Skip to main content
Log in

An improved material point method using moving least square shape functions

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this study, moving least square (MLS) shape functions are employed to reduce the cell-crossing error occurred in conventional material point method (MPM) when material particles pass through grid cell boundaries. The level of smoothness of MLS shape functions for mapping information from material particles to a background grid can be controlled by the support size of MLS weight functions. A simple method is proposed to reduce the computational cost for evaluating MLS shape functions at material particles by interpolating pre-computed MLS shape function values at sampling points in a grid cell. Numerical results show that the present method is very effective to reduce the cell-crossing error in MPM computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. André D, Girardot J, Hubert C (2019) A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model. Comput Methods Appl Mech Eng 350:100–122. https://doi.org/10.1016/j.cma.2019.03.013

    Article  MathSciNet  MATH  Google Scholar 

  2. Frissane H, Taddei L, Lebaal N, Roth S (2019) 3D smooth particle hydrodynamics modeling for high velocity penetrating impact using GPU: application to a blunt projectile penetrating thin steel plates. Comput Methods Appl Mech Eng 357:112590. https://doi.org/10.1016/j.cma.2019.112590

    Article  MathSciNet  MATH  Google Scholar 

  3. Ni T, Zaccariotto M, Zhu QZ, Galvanetto U (2019) Static solution of crack propagation problems in Peridynamics. Comput Methods Appl Mech Eng 346:126–151. https://doi.org/10.1016/j.cma.2018.11.028

    Article  MathSciNet  MATH  Google Scholar 

  4. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196. https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252. https://doi.org/10.1016/0010-4655(94)00170-7

    Article  MATH  Google Scholar 

  6. Guo YJ, Nairn JA (2006) Three-dimensional dynamic fracture analysis using the material point method. Comput Model Eng Sci 16:141–155. https://doi.org/10.3970/cmes.2006.016.141

    Article  Google Scholar 

  7. Cheon YJ, Kim HG (2018) An efficient contact algorithm for the interaction of material particles with finite elements. Comput Methods Appl Mech Eng 335:631–659. https://doi.org/10.1016/j.cma.2018.02.005

    Article  MathSciNet  MATH  Google Scholar 

  8. York AR, Sulsky D, Schreyer HL (2000) Fluid-membrane interaction based on the material point method. Int J Numer Methods Eng 48:901–924. https://doi.org/10.1002/(SICI)1097-0207(20000630)48:6%3c901:AID-NME910%3e3.0.CO;2-T

    Article  MATH  Google Scholar 

  9. Soga K, Alonso E, Yerro A et al (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66:248–273. https://doi.org/10.1680/jgeot.15.LM.005

    Article  Google Scholar 

  10. Yamaguchi Y, Takase S, Moriguchi S, Terada K (2020) Solid–liquid coupled material point method for simulation of ground collapse with fluidization. Comput Part Mech 7:209–223. https://doi.org/10.1007/s40571-019-00249-w

    Article  Google Scholar 

  11. Raymond SJ, Jones B, Williams JR (2018) A strategy to couple the material point method (MPM) and smoothed particle hydrodynamics (SPH) computational techniques. Comput Part Mech 5:49–58. https://doi.org/10.1007/s40571-016-0149-9

    Article  Google Scholar 

  12. Nairn JA (2019) Modeling heat flow across material interfaces and cracks using the material point method. Comput Part Mech 6:133–144. https://doi.org/10.1007/s40571-018-0201-z

    Article  Google Scholar 

  13. Steffen M, Kirby RM, Berzins M (2008) Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Methods Eng 76:922–948. https://doi.org/10.1002/nme.2360

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang X, Chen Z, Liu Y (2017) The material point method. Elsevier, Amsterdam

    Book  Google Scholar 

  15. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5:477–495. https://doi.org/10.3970/cmes.2004.005.477

    Article  Google Scholar 

  16. Sadeghirad A, Brannon RM, Burghardt J (2011) A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Methods Eng 86:1435–1456. https://doi.org/10.1002/nme.3110

    Article  MathSciNet  MATH  Google Scholar 

  17. Sadeghirad A, Brannon RM, Guilkey JE (2013) Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Int J Numer Methods Eng 95:928–952. https://doi.org/10.1002/nme.4526

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang L, Coombs WM, Augarde CE et al (2019) On the use of domain-based material point methods for problems involving large distortion. Comput Methods Appl Mech Eng 355:1003–1025. https://doi.org/10.1016/j.cma.2019.07.011

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang DZ, Ma X, Giguere PT (2011) Material point method enhanced by modified gradient of shape function. J Comput Phys 230:6379–6398. https://doi.org/10.1016/j.jcp.2011.04.032

    Article  MathSciNet  MATH  Google Scholar 

  20. Pruijn NS (2016) The improvement of the material point method by increasing efficiency and accuracy. Delft University of Technology

  21. Tielen R, Wobbes E, Möller M, Beuth L (2017) A high order material point method. Procedia Eng 175:265–272. https://doi.org/10.1016/j.proeng.2017.01.022

    Article  Google Scholar 

  22. Gan Y, Sun Z, Chen Z et al (2018) Enhancement of the material point method using B-spline basis functions. Int J Numer Methods Eng 113:411–431. https://doi.org/10.1002/nme.5620

    Article  MathSciNet  Google Scholar 

  23. de Koster P, Tielen R, Wobbes E, Möller M (2020) Extension of B-spline Material Point Method for unstructured triangular grids using Powell-Sabin splines. Comput Part Mech. https://doi.org/10.1007/s40571-020-00328-3

    Article  Google Scholar 

  24. Wobbes E, Möller M, Galavi V, Vuik C (2019) Conservative Taylor least squares reconstruction with application to material point methods. Int J Numer Methods Eng 117:271–290. https://doi.org/10.1002/nme.5956

    Article  MathSciNet  Google Scholar 

  25. Liang Y, Zhang X, Liu Y (2019) An efficient staggered grid material point method. Comput Methods Appl Mech Eng 352:85–109. https://doi.org/10.1016/j.cma.2019.04.024

    Article  MathSciNet  MATH  Google Scholar 

  26. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141. https://doi.org/10.2307/2007507

    Article  MathSciNet  MATH  Google Scholar 

  27. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256. https://doi.org/10.1002/nme.1620370205

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106. https://doi.org/10.1002/fld.1650200824

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim HG (2002) Interface element method (IEM) for a partitioned system with non-matching interfaces. Comput Methods Appl Mech Eng 191:3165–3194. https://doi.org/10.1016/S0045-7825(02)00255-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Dilts GA (1999) Moving least-squares particle hydrodynamics I. Consistency and stability. Int J Numer Methods Eng 44:1115–1155. https://doi.org/10.1002/(SICI)1097-0207(19990320)44:8%3c1115:AID-NME547%3e3.0.CO;2-L

    Article  MathSciNet  MATH  Google Scholar 

  31. Dilts GA (2000) Moving least-squares particle hydrodynamics II: conservation and boundaries. Int J Numer Methods Eng 48:1503–1524. https://doi.org/10.1002/1097-0207(20000810)48:10%3c1503:AID-NME832%3e3.0.CO;2-D

    Article  MathSciNet  MATH  Google Scholar 

  32. Brownlee R, Houston P, Levesley J, Rosswog S (2006) Enhancing SPH using moving least-squares and radial basis functions. In: Iske A, Levesley J (eds) Algorithms for approximation. Springer, Berlin, pp 103–112

    Google Scholar 

  33. Salehi R, Dehghan M (2013) A moving least square reproducing polynomial meshless method. Appl Numer Math 69:34–58. https://doi.org/10.1016/j.apnum.2013.03.001

    Article  MathSciNet  MATH  Google Scholar 

  34. Sulsky D, Gong M (2016) Improving the material-point method. In: Weinberg K, Pandolfi A (eds) Lecture notes in applied and computational mechanics. Springer, Berlin, pp 217–240

    Google Scholar 

  35. Hu Y, Fang Y, Ge Z et al (2018) A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans Graph 37:1–14. https://doi.org/10.1145/3197517.3201293

    Article  Google Scholar 

  36. Song Y, Liu Y, Zhang X (2020) A transport point method for complex flow problems with free surface. Comput Part Mech 7:377–391. https://doi.org/10.1007/s40571-019-00282-9

    Article  Google Scholar 

  37. Belytschko T, Krongauz Y, Organ D et al (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47. https://doi.org/10.1016/S0045-7825(96)01078-X

    Article  MATH  Google Scholar 

  38. Atluri SN, Kim H-G, Cho JY (1999) A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24:348–372. https://doi.org/10.1007/s004660050457

    Article  MATH  Google Scholar 

  39. Daphalapurkar NP, Lu H, Coker D, Komanduri R (2007) Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method. Int J Fract 143:79–102. https://doi.org/10.1007/s10704-007-9051-z

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2B6006234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Gyu Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JU., Kim, HG. An improved material point method using moving least square shape functions. Comp. Part. Mech. 8, 751–766 (2021). https://doi.org/10.1007/s40571-020-00368-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00368-9

Keywords

Navigation