Skip to main content
Log in

Salt stress affects mitotic activity and modulates antioxidant systems in onion roots

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

This study was aimed to explore the effect of short-term salt stress and recovery on cytology and the activity of antioxidant enzyme in roots of onion (Allium cepa L.) plant. Roots of A. cepa were treated with different concentrations of NaCl (0, 50, 100, 150, 200 mM), and cytological and physiological indicators in the root of plant were measured in different processing time. With the increase of NaCl concentrations and processing time, mitotic activity and relative division rate (RDR) were reduced. However, during recovery, mitotic activity and RDR were restored but their values were less than control values. Salt stress caused an increase while in recovery experiments there was a slight reduction in chromosomal aberrations. A significant increase in SOD and POX activities except in 200 mM occurred after 18 h of stress which was still higher than control in recovered plants. CAT activity showed 53.90 % decrease after 18 h of salt stress and also a significant decrease was observed after 24 h post stress. The results suggest that at high salt stress up to 150 mM, the roots of A. cepa are capable to rapidly activate antioxidant defence system to resist the salt-induced oxidative stress, but could not control the cytogenetical activities. The results also suggest that the recovery is possible at physiological and cytogenetical level by retaining chromosomal and DNA integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2−12
Fig. 13−22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

MI:

Mitotic index

RDR:

Relative division rate

ROS:

Reactive oxygen species

S:

Stickiness

C:

Clumping

B:

Bridge

Dist. Meta:

Disturbed metaphase

Dist. Ana:

Disturbed anaphase

Bc:

Binucleated cells

DN:

Disorganized nucleus

NB:

Nuclear bud

FW:

Fresh weight

CAT:

Catalase

POX:

Peroxidase

SOD:

Superoxide dismutase

References

  • Achenbach L, Brix H (2014) Monitoring the short-term response to salt exposure of two genetically distinct Phragmites australis clones with different salinity tolerance levels. Am J Plant Sci 5:1098–1109

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ateeq B, Farah MA, Ali MN, Ahmad W (2002) Clastogenicity of pentachlorophenol, 2, 4D and butachlor evaluated by Allium root tip test. Mutat Res 514:105–113

    Article  CAS  PubMed  Google Scholar 

  • Badr A (1986) Effect of the s-triazine herbicide terbutryn on mitosis chromosomes and nucleic acids in root tips of Vicia faba. Cytologia 51:571–578

    Article  CAS  Google Scholar 

  • Banerjee A (1992) A time course study relative cytotoxic effect of extracts of different types of tobacco on Allium cepa mitosis. Cytologia 57:315–320

    Article  Google Scholar 

  • Barroso CM, Franke LB, Barroso LB (2010) Substrato e luznagerminação das sementes de rainha-do- abismo. Hortic Bras 28:236–240

    Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Britton C, Mehley AC (1955) Assay of catalase and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • DeWald DB, Torabinejad J, Jones CA, Shope J, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-triphosphate correlates with calcium mobilization in salt stressed Arabidopsis. Plant Physiol 126:759–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ghamery AA, El-Nahas AI, Mansour MM (2000) The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristem of Allium cepa and Vicia faba. Cytologia 65:277–287

    Article  CAS  Google Scholar 

  • El-Ghamery AA, El-Kholy MA, Abou EMA (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res 537:29–41

    Article  CAS  PubMed  Google Scholar 

  • Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132

    Article  CAS  PubMed  Google Scholar 

  • Fernandes TCC, Mazzeo DCE, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88:252–259

    Article  CAS  Google Scholar 

  • Fiskesjö G (1993) The Allium test—a potential standard for the assessment of environmental toxicity. In: Gorsuch JW, Dwyer FJ, Ingersoll CG, La Point TW (eds) Environmental toxicology and risk assessment, vol 2. American Society for Testing and Materials, Philadelphia, pp 331–345

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1974) Superoxide dismutase. Adv Enzymol 41:35–97

    CAS  PubMed  Google Scholar 

  • Giannakoula A, Moustakas M, Syros T, Yupsanis T (2010) Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67:487–494

    Article  CAS  Google Scholar 

  • Haliem AS (1990) Cytological effect of the herbicide sencor on mitosis of A. cepa. Egypt J Bot 33:93–104

    CAS  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  PubMed  Google Scholar 

  • Hoda Q, Bose S, Sinha SP (1991) Vitamin C mediated minimisation of malathion and rogor induced mitoinhibition and clastogeny. Cytologia 56:389–397

    Article  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Kaneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M, Katsuhara M (2011) Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant Cell Physiol 52:663–675

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xiang Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defence response: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  Google Scholar 

  • Li JY, Jiang AL, Zhang W (2007) Salt stress induced programmed cell death in rice root tip cells. J Integr Plant Biol 49:481–486

    Article  CAS  Google Scholar 

  • Lima MDB, Bull LT (2008) Produção decebolaem solo salinizado. Rev Bras Eng Agrícola e Ambiental 12:231–235

    Google Scholar 

  • Lin J, Wang Y, Wang G (2006) Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. J Plant Physiol 163:731–739

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, Van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LZ, Werner KM, Gollin SM, Saunders WS (2004) Cigarette smoke induces anaphase bridges and genomic imbalances in normal cells. Mutat Res 554:375–385

    Article  CAS  PubMed  Google Scholar 

  • Luque EG, Fernández ICD, Mercado FG (2013) Effect of salinity and temperature on seed germination in Limonium cossonianum. Botany 91:12–16

    Article  Google Scholar 

  • Martinez JP, Antúnez A, Araya H, Pertuzé R, Fuentes L, Lizana C, Lutts S (2014) Salt stress differently affects growth, water status and antioxidant enzyme activities in Solanum lycopersicum and its wild relative Solanum chilense. Aust J Bot 62:359–368

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidise and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mišík M, Burke IT, Reismüller M, Pichler C, Rainer B, Mišíková K, Mayes WM, Knasmueller S (2014) Red mud a byproduct of aluminium production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Sci Total Environ 493:883–890

    Article  PubMed  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Gichner T (2009) Plant bioassays: Comet assay in higher plants in research methods in plant sciences. In: Rice EL (ed) Allelopathy. Studium Press, LLC Houston

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Pathak PS (2000) Agroforestry: a tool for arresting land degradation. Indian Farming 49:15–19

    Google Scholar 

  • Prasad G, Das K (1977) Effect of some growth substances on mitosis. Cytologia 42:323–329

    Article  CAS  PubMed  Google Scholar 

  • Radić S, Prolić M, Pavlica M, Pevalek-Kozlina B (2005) Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. Environ Exp Bot 54:213–218

    Article  Google Scholar 

  • Roxas VP, Lodhi SA, Garret DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione s-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Ruan C, Lian Y, Lium J (1992) Application of micronucleus test in Vicia faba in the rapid deletion of mutagenic environmental pollutants. Chin J Environ Sci 4:56–58

    Google Scholar 

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32:621–628

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xiao X, Yang M, Gao Z, Zang J, Fu X, Chen Y (2014) Effects of salt stress on antioxidant defence system in the root of Kandelia candel. Bot Stud 55:57

    Article  Google Scholar 

  • West G, Inzé D, Beemster GT (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z-Y, Zhi D-Y, Xue G-P, Zhang H, Zhao Y-X, Xia G-M (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Zare S, Pakniyat H (2012) Changes in activities of antioxidant enzymes in oilseed rape in response to salinity stress. Intl J Agri Crop Sci 4:398–403

    Google Scholar 

  • Zhang X, Yin H, Chen S, He J, Guo S (2014) Changes in antioxidant enzyme activity and transcript levels of related genes in Limonium sinense kuntze seedlings under NaCl stress. J Chem Artical ID 749047

  • Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y, Li H, Tan J, Hu A, Gao F, Zhang Q, Li Y, Zhou H, Zhang W, Li L (2014) Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One 9:e106070

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Head, Department of Botany, and Coordinator, Centre of Advanced Study for necessary facilities. This work has been financially supported by the University Grants Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijoy Krishna Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Roy, B.K. Salt stress affects mitotic activity and modulates antioxidant systems in onion roots. Braz. J. Bot 39, 67–76 (2016). https://doi.org/10.1007/s40415-015-0216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0216-0

Keywords

Navigation