Skip to main content

Advertisement

Log in

Effect of Cooling Rate on Microstructure and Mechanical Properties of Sand-Casted Al–5.0Mg–0.6Mn–0.25Ce Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

This study examines the relationship among cooling rate, microstructure and mechanical properties of a sand-casted Al–5.0Mg–0.6Mn–0.25Ce (wt%) alloy subjected to T4 heat treatment (430 °C × 12 h + natural aging for 5 days), and the tested alloys with wall thickness varying from 5 to 50 mm were prepared. The results show that as the cooling rate increases from 0.22 to 7.65 K/s, the average secondary dendritic arm spacing (SDAS, λ2) decreases from 94.8 to 27.3 μm. The relation between SDAS and cooling rate can be expressed by an equation: \(\lambda_{2} = 53.0R_{\text{c}}^{ - 0.345}\). Additionally, an increase in cooling rate was shown not only to reduce the amount of the secondary phases, but also to promote the transition from Al10Mn2Ce to α-Al24(Mn,Fe)6Si2 phase. Tensile tests show that as the cooling rate increases from 0.22 to 7.65 K/s, the ultimate tensile strength (UTS) increases from 146.3 to 241.0 MPa and the elongation (EL) increases sharply from 4.4 to 12.2% for the as-cast alloys. Relations of UTS and EL with SDAS were determined, and both the UTS and EL increase linearly with (1/λ2)0.5 and that these changes can be explained by strengthening mechanisms. Most eutectic Al3Mg2 phases were dissolved during T4 treatment, which in turn further improve the YS, UTS and EL. However, the increment percent of YS, UTS and EL is affected by the cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.A. Sielski, Ships Offshore Struct. 3, 57 (2008)

    Article  Google Scholar 

  2. S.W. Lee, J.W. Yeh, Mater. Sci. Eng. A 460, 409 (2007)

    Article  Google Scholar 

  3. Q. Wu, S.B. Kang, Acta Mater. Sin. (Engl. Lett.) 12, 521 (1999)

    CAS  Google Scholar 

  4. S. Seifeddine, S. Johansson, I.L. Svensson, Mater. Sci. Eng. A 490, 385 (2008)

    Article  Google Scholar 

  5. T. Radetić, M. Popović, E. Romhanji, Mater. Charact. 65, 16 (2012)

    Article  Google Scholar 

  6. M. Król, T. Tański, P. Snopiński, B. Tomiczek, J. Therm. Anal. Calorim. 127, 299 (2017)

    Article  Google Scholar 

  7. Y.L. Liu, G.R. Huang, Y.M. Sun, L. Zhang, Z.W. Huang, J.J. Wang, C.Z. Liu, Materials 9, 88 (2016)

    Article  Google Scholar 

  8. J.D. Du, D.Y. Ding, W.L. Zhang, Z. Xu, Y.G. Gao, G.Z. Chen, X.H. You, R.Z. Chen, Y.W. Huang, J.S. Tang, Mater. Charact. 142, 252 (2018)

    Article  CAS  Google Scholar 

  9. S. Thompson, S.L. Cockcroft, M.A. Wells, Mater. Sci. Technol. 20, 497 (2004)

    Article  CAS  Google Scholar 

  10. P. Zhang, Z.M. Li, B.L. Liu, W.J. Ding, L.M. Peng, Mater. Sci. Eng. A 651, 376 (2016)

    Article  CAS  Google Scholar 

  11. Y.L. Liu, Y.M. Sun, L. Zhang, Y.H. Zhao, J.J. Wang, C.Z. Liu, Metals 7, 428 (2017)

    Article  Google Scholar 

  12. Y.L. Liu, L. Luo, C.F. Han, L.Y. Ou, J.J. Wang, C.Z. Liu, J. Mater. Sci. Technol. 32, 305 (2016)

    Article  Google Scholar 

  13. J.R.P. Rodrigues, M.L.N.M. Melo, R.G.J. dos Santos, Mater. Sci. 45, 2285 (2010)

    Article  CAS  Google Scholar 

  14. L.F. Gomes, B.L. Silva, A. Garcia, J.E. Spinelli, Metall. Mater. Trans. A 48, 1841 (2017)

    Article  CAS  Google Scholar 

  15. I. Polmear, D. StJohn, J.F. Nie, M. Qian, Light Alloys, 5th edn. (Elsevier, Boston, 2017), pp. 109–156

    Book  Google Scholar 

  16. I.U. Haq, J.S. Shin, Z.H. Lee, Met. Mater. Int. 10, 89 (2004)

    Article  Google Scholar 

  17. F.G. Coury, E.L. Pires, W. Wolf, F.P. Almeida, A.L. Silva, W.J. Botta, C.S. Kiminami, M.J. Kaufman, J. Alloys Compd. 727, 460 (2017)

    Article  CAS  Google Scholar 

  18. G.S. Yi, B.H. Sun, J.D. Poplawsky, Y.K. Zhu, M.L. Free, J. Alloys Compd. 740, 461 (2018)

    Article  CAS  Google Scholar 

  19. R. Chen, Y.F. Shi, Q.Y. Xu, B.C. Liu, Trans. Nonferrous Met. Soc. China 24, 1645 (2014)

    Article  CAS  Google Scholar 

  20. Y.L. Liu, S.B. Kang, Mater. Sci. Technol. 13, 331 (1997)

    Article  CAS  Google Scholar 

  21. V.A. Hosseini, S.G. Shabestari, R. Gholizadeh, Mater. Des. 50, 7 (2013)

    Article  CAS  Google Scholar 

  22. S.X. Ji, W.C. Yang, F. Gao, D. Watson, Z.Y. Fan, Mater. Sci. Eng. A 564, 130 (2013)

    Article  CAS  Google Scholar 

  23. J. Yan, A.M. Hodge, J. Alloys Compd. 703, 242 (2017)

    Article  CAS  Google Scholar 

  24. A. Nicol, Acta Crystallogr. A 6, 285 (1953)

    Article  CAS  Google Scholar 

  25. L.D. Calvert, P. Villars, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASTM International, Newbury, 1991)

    Google Scholar 

  26. G. Yi, D.A. Cullen, K.C. Littrell, W. Golumbfskie, E. Sundberg, Metall. Mater. Trans. A 48, 2040 (2017)

    Article  CAS  Google Scholar 

  27. M. Rappaz, W.J. Boettinger, Acta Mater. 47, 3205 (1999)

    Article  CAS  Google Scholar 

  28. S.L. Sobolev, Acta Mater. 60, 2711 (2012)

    Article  CAS  Google Scholar 

  29. S.L. Sobolev, L.V. Poluyanov, F. Liu, J. Cryst. Growth 395, 46 (2014)

    Article  CAS  Google Scholar 

  30. W.R. Osorio, P.R. Goulart, A. Garcia, G.A. Santos, C.M. Neto, Metall. Mater. Trans. A 37, 2525 (2006)

    Article  Google Scholar 

  31. J.M. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A 31, 3167 (2000)

    Article  Google Scholar 

  32. V. Bata, E.V. Pereloma, Acta Mater. 52, 657 (2004)

    Article  CAS  Google Scholar 

  33. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Mater. Sci. Eng. A 636, 361 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 51674166). Also, many thanks are given to Colin Luo for his editing work in English, who is from University of Calgary in Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qu-Dong Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, HP., Wang, QD., Lei, C. et al. Effect of Cooling Rate on Microstructure and Mechanical Properties of Sand-Casted Al–5.0Mg–0.6Mn–0.25Ce Alloy. Acta Metall. Sin. (Engl. Lett.) 32, 1549–1564 (2019). https://doi.org/10.1007/s40195-019-00922-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00922-2

Keywords

Navigation