Skip to main content
Log in

Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1, and secondary, λ 2, dendrite arm spacings with cooling rate (\( {\dot T}_{\rm{L}} \)) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall–Petch type formulas show that the tensile strength increases with the decrease in λ 2. The soundest strength–ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth (V L) and cooling rates (\( {\dot T}_{\rm{L}} \)) for both ternary Al-Mg-Fe alloys have also been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.W. Bray: ASM Metals Handbook, 10th ed., vol. 2, ASM International, Metals Park, OH, 1976, pp. 148–49.

  2. D.S. D’Antuono, J. Gaies, W. Golumbfskie, and M.L. Taheri: Scripta Mater., 2014, vol. 76, pp. 81–4.

    Article  Google Scholar 

  3. J.R. Davis: Corrosion of Aluminum and Aluminum Alloys, ASM International, Materials Park, OH, 1999.

    Google Scholar 

  4. E. Romhanji, E. Popovic, D. Glisic, R. Dodok, and D. Jovanovic: J. Mater. Process. Technol., 2006, vol. 177, pp. 386–9.

    Article  Google Scholar 

  5. E. Ghassemieh: in New Trends and Developments in Automotive Industry, M. Chiaberge, ed., In Tech Europe, Rijeka, 2011, pp. 365–94.

    Google Scholar 

  6. F. Kabirian, A.S. Khan, and A. Pandey: Int. J. Plast., 2014, vol. 55, pp. 232–46.

    Article  Google Scholar 

  7. G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D.J. Lloyd: Mater. Charact., 1995, vol. 35, pp. 23–9.

    Article  Google Scholar 

  8. C. Vargel: Corrosion of Aluminium, 1st ed., Elsevier Science, 2004, pp. 63–64.

  9. V.S. Zolotorevsky, N.A. Belov, and M.V. Glazoff: Casting Aluminum Alloys, vol. 12, Elsevier, Amsterdam, 2007.

    Google Scholar 

  10. P.R. Goulart, J.E. Spinelli, N. Cheung, N. Mangelinck-Noel, and A. Garcia: J. Alloys Compd., 2010, vol. 504, pp. 205–10.

    Article  Google Scholar 

  11. S. Ji, W. Yang, F. Gao, D. Watson, and Z. Fan: Mater. Sci. Eng. A, 2013, vol. 564, pp. 130–9.

    Article  Google Scholar 

  12. Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley: Mater. Sci. Eng. A, 2004, vol. 386, pp. 396–407.

    Article  Google Scholar 

  13. Y.L. Liu and S.B. Kang: J. Mater. Sci., 1997, vol. 32, pp. 1443–7.

    Article  Google Scholar 

  14. Y.L. Liu and S.B. Kang: Mater. Sci. Technol., 1997, vol. 13, pp. 331–6.

    Article  Google Scholar 

  15. S. Kumar, N.H. Babu, G.M. Scamans, D.G. Eskin, and Z. Fan: Int. J. Mater. Res., 2012, vol. 103, pp. 1228–34.

    Article  Google Scholar 

  16. J.K. Kim, D.H. Shin, and W.J. Kim: Scripta Mater., 1998, vol. 38, pp. 991–8.

    Article  Google Scholar 

  17. J.D. Hunt and S.Z. Lu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 611–23.

    Article  Google Scholar 

  18. D. Bouchard and J.S. Kirkaldy: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 651–63.

    Article  Google Scholar 

  19. J.M.V. Quaresma, C.A. Santos, and A. Garcia: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3167–78.

    Article  Google Scholar 

  20. P.R. Goulart, J.E. Spinelli, W.R. Osorio, and A. Garcia: Mater. Sci. Eng. A, 2006, vol. 421, pp. 245–53.

    Article  Google Scholar 

  21. J.E. Spinelli and A. Garcia: J. Mater. Sci. Mater. Electron., 2014, vol. 30, pp. 401–7.

    Google Scholar 

  22. P.R. Goulart, K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, and A. Garcia: J. Alloys Compd., 2009, vol. 470, pp. 589–99.

    Article  Google Scholar 

  23. P.R. Goulart, J.E. Spinelli, N. Cheung, and A. Garcia: Mater. Chem. Phys., 2010, vol. 119, pp. 272–8.

    Article  Google Scholar 

  24. M.V. Canté, C. Brito, J.E. Spinelli, and A. Garcia: Mater. Des., 2013, vol. 51, pp. 342–6.

    Article  Google Scholar 

  25. R.N. Duarte, J.D. Faria, C. Brito, N.C. Veríssimo, N. Cheung, and A. Garcia: Int. J. Mod. Phys. B, 2016, vol. 30, pp. 1550261-1–1550261-9.

    Article  Google Scholar 

  26. A.P. Silva, J.E. Spinelli, and A. Garcia: J. Alloys Compd., 2009, vol. 475, pp. 347–51.

    Article  Google Scholar 

  27. J.E. Spinelli, N. Cheung, P.R. Goulart, J.M.V. Quaresma, and A. Garcia: Int. J. Therm. Sci., 2012, vol. 51, pp. 145–54.

    Article  Google Scholar 

  28. M. Gunduz and E. Çadirli: Mater. Sci. Eng. A, 2002, vol. 327, pp. 167–85.

    Article  Google Scholar 

  29. C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli, and A. Garcia: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3342–55.

    Article  Google Scholar 

  30. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth and Co. Ltd., London, 1976.

    Google Scholar 

  31. F. Bertelli, N. Cheung, I.L. Ferreira, and A. Garcia: J. Chem. Thermodyn., 2016, vol. 98, pp. 9–20.

    Article  Google Scholar 

  32. I.L. Ferreira, J.F.C. Lins, D.J. Moutinho, L.G. Gomes, and A. Garcia: J. Alloys Compd., 2010, vol. 503, pp. 31–9.

    Article  Google Scholar 

  33. M. Rappaz and W.J. Boettinger: Acta Mater., 1999, vol. 47, pp. 3205–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Spinelli.

Additional information

Manuscript submitted August 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, L.F., Silva, B.L., Garcia, A. et al. Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys. Metall Mater Trans A 48, 1841–1855 (2017). https://doi.org/10.1007/s11661-017-3978-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3978-0

Keywords

Navigation