Skip to main content
Log in

Foliar spray of triacontanol improves growth by alleviating oxidative damage in coriander under salinity

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effect of exogenous foliar spray of triacontanol (TRIA) on coriander (Coriamdrum sativum L.) under salt stress revealed that salinity stress caused a few morphological and physiological changes including decrease in root and shoot dry weight. Hydrogen peroxide content and levels of lipid peroxidation in terms of malondialdehyde content increased in leaves under salt stress. Salt stress also induced antioxidant enzymes activities such as superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase. Foliar spray of 10 µM TRIA was more effective in reducing the adverse effects of salt stress on coriander through modulating activities of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aftab, T., Khan, M. M. A., Idrees, M., Naeem, M., Singh, M., & Ram, M. (2010). Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annuaL. by triacontanol and gibberellic acid application. Journal of Plant Interaction, 4, 273–281.

    Article  Google Scholar 

  • Akram, N. A., Ashraf, M., & Al-Qurainy, F. (2012). Amino levulinic acid induced regulation in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) under saline regimes. Journal of Horticultural Science, 142, 143–148.

    Article  CAS  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolent radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24, 1337–1344.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sciences, 166, 3–6.

    Article  CAS  Google Scholar 

  • Azevedo-Neto, A. D., Prisco, J. T., Enéas-Filho, J., Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes. Environmental and Experimental Botany, 56, 87–94.

    Article  Google Scholar 

  • Bonhomme, F., Kurz, B., Melzer, S., Bernier, G., & Jacqmard, A. (2000). Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. The Plant Journal, 24(1), 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa, R. S., Plumb-Dhindsa, P., & Thrope, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal Experimental Botany, 32, 43–101.

    Article  Google Scholar 

  • Eleiwa, M. E., Bafeel, S. O., & Ibrahim, S. A. (2011). Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions I growth parameters and photosynthetic pigments. Australian Journal Basic and Applied Sciences, 5, 58–65.

    CAS  Google Scholar 

  • Ertani, A., Schiavon, M., Muscolo, A., & Nardi, S. (2012). Alfalfa plant derived bio-stimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and Soil, 364, 145–158.

    Article  Google Scholar 

  • Ghoulam, C., Foursyand, A., & Fares, K. (2002). Effect of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39–50.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal, H. S. (2010). Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management, 97, 148–156.

    Article  Google Scholar 

  • Hangarter, R., Ries, S. K., & Carlson, P. (1978). Effect of triacontanol on plant cell cultures in vitro. Plant Physiology, 61, 855–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast, kinetics and stoichiometry of fatty acid peroxidation. Archive of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Iqbal, M., & Ashraf, M. (2013). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, 86, 76–85.

    Article  CAS  Google Scholar 

  • Jabeen, N., & Ahmad, R. (2012). The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93(7), 1699–1705.

    Article  PubMed  Google Scholar 

  • Mittova, V., Tal, M., Volokita, M., & Guy, M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum, 115, 393–400.

    Article  CAS  PubMed  Google Scholar 

  • Naeem, M., Masroor, M. A., & Moinuddin, A. (2011). Triacontanol: A potentplant growth regulator in agricultural crops. Journal of Plant Interaction, 7, 129–142.

    Article  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell and Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Perveen, S., Shahbaz, M., & Ashraf, A. (2011). Modulation in activities ofantioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated withtriacontanol. Pakistan Journal of Botany, 43, 2463–2468.

    CAS  Google Scholar 

  • Perveen, S., Shahbaz, M., & Ashraf, M. (2013). Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll florescence at different growth stages in wheat under saline conditions. Photosynthetica, 51, 541–551.

    Article  CAS  Google Scholar 

  • Plewa, M. J., Smith, S. R., & Wanger, E. D. (1991). Diethyl dithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Journal of Mutation Research, 247, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports, 26, 2027–2038.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Ojha, A., & Chauhan, D. (2010). A study of molecular diversity and physiological mechanisms in rice genotypes of salt tolerance through SSR and ISSR markers. International Journal Applied Biology and Pharmaceutical technology, 1(2), 550–560.

    Google Scholar 

  • Swamy, G. S., Ramanarayan, K., Inamdar, L. S., & Inamdar, S. R. (2009). Triacontanol and jasmonic acid differentially modulate the lipid organization as evidenced by the florescent probe behavior and 31P nuclear magnetic resonance shift in model membranes. Journal of Membrane Biology, 231, 55.

    Article  CAS  Google Scholar 

  • Verma, A., Malik, C. P., Gupta, V. K., & Bajaj, B. K. (2011). Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea L. Brazilian Journal of Plant Physiology, 23, 271–277.

    CAS  Google Scholar 

  • Yurekli, F., Porgali, Z. B., & Turkan, I. (2004). Variations in abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin concentrations in two bean species subjected to salt stress. Acta Biologica Cracoviensia Series Botanica, 46, 201–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Asadi Karam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi Karam, E., Keramat, B. Foliar spray of triacontanol improves growth by alleviating oxidative damage in coriander under salinity. Ind J Plant Physiol. 22, 120–124 (2017). https://doi.org/10.1007/s40502-017-0286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0286-z

Keywords

Navigation