CO, USA

    Google Scholar 

  26. Balageas D, Fritzen C-P, Guemes A (2006) Structural health monitoring. ISTE Ltd., London, UK

    Book  Google Scholar 

  27. Tchakoua P, Wamkeue R, Ouhrouche M, Slaoui-Hasnaoui F, Tameghe TA, Ekemb G (2014) Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies 7:2595–2630

    Article  Google Scholar 

  28. Tan CK, Irving P, Mba D (2007) A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears. Mech Syst Signal Process 21:208–233

    Article  Google Scholar 

  29. Krause T, Preihs S, Ostermann J (2014) Detection of impulse-like airborne sound for damage identification in rotor blades of wind turbines. 7th European workshop on structural health monitoring (EWSHM 2014), July 8–11

    Google Scholar 

  30. Van Dam J, Bond LJ (2015) Acoustic emission monitoring of wind turbine blades. In: SPIE smart structures and materials and nondestructive evaluation and health monitoring. International society for optics and photonics

    Google Scholar 

  31. Takeda N, Okabe Y, Kuwahara J, Kojima S, Ogisu T (2005) Development of smart composite structures with small diameter fibre Bragg grating sensors for damage detection: quantitative evaluation of delamination length in CFRP laminates using lamb wave sensing. Compos Sci Technol 65:2575–2587

    Article  Google Scholar 

  32. Tang J, Soua S, Mares C, Gan TH (2017) A pattern recognition approach to acoustic emission data originating from fatigue of wind turbine blades. Sensors (Basel) 17(11):2507

    Article  Google Scholar 

  33. Ni QQ, Iwamoto M (2002) Wavelet transform of acoustic emission signals in failure of model composites. Eng Fract Mech 69:717–728

    Article  Google Scholar 

  34. Gutkin R, Green CJ, Vangrattanachai S, Pinho ST, Robinson P, Curtis PT (2011) On acoustic emission for failure investigation in CFRP: pattern recognition and peak frequency analyses. Mech Syst Signal Process 25:1393–1407

    Article  Google Scholar 

  35. Suziki M, Nakanishi H, Iwamoto M, Jinen E (27–29 June 1988) Application of static fracture mechanisms to fatigue fracture behaviour of class A-SMC composite. In Proceedings of the 4th Japan-US Conference on composite materials, Washington, DC, USA

    Google Scholar 

  36. Ramirez-Jimenez CR, Papadakis N, Reynolds N, Gan TH, Purnell P, Pharaoh M (2004) Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos Sci Technol 64:1819–1827

    Article  Google Scholar 

  37. Gómez Muñoz CQ, García Márquez FP (2016) A new fault location approach for acoustic emission techniques in wind turbines. Energies 9:40

    Article  Google Scholar 

  38. NASA. https://technology.nasa.gov/patent/LAR-TOPS-209

  39. Tang J, Soua S, Mares C, Gan T-H (2016) An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades. Renew Energy 99:170–179

    Article  Google Scholar 

  40. Stearman RO, Schulze GH, Rohre SM (1997) Aircraft damage detection from acoustic and noise impressed signals found by a cockpit voice recorder. J Acoust Soc Am 101:3085

    Article  Google Scholar 

  41. Fazenda B, Comboni Bustos D (12–14 June 2012) Acoustic condition monitoring of wind turbines: Tip faults. In: Proceedings of the 9th international conference on condition monitoring and machinery failure prevention technologies, London

    Google Scholar 

  42. Krause T, Ostermann J (2020) Damage detection for wind turbine rotor blades using airborne sound. Struct Control Heal Monit p 27

    Google Scholar 

  43. Niezrecki C, Inalpolat M (2015) Structural health monitoring of wind turbine blades using wireless acoustic sensing. Patent PCT/US2014/062329, USA

    Google Scholar 

  44. Beale C, Niezrecki C, Inalpolat M (2020) An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades. Mech Syst Signal Process 142:106754

    Article  Google Scholar 

  45. Beale C, Inalpolat M, Niezrecki C (2020) Active acoustic damage detection of structural cavities using internal acoustic excitations. Struct Health Monit 19(1):48–65

    Article  Google Scholar 

  46. Ping Services, Australia, https://www.pingmonitor.co/

  47. Avdelidis NP, Almond DP, Ibarra-Castanedo C, Bendada A, Kenny S, Maldague X Structural integrity assessment of materials by thermography conference. Damage in composite materials CDCM 2006 (Stuttgart, Germany)

    Google Scholar 

  48. Hellier CJ (2003) Handbook of nondestructive evaluation; McGraw-Hill Professional Publishing: New York, NY, USA

    Google Scholar 

  49. Krstulovic-Opara L, Klarin B, Neves P, Domazet Z (2011) Thermal imaging and thermoelastic stress analysis of impact damage of composite materials. Eng Fail Anal 18:713–719

    Article  Google Scholar 

  50. Dutton AG (2004) Thermoelastic stress measurement and acoustic emission monitoring in wind. European wind energy conference (EWEC) 2004, London

    Google Scholar 

  51. Hahn F, Kensche CW, Paynter RJH, Dutton AG, Kildegaard J, Kosgaard C (2002) Design, fatigue test and NDE of a sectional wind turbine rotor blade. J Thermoplast Compos Mater 15:267–277

    Article  Google Scholar 

  52. Bodil A, Mats D, Magnus U (2011) Feasibility study of thermal condition monitoring and condition based maintenance in wind turbines. Elforsk Report 11:19; ELFORSK: Stockholm, Sweden

    Google Scholar 

  53. Ge Z, Du X, Yang L, Yang Y, Li Y, Jin Y (2011) Performance monitoring of direct air-cooled power generating unit with infrared thermography. Appl Therm Eng 31:418–424

    Article  Google Scholar 

  54. Walle G, Abuhamad M, Toma E, Netzelmann U (2004) Defect indications in sono-thermography in relation to defect location and structure. In: Proceedings of quantitative infrared thermography conference, Rhode Saint Genèse, Belgium

    Google Scholar 

  55. Rantala J, Wu D, Busse G (1996) Amplitude modulated lock-in vibrothermography for NDE of polymers and composites. J Res Nondestruct Eval 7:215–228

    Article  Google Scholar 

  56. Wilson DW, Charles JA (1981) Thermographic detection of adhesive-bond and interlaminar flaws in composites. Exp Mech 21:276–280

    Article  Google Scholar 

  57. Anastasi RF, Zalameda JN (2004) Damage detection in rotorcraft composite structures using thermography and laser-based ultrasound. NDT.net 9:8

    Google Scholar 

  58. Li S, Shi K, Yang K, Xu J (2015) Research on the defect types judgment in wind turbine blades using ultrasonic NDT. IOP Conf Ser Mater Sci Eng 87:012056

    Article  Google Scholar 

  59. Rose JL (2004) Ultrasonic guided waves in structural health monitoring. Key Eng Mater 270:14–21

    Article  Google Scholar 

  60. Raisutis R, Jasiuniene E, Sliteris R, Vladisauskas A (2008) The review of non-destructive testing techniques suitable for inspection of the wind turbine blades. Ultrasound 63:26–30

    Google Scholar 

  61. Hyers R, McGowan J, Sullivan K, Manwell J, Syrett B (2006) Condition monitoring and prognosis of utility scale wind turbines. Energy Mater 1:187–203

    Article  Google Scholar 

  62. Drewry MA, Georgiou GA (2007) A review of NDT techniques for wind turbines. Insight-Non-Destr Test Cond Monit 49:137–141

    Google Scholar 

  63. Cheng, L., Tian, G.Y.: Comparison of nondestructive testing methods on detection of delaminations in composites. J. Sens. 2012, 2012.

    Google Scholar 

  64. Tuzzeo D, Lanza di Scalea F (2001) Noncontact air-coupled guided wave ultrasonics for detection of thinning defects in aluminum plates. Res Nondestr Eval 13:61–78

    Article  Google Scholar 

  65. Lee J-R, Shin H-J, Chia CC, Dhital D, Yoon D-J, Huh Y-H (2011) Long distance laser ultrasonic propagation imaging system for damage visualization. Opt Lasers Eng 49:1361–1371

    Article  Google Scholar 

  66. Park B, An YK, Sohn H (2014) Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos Sci Technol 100:10–18

    Article  Google Scholar 

  67. Dally JW, Riley WF (1996) Experimental stress analysis. J Appl Mech 33

    Google Scholar 

  68. Takeda N (2002) Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors. Int J Fatigue 24:281–289

    Article  Google Scholar 

  69. Doyle C (2003) Fiber bragg grating sensors—an introduction to bragg gratings and interrogation techniques smart fibers. Ltd Report. www.smartfibres.com

  70. Campanella CE, Cuccovillo A, Campanella C, Yurt A, Passaro VMN (2018) Fiber bragg grating based strain sensors: review of technology and applications. Sensors 18:3115

    Article  Google Scholar 

  71. Iodice M, Striano V, Cappuccino G, Palumbo A, Cocorullo G Fiber bragg grating sensors-based system for strain measurements. Proc. 2005 IEEE-LEOS workshop on fibres and optical passive components (Palermo, Italy) pp 307–12

    Google Scholar 

  72. https://fbgs.com/technology/fbg-principle/

  73. Schroeder K, Ecke W, Apitz J, Lembke E, Lenschow G (2006) A fibre bragg grating sensor system monitors operational load in a wind turbine rotor blade. Meas Sci Technol 17:1167–1172

    Article  Google Scholar 

  74. FOS4X GmbH, Germany, https://fos4x.com/en/downloads/

  75. FIBERSAIL, Netherlands, https://www.fibersail.com/

  76. Perovic S, Osborne M, Lloyd G, Bridges P (2010) Intelligent blade ice detection and measurement. (Moog Insensys Ltd., Southampton, UK.) European Wind Energy Conference and Exhibition. Warsaw, Poland

    Google Scholar 

  77. Cattin R, Heikkilä U (2015) Evaluation of ice detection systems for wind turbines. Final report

    Google Scholar 

  78. Carden EP (2004) Vibration based condition monitoring: a review. Struct Health Monit 3:355–377

    Article  Google Scholar 

  79. Bab S, Khadem SE, Shahgholi M, Abbasi A (2017) Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mechan Sys Signal Process 84:128–157

    Article  Google Scholar 

  80. Gross E, Simmermacher T, Rumsey M, Zadoks RI (1999) Application of damage detection techniques using wind turbine modal data. American society of mechanical engineers wind energy symposium (Reno, NV, USA) AIAA 99–0047

    Google Scholar 

  81. Farrar CR, Doebling SW (1997) An overview of modal-based damage identification methods DAMAS 97. Sheffield, UK

    Google Scholar 

  82. Doebling SW, Farrar CR, Prime MB (1998) A summary review of vibration-based damage identification methods. Shock Vib Dig 30:91–105

    Article  Google Scholar 

  83. Jang J-H, Yeo I, Shin S, Chang S-P (2002) Experimental investigation of system identification-based damage assessment on structures. J Struct Eng 128:673–682

    Article  Google Scholar 

  84. Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib Dig 35:451–463

    Article  Google Scholar 

  85. Pitchford C, Grisso BL, Inman DJ (2007) Impedance-based structural health monitoring of wind turbine blades. Proc.SPIE, 6532. https://doi.org/10.1117/12.715800

  86. Hermans L, Van Der Auweraer H (1999) Modal testing and analysis of structures under operational conditions: industrial applications. Mech Syst Signal Process 13:193–216

    Article  Google Scholar 

  87. Devriendt C, El-kafafy M, De Sitter G, Guillaume P (2012) Damping estimation of offshore wind turbines on a monopile foundation using state-of-the-art operational modal analysis techniques. International conference on noise and vibration engineering, Leuven 2647–62

    Google Scholar 

  88. Devriendt C, Magalhães F, Weijtjens W, De Sitter G, Cunha Á, Guillaume P (2014) Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct Health Monit 13(6):644–659

    Article  Google Scholar 

  89. Devriendt C, Jan Jordaens P, De Sitter G, Guillaume P (2013) Damping estimation of an offshore wind turbine on a monopile foundation. IET Renew Power Gener 7(4):401–412

    Article  Google Scholar 

  90. Tcherniak D, Mølgaard LL (2017) Active vibration-based structural health monitoring system for wind turbine blade: demonstration on an operating Vestas V27 wind turbine. Struct Health Monit 16(5):536–550

    Article  Google Scholar 

  91. Vestas Denmark, https://www.vestas.com/

  92. Weijtjens W, Verbelen T, De Sitter G, Devriendt C (2015) Foundation structural health monitoring of an offshore wind turbine: a full-scale case study. Struct Health Monit

    Google Scholar 

  93. Tsiapoki S, Häckell MW, Grießmann T, Rolfes R (2018) Damage and ice detection on wind turbine rotor blades using a three-tier modular structural health monitoring framework. Struct Health Monit 17(5):1289–1312

    Article  Google Scholar 

  94. Wölfel Group. Germany, https://www.woelfel.de/en/home.html

  95. Bois C, Herzog P, Hochard C (2007) Monitoring a delamination in a laminated composite beam using in-situ measurements and parametric identification. J Sound Vib 299:786–805

    Article  Google Scholar 

  96. Zou Y, Tong L, Steven P (2000) Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. J Sound Vib 230(2):357–378

    Article  Google Scholar 

  97. Leng J, Asundi A (2003) Structural health monitoring of smart composite materials by using EFPI and FBG sensors. Sens Actuators A 103(3):330–340

    Article  Google Scholar 

  98. Ignatovich SR, Menou A, Karuskevich MV, Maruschak PO (2013) Fatigue damage and sensor development for aircraft structural health monitoring. Theor Appl Fract Mech 65:23–27

    Article  Google Scholar 

  99. Teo YH, Chiu WK, Chang FK, Rajic N (2009) Optimal placement of sensors for sub-surface fatigue crack monitoring. Theor Appl Fract Mech 52:40–49

    Article  Google Scholar 

  100. Karimov KS, Khalid FA, Chani MTS (2012) Carbon nanotubes-based strain sensors. Measurement 45:918–921

    Article  Google Scholar 

  101. Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15(3):737–748

    Article  Google Scholar 

  102. Thostenson ET, Chou T-W (2008) Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology 19:1–6

    Article  Google Scholar 

  103. Alamusi HuN, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes-based polymer nanocomposites. Sensors 11:10691–10723

    Article  Google Scholar 

  104. Arash A, Jiang JW, Rabczuk T (2015) A review on nanomechanical resonators and their applications in sensors and molecular transportation. Appl Phys Rev 2:021301

    Article  Google Scholar 

  105. Grow RJ, Wang Q, Cao J, Wang D, Dai H (2005) Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl Phys Lett 86:93–104

    Article  Google Scholar 

  106. Boehle M, Jiang Q, Li L, Lagounov A, Lafdi K (2012) Carbon nanotubes on glass fiber as a strain sensor for real time structural health monitoring. Int J Smart Nanomater 3(2):162–168

    Article  Google Scholar 

  107. Malekimoghadam R, Icardi U (2019) Prediction of mechanical properties of carbon nanotube-carbon fiber reinforced hybrid composites using multi-scale finite element modelling. Compos Part B Eng 177:107405

    Article  Google Scholar 

  108. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T (2014) Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Compos Part B Eng https://doi.org/10.1016/j.compositesb

  109. Msekh MA, Cuong NH, Zi G, Areias P, Zhuang X, Rabczuk T Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng Fract Mech 188:287–299

    Google Scholar 

  110. Silani M, Ziaei-Rad S, Talebi H, Rabczuk T (2014) A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theor Appl Fract Mech 74:30–38

    Article  Google Scholar 

  111. Hosseini SA, Saber-Samandari S, Maleki Moghadam R (2017) Multiscale modeling of interface debonding effect on mechanical properties of nanocomposites. Polym Compos 38:789–796

    Article  Google Scholar 

  112. Moghadam RM, Saber-Samandari S, Hosseini SA (2016) On the tensile behavior of clay–epoxy nanocomposite considering interphase debonding damage via mixed-mode cohesive zone material. Compos Part B Eng 89:303–315

    Article  Google Scholar 

  113. Sebastian J, Schehl N, Bouchard M, Boehle M, Li L, Lagounov A, Lafdi K (2014) Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors. Carbon N Y 66:191–200

    Article  Google Scholar 

  114. Ni X, Furtado C, Kalfon-Cohen E, Zhou Y, Valdes GA, Hank TJ, Camanho PP, Wardle BL (2019) Static and fatigue interlaminar shear reinforcement in aligned carbon nanotube-reinforced hierarchical advanced composites. Compos Part A Appl Sci Manuf 120:106–115

    Article  Google Scholar 

  115. Dai G, Mishnaevsky L Jr (2015) Carbon nanotube reinforced hybrid composites: computational modeling of environmental fatigue and usability for wind blades. Compos Part B Eng 78:349–360

    Article  Google Scholar 

  116. Zhou HW, Mishnaevsky L, Yi HY, Liu YQ, Hu X, Warrier A, Dai GM (2016) Carbon fiber/carbon nanotube reinforced hierarchical composites: effect of CNT distribution on shearing strength. Compos Part B Eng 88:201–211

    Article  Google Scholar 

  117. Attaf B (17–22 May 2016) On the application of carbon nanotube-based composite materials for smart design of wind turbine blades, international conference on materials and energy ICOME 16, La Rochelle, France

    Google Scholar 

  118. Abbasi A, Khadem SE, Ghandchi-Tehrani M Chaos suppression of a macro electromechanical system via linear feedback control based on Lyapunov exponent theorem, 5th international conference on acoustics and vibration

    Google Scholar 

  119. Abbasi A, Khadem S, Bab S (2018) Vibration control of a continuous rotating shaft employing high-static low-dynamic stiffness isolators. J Vib Control 24(4):760–783

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekimoghadam .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

(Table 3).

Table 3 Comparison and classification of the introduced SHM methods

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malekimoghadam, R., Krause, S., Czichon, S. (2021). A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades. In: Abdel Wahab, M. (eds) Proceedings of 1st International Conference on Structural Damage Modelling and Assessment. Lecture Notes in Civil Engineering, vol 110. Springer, Singapore. https://doi.org/10.1007/978-981-15-9121-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9121-1_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9120-4

  • Online ISBN: 978-981-15-9121-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics