Skip to main content
Log in

Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A study was carried out to investigate the effects of nano-silver particles (AgNPs) or silver nitrate (AgNO3) supplementation to in vitro culture of potato plant. Results indicated that 2 mg l−1 of AgNPs or AgNO3 treatment resulted in improvement in some growth parameters such as dry weight, root length and leaf area. However, shoot length was significantly reduced. Total chlorophyll and carotenoids in treated explants were significantly increased. Anthocyanin content increased only in AgNO3 treatments in a dose-dependent manner, while AgNPs treatments at 2 mg l−1 and higher levels increased and decreased, respectively. Compared with untreated explants, treated explants exhibited no alteration in proline content at 2 mg l−1 but increased at 10 and 20 mg l−1 treatments. Flavonoids content increased only in explants treated with 2 mg l−1 of AgNPs. Total phenolics were significantly increased under all treatments compared with untreated explants. AgNPs and AgNO3 treatments showed an increase in H2O2 content and lipid peroxidation under 10 and 20 mg l−1. Lipid peroxidation and H2O2 contents in explants treated with AgNPs were remarkably higher than in case of AgNO3. Results showed that AgNPs treatment enhanced growth of potato explants, which could possibly be due to inhibitory effects of silver ion on ethylene perception. Furthermore, AgNPs exhibited stronger toxicity than AgNO3 at 10 and 20 mg l−1 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdi, G., Salehi, H., & Khosh-Khui, M. (2008). Nano silver: A novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum, 30(5), 709–714.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207.

    Article  CAS  Google Scholar 

  • Ben Rejeb, K., Abdelly, C., & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Beyer, E. M. (1976). A potent inhibitor of ethylene action in plants. Plant Physiology, 58(3), 268–271.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang, C.-C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182.

    CAS  Google Scholar 

  • Cho, K.-H., Park, J.-E., Osaka, T., & Park, S.-G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51(5), 956–960.

    Article  CAS  Google Scholar 

  • Ehsanpour, A., & Jones, M. G. K. (2001). Plant regeneration from mesophyll protoplasts of potato(Solanum tuberosum L.) cultivar delaware using silver thiosulfate(STS). Journal of Sciences Islamic Republic of Iran, 12(2), 103–110.

    CAS  Google Scholar 

  • Farago, M. E., & Mullen, W. A. (1979). Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. Inorganica Chimica Acta, 32, L93–L94.

    Article  CAS  Google Scholar 

  • Hatier, J.-H. B., & Gould, K. S. (2008). Foliar anthocyanins as modulators of stress signals. Journal of Theoretical Biology, 253(3), 625–627.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao, I. L., Hsieh, Y.-K., Wang, C.-F., Chen, I. C., & Huang, Y.-J. (2015). Trojan-Horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environmental Science and Technology, 49(6), 3813–3821. doi:10.1021/es504705p.

    Article  CAS  PubMed  Google Scholar 

  • Karami Mehrian, S., Heidari, R., & Rahmani, F. (2015). Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian Journal of Plant Physiology, 20(3), 257–263.

    Article  Google Scholar 

  • Kim, S. W., Kim, K. S., Lamsal, K., Kim, Y.-J., Kim, S. B., Jung, M., et al. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology, 19, 760–764.

    PubMed  Google Scholar 

  • Kowalska, I., Pecio, L., Ciesla, L., Oleszek, W., & Stochmal, A. (2014). Isolation, chemical characterization, and free radical scavenging activity of phenolics from Triticum aestivum L. aerial parts. Journal of Agricultural and Food Chemistry,. doi:10.1021/jf5038689.

    PubMed  Google Scholar 

  • Kumar, A., Prasad, M. N. V., & Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89(9), 1056–1065.

    Article  CAS  PubMed  Google Scholar 

  • Laby, R. J., Kincaid, M. S., Kim, D., & Gibson, S. I. (2000). The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. The Plant Journal, 23(5), 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., et al. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal, 25, 376–380.

    Article  CAS  Google Scholar 

  • Monteiro, M. S., Santos, C., Soares, A. M. V. M., & Mann, R. M. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental Safety, 72(3), 811–818.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

    Article  CAS  Google Scholar 

  • Nair, P. M. G., & Chung, I. M. (2014). Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere, 112, 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Purnhauser, L., Medgyesy, P., Czakó, M., Dix, P., & Márton, L. (1987). Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. tissue cultures using the ethylene inhibitor AgNO3. Plant Cell Reports, 6(1), 1–4. doi:10.1007/BF00269725.

    Article  CAS  PubMed  Google Scholar 

  • Rodrıguez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., & Bleecker, A. B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 283(5404), 996–998.

    Article  PubMed  Google Scholar 

  • Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101(3), 477–482.

    Article  CAS  Google Scholar 

  • Shams, G., Ranjbar, M., & Amiri, A. (2013). Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). Journal of Nanoparticle Research, 15(5), 1–12.

    Article  Google Scholar 

  • Sharma, P., Bhatt, D., Zaidi, M., Saradhi, P. P., Khanna, P., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225–2233.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Siripornadulsil, S., Traina, S., Verma, D. P. S., & Sayre, R. T. (2002). Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. The Plant Cell Online, 14(11), 2837–2847.

    Article  CAS  Google Scholar 

  • Sridevi, V., & Giridhar, P. (2014). In vitro shoot growth, direct organogenesis and somatic embryogenesis promoted by silver nitrate in Coffea dewevrei. Journal of Plant Biochemistry and Biotechnology, 23(1), 112–118.

    Article  CAS  Google Scholar 

  • Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M., et al. (2014). Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology, 171(13), 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  • Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., et al. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One, 8(7), e68752.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59–66.

    Article  CAS  Google Scholar 

  • Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Archives of Environmental Contamination and Toxicology, 56(4), 723–731.

    Article  CAS  PubMed  Google Scholar 

  • Wright, J. B., Lam, K., Hansen, D., & Burrell, R. E. (1999). Efficacy of topical silver against fungal burn wound pathogens. American Journal of Infection Control, 27(4), 344–350.

    Article  CAS  PubMed  Google Scholar 

  • Yin, L., Colman, B. P., McGill, B. M., Wright, J. P., & Bernhardt, E. S. (2012). Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One, 7(10), e47674.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors wish to thank University of Isfahan, Plant Stress Center of Excellence (PSCE) and Iran nanotechnology initiative council for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Ehsanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherzadeh Homaee, M., Ehsanpour, A.A. Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Ind J Plant Physiol. 20, 353–359 (2015). https://doi.org/10.1007/s40502-015-0188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-015-0188-x

Keywords

Navigation