Skip to main content
Log in

Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions

  • Original Papers
  • Published:
Photosynthetica

Abstract

A greenhouse experiment was conducted to examine the effect of foliar application of triacontanol (TRIA) on two cultivars (cv. S-24 and MH-97) of wheat (Triticum aestivum L.) at different growth stages. Plants were grown in full strength Hoagland’s nutrient solution under salt stress (150 mM NaCl) or control (0 mM NaCl) conditions. Three TRIA concentrations (0, 10, and 20 μM) were sprayed over leaves at three different growth stages, i.e. vegetative (V), boot (B), and vegetative + boot (VB) stages (two sprays on same plants, i.e., the first at 30-d-old plants and the second 78-d-old plants). Salt stress decreased significantly growth, net photosynthetic rate (P N), transpiration rate (E), chlorophyll contents (Chl a and b), and electron transport rate (ETR), while membrane permeability increased in both wheat cultivars. Stomatal conductance (g s) decreased only in salt-sensitive cv. MH-97 under saline conditions. Foliar application of TRIA at different growth stages enhanced significantly the growth, P N, g s, Chl a and b contents, and ETR, while membrane permeability was reduced in both cultivars under salt stress. Of various growth stages, foliar-applied TRIA was comparatively more effective when it was applied at V and VB stages. Overall, 10 μM TRIA concentration was the most efficient in reducing negative effects of salinity stress in both wheat cultivars. The cv. S-24 showed the better growth and ETR, while cv. MH-97 exhibited higher nonphotochemical quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

boot stage

Chl:

chlorophyll

C i :

intracellular CO2 concentration

df:

degrees of freedom

E :

transpiration rate

EC:

electrical conductivity

ECe:

electrical conductivity of saturated-paste extract

ETR:

electron transport rate

F0 :

minimal fluorescence of dark-adapted state

Fv/Fm :

efficiency of photosystem II

FM:

fresh mass

g s :

stomatal conductance

OD:

optical density

PGRs:

plant growth regulators

P N :

net photosynthetic rate

PSII:

photosystem II

qN :

nonphotochemical quenching coefficient

qP :

photochemical quenching efficiency

RH:

relative humidity

RMP:

relative membrane permeability

TRIA:

triacontanol

V:

vegetative stage

VB:

vegetative + boot stages

WUE:

water-use efficiency

Y:

quantum yield of photosystem II

References

  • Arnon, D.I.: Copper enzyme in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf, M.A., Ashraf, A.: Salt-induced variation in some potential physiochemical attributes of two genetically diverse spring wheat (Triticum aestivum L.) cultivars: photosynthesis and photosystem II efficiency. — Pak. J. Bot. 44: 53–64, 2012.

    CAS  Google Scholar 

  • Ashraf, M., Athar, H.R., Harris, P.J.C., Kwon. T.R.: Some prospective strategies for improving crop salt tolerance. — Adv. Agron. 97: 45–110, 2008.

    Article  CAS  Google Scholar 

  • Ashraf, M.A., Ashraf, M., Shahbaz, M.: Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. — Flora 207: 388–397, 2012.

    Article  Google Scholar 

  • Borowski, E., Blamowski, Z.K.: The effect of triacontanol ‘TRIA’ and Asahi SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. — Folia Hort. 21: 39–48, 2009.

    Google Scholar 

  • Chen, X.P., Yuan, H.X., Chen, R.Z. et al.: Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as plant growth stimulator. — Plant Cell Physiol. 43: 869–876, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Eriksen, A.B., Selldén, G., Skogen, D., Nilsen, S.: Comparative analysis of the effect of triacontanol on photosynthesis, photorespiration and growth of tomato (C3-plants) and maize (C4-plants). — Planta 152: 44–49, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Haugstad, M., Ulsaker, L.K., Ruppel, A., Nilsen, S.: The effect of triacontanol on growth, photosynthesis and photorespiration in Chlamydomonas reinhardtii and Anacystis nidulans. — Physiol. Plant. 58: 451–456, 1983.

    Article  CAS  Google Scholar 

  • He, Y.-W., Loh, C.-S.: Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana. — Plant Sci. 159: 117–124, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M.A., Hasanuzzaman, M., Fujita, M.: Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. — Front. Agr. China 5: 1–14, 2011.

    Article  Google Scholar 

  • Houtz, R.L., Ries, S.K., Tolbert, N.E.: Effect of triacontanol on Chlamydomonas I. Stimulation of growth and photosynthetic CO2 assimilation. — Plant Physiol. 79: 357–364, 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov, A.G., Angelov, M.N.: Photosynthesis response to triacontanol correlates with increased dynamics of mesophyll protoplast and chloroplast membranes. — Plant Growth Regul. 21: 145–152, 1997.

    Article  CAS  Google Scholar 

  • Javid, M.J., Sorooshzadeh, A., Moradi, F. et al.: The role of phytohormones in alleviating salt stress in crop plants. — Aust. J. Crop Sci. 5: 726–734, 2011.

    CAS  Google Scholar 

  • Kanwal, H., Ashraf, M., Shahbaz, M.: Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. — Pak. J. Bot. 43: 2693–2699, 2011.

    CAS  Google Scholar 

  • Khan, M.M.A., Bhardwaj, G., Naeem, M., Moinuddin, Mohammad, F., Singh, M., Nasir, S., Idrees, M.: Response of tomato (Solanum lycopersicum L.) to application of potassium and triacontanol. — ISHS Acta Hort. 823: 199–208, 2009.

    Article  CAS  Google Scholar 

  • Krishnan, R.R., Kumari, B.D.R.: Effect of n-triacontanol on the growth of salt stressed soyabean plants. — J. Biosci. 19: 53–56, 2008.

    Google Scholar 

  • Marcelle, R.D., Chrominski, A.: Growth regulating activity of triacontanol. — Proc. 5th Ann. Meet. Plant Growth Regul. Work. Group. Pp. 116–123. Blacksburg 1978.

  • Mehta, P., Jajoo, A., Mathur, S., Bharti. S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. — Plant Physiol. Biochem. 48: 16–20, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Moorthy, P., Kathiresan, K.: Physiological responses of a mangroove seedling to triacontanol. — Biol. Plant. 35: 577–581, 1993.

    Article  CAS  Google Scholar 

  • Muthuchelian, K., Velayutham, M., Nedunchezhian, N.: Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings. Changes in growth and photosynthetic activities. — Plant Sci. 165: 1253–1259, 2003.

    Article  CAS  Google Scholar 

  • Naeem, M., Khan, M.M.A., Moinuddin, Siddiqui, M.H.: Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). — Sci. Hort. 121: 389–396, 2009.

    Article  CAS  Google Scholar 

  • Ouerghi, Z., Cornic, G., Roudani, M. et al.: Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. — J. Plant Physiol. 156: 335–340, 2000.

    Article  CAS  Google Scholar 

  • Perveen, S., Shahbaz, M., Ashraf, M.: Changes in mineral composition, uptake and use efficiency of salt stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. — Pak. J. Bot. 44: 27–35, 2012a.

    CAS  Google Scholar 

  • Perveen, S., Shahbaz, M., Ashraf, M.: Is pre-sowing seed treatment with triacontanol effective in improving some physiological and biochemical attributes of wheat (Triticum aestivum L.) under salt stress? — J. Appl. Bot. Food Qual. 85: 41–48, 2012b.

    Google Scholar 

  • Perveen, S., Shahbaz, M., Ashraf, M.: Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. — Pak. J. Bot. 43: 2463–2468, 2011.

    CAS  Google Scholar 

  • Perveen, S., Shahbaz, M., Ashraf, M.: Regulation in gas exchange and quantum yield of photosystem II (PSII) in saltstressed and non-stressed wheat plants raised from seed treated with triacontanol. — Pak. J. Bot. 42: 3073–3081, 2010.

    CAS  Google Scholar 

  • Rajasekaran, L.R., Blake, T.J.: New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. — J. Plant Growth Regul. 18: 175–181, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, M.P., Vora, A.B.: Salinity induced changes in pigment composition and chlorophyllase activity of wheat. — Indian J. Plant Physiol. 29: 331–334, 1986.

    CAS  Google Scholar 

  • Saleem, M., Ashraf, M., Akram, N.A.: Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). — J. Agron. Crop Sci. 197: 202–213, 2011.

    Article  CAS  Google Scholar 

  • Sarada, C., Giridhar, K., Reddy, T.Y.: Climate modification for off season production of coriander initiatives R&D in horticultural crops. — National seminar on new initiatives R&D in horticultural crops 26–29 November 2008 at OUAT, Bhubhaneshwar 2008.

  • Shahbaz, M., Ashraf, M., Akram, N.A., Hanif, A., Hameed, S., Joham, S., Rehman, R.: Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). — Acta Physiol. Plant. 33: 1113–1122, 2011.

    Article  CAS  Google Scholar 

  • Shahbaz, M., Ashraf, M., Al-Qurainy, F., Harris. P.J.C.: Salt tolerance in selected vegetable crops. — Crit. Rev. Plant Sci. 31: 303–320, 2012.

    Article  CAS  Google Scholar 

  • Shahbaz, M., Ashraf, M., Athar, H.R.: Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? — Plant Growth Regul. 55: 51–64, 2008.

    Article  CAS  Google Scholar 

  • Shahbaz, M., Zia, B.: Does exogenous application of glycinebetaine through rooting medium alter rice (Oryza sativa L.) mineral nutrient status under saline conditions? — J. Appl. Bot. Food Qual. 84: 54–60, 2011.

    CAS  Google Scholar 

  • Singh, M., Khan, M.M.A., Moinuddin, Naeem, M.: Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. — Plant Biosystems 146: 106–113, 2012.

    Article  Google Scholar 

  • Sivakumar, R., Pathmanaban, G., Kalarani, M.K. et al.: Effect of foliar application of growth regulators on biochemical attributes and grain yield in pearl millet. — Indian J. Plant Physiol. 7: 79–82, 2002.

    CAS  Google Scholar 

  • Snedecor, G.W., Cochran, G.W.: Statistical Methods. 7th Ed. — Iowa State Univ. Press, Ames 1980.

    Google Scholar 

  • Srivastava, N.K., Sharma, S.: Effect of triacontanol on photosynthesis, alkaloid content and growth in opium poppy (Papaver somniferum L.). — Plant Growth Regul. 9: 65–71, 1990.

    Article  CAS  Google Scholar 

  • Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chloro phyll a fluorescence transients in plants and cyanobacteria. — Photochem. Photobiol. 61: 32–42, 1995.

    Article  CAS  Google Scholar 

  • Verma, A., Malik, C.P., Gupta, V.K., Bajaj, Y.K.: Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea L. — Braz. J. Plant Physiol. 23: 271–277, 2011.

    CAS  Google Scholar 

  • Zheng, Y.H., Xu, X.B., Wang, M.Y. et al.: Responses of salttolerant and intolerant wheat genotypes to sodium chloride: Photosynthesis, antioxidants activities, and yield. — Photosynthetica 47: 87–94, 2009.

    Article  CAS  Google Scholar 

  • Zribi, L., Fatma, G., Fatma, R., et al.: Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. — Sci. Hort. 120: 367–372, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahbaz.

Additional information

Acknowledgements: The data reported in this manuscript were taken from the thesis of Miss Shagufta Perveen, (PIN NO. 074-3756-Bm4-061), financially supported by HEC (Pakistan) through Indigenous 5000 PhD. Scholarship Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perveen, S., Shahbaz, M. & Ashraf, M. Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. Photosynthetica 51, 541–551 (2013). https://doi.org/10.1007/s11099-013-0054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0054-x

Additional key words

Navigation