Skip to main content
Log in

A modified interpolation approach for topology optimization

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In view of the fact that the follow-up search for an optimal topology is affected by deleting a large number of high-relative-density elements. When the typical density interpolation approach, namely, solid isotropic microstructures with penalization (SIMP), is employed in the continuum structural topology optimization, a new density interpolation approach based on the logistic function is proposed in this paper. This method can weaken low-relative-density elements while enhancing high-relative-density elements by polarization, and then rationally realize polarization of the intermediate density elements. It can reduce the number of gray-scale elements as much as possible to get the optimal topology with distinct boundaries in conjunction with the sensitivity filtering method based on particle swarm optimization (PSO). Several typical numerical examples are given to demonstrate this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S. and Atluri, S.N., The MLPG mixed collocation method for material orientation and topology optimization of anisotropic solids and structures. CMES-Computer Modeling in Engineering & Sciences, 2008, 30: 37–56.

    Google Scholar 

  2. Hu, D., Sun, Z.H., Liang, C. and Han, X., A mesh-free algorithm for dynamic impact analysis of hyperelasticity. Acta Mechanica Solida Sinica, 2013, 26(6): 362–372.

    Article  Google Scholar 

  3. Du, Y., Luo, Z., Tian, Q. and Chen, L., Topology optimization for thermo-mechanical compliant actuators using meshfree methods. Engineering Optimization, 2009, 41: 753–772.

    Article  MathSciNet  Google Scholar 

  4. Luo, Z., Gao, W. and Song, C., Design of multi-phase piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 2010, 21(18): 1851–1865.

    Article  Google Scholar 

  5. Huang, X., Xie, Y.M., Jia, B., Li, Q. and Zhou, S.W., Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Structural and Multidisciplinary Optimization, 2012, 46: 385–398.

    Article  MathSciNet  Google Scholar 

  6. Wang, Y.Q., Luo, Z., Zhang, N. and Kang, Z., Topological shape optimization of microstructural metamaterials using a level set method. Computational Materials Science, 2014, 87: 178–186.

    Article  Google Scholar 

  7. Bendsøe, M.P. and Sigmund, O., Topology optimization: Theory, Methods, and Applications. Springer, Berlin Heidelberg, 2003.

    MATH  Google Scholar 

  8. Xie, Y.M. and Steven, G.P., A Simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885–896.

    Article  Google Scholar 

  9. Rozvany, G.I.N., A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 2009, 37: 217–237.

    Article  MathSciNet  Google Scholar 

  10. Bendsøe, M.P. and Sigmund, O., Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999, 69: 635–654.

    Article  Google Scholar 

  11. Takezawa, A., Yoon, G.H., Jeong, S.H. and Kobashi, M., Structural topology optimization with strength and heat conduction constraints. Computer Methods in Applied Mechanics and Engineering, 2014, 276: 341–361.

    Article  MathSciNet  Google Scholar 

  12. Allaire, G., Jouve, F. and Toader, A.M., Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194: 363–393.

    Article  MathSciNet  Google Scholar 

  13. Luo, Z., Wang, M.Y., Wang, S. and Wei, P., A level set-based parameterization method for structural shape and topology optimization. International Journal for Numerical Methods in Engineering, 2008, 76(1): 1–26.

    Article  MathSciNet  Google Scholar 

  14. Sui, Y.K., Yang, D.Q. and Sun, H.C., Uniform ICM theory and method on optimization of structural topology for skeleton and continuum structures. Chinese Journal of Computational Mechanics, 2000, 17(1): 28–33.

    Google Scholar 

  15. Peng, X.R. and Sui, Y.K., Topological optimization of continuum structure with static and displacement and frequency constraints by ICM method. Chinese Journal of Computational Mechanics, 2006, 23(4): 391–396.

    Google Scholar 

  16. Wang, Y., Luo, Z. and Zhang, N., Topological optimization of structures using a multilevel nodal density-based approximant. CMES: Computer Modeling in Engineering & Sciences, 2012, 84(3): 229–252.

    MATH  Google Scholar 

  17. Luo, Z., Zhang, N., Wang, Y. and Gao, W., Topology optimization of structures using meshless density variable approximants. International Journal for Numerical Methods in Engineering, 2013, 93: 443–464.

    Article  MathSciNet  Google Scholar 

  18. Luo, Z., Chen, L., Yang, J., Zhang, Y. and Abdel-Malek, K., Fuzzy tolerance multilevel approach for structural topology optimization. Computers & structures, 2006, 84(3): 127–140.

    Article  MathSciNet  Google Scholar 

  19. Luo, Y., Kang, Z., Luo, Z. and Li, A., Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Structural and Multidisciplinary Optimization, 2009, 39(3): 297–310.

    Article  MathSciNet  Google Scholar 

  20. Fuchs, M.B., Jiny, S. and Peleg, N., The SRV constraint for 0/1 topological design. Structural and Multidisciplinary optimization, 2005, 30(4): 320–326.

    Article  Google Scholar 

  21. Wang, M.Y. and Wang, S.Y., Bilateral filtering for structural topology optimization. International Journal for Numerical Methods in Engineering, 2005, 63(13): 1911–1938.

    Article  MathSciNet  Google Scholar 

  22. Groenwold, A.A. and Etman, L.F.P., A simple heuristic for gray-scale suppression in optimality criterion-based topology optimization. Structural and Multidisciplinary Optimization, 2009, 39(2): 217–225.

    Article  Google Scholar 

  23. Kang, Z. and Wang, Y.Q., Structural topology optimization based on non-local Shepard interpolation of density field. Computer Methods in Applied Mechanics and Engineering, 2011, 200: 3515–3525.

    Article  MathSciNet  Google Scholar 

  24. James, K. and Russell, E., Particle Swarm Optimization. In proceeding(s) IEEE International Conference on Neural Networks, 1995, 4: 1942–1948.

    Article  Google Scholar 

  25. Liu, N., Gao, W., Song, C., Zhang, N. and Pi, Y.L., Interval dynamic response analysis of vehicle-bridge interaction system with uncertainty. Journal of Sound and Vibration, 2013, 332(13): 3218–3231.

    Article  Google Scholar 

  26. Svanberg, K., The method of moving asymptotes: a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373.

    Article  MathSciNet  Google Scholar 

  27. Sigmund, O., A 99 topology optimization code written in Matlab. Structural and Multidisciplinary optimization, 2001, 21: 120–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Du.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51105229), the National Science Foundation for Distinguished Young Scholars of Hubei Province of China (No. 2013CFA022), the Science and Technology Support Program of Hubei Province of China (No. 2015BHE026) and the Fund Project of Outstanding Dissertation of China Three Gorges University (No. 2014PY026).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Yan, S., Zhang, Y. et al. A modified interpolation approach for topology optimization. Acta Mech. Solida Sin. 28, 420–430 (2015). https://doi.org/10.1016/S0894-9166(15)30027-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(15)30027-6

Key Words

Navigation