Skip to main content
Log in

Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It has been reported that the mechanical properties and the corrosion resistance (CR) of metallic alloys depend strongly on the solidification microstructural arrangement. The correlation of corrosion behavior and mechanical properties with microstructure parameters can be very useful for planning solidification conditions in order to achieve a desired level of final properties. The aim of the present work is to investigate the influence of heat-transfer solidification variables on the microstructural array of both Al 9 wt pct Si and Zn 27 wt pct Al alloy castings and to develop correlations between the as-cast dendritic microstructure, CR, and tensile mechanical properties. Experimental results include transient metal/mold heat-transfer coefficient (h i), secondary dendrite arm spacing (λ2), corrosion potential (E Corr), corrosion rate (i Corr), polarization resistance (R 1), capacitances values (Z CPE), ultimate tensile strength (UTS, σ u ), yield strength (YS, σ y ), and elongation. It is shown that σ U decreases with increasing λ2 while the CR increases with increasing λ2, for both alloys experimentally examined. A combined plot of CR and σ U as a function of λ2 is proposed as a way to determine an optimum range of secondary dendrite arm spacing that provides good balance between both properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Shabestari and H. Moemeni:J. Mater. Proc. Technol., 2004, vol. 153 (4), pp. 193–98.

    Article  CAS  Google Scholar 

  2. E.L. Rooy:Metals Handbook, vol. 15,Castings, ASM INTERNATIONAL, Metals Park, OH, 1988, vol. 15, pp. 743–70.

    Google Scholar 

  3. J. Birch:Mater. Des., 1990, vol. 11, pp. 83–87.

    Google Scholar 

  4. Ç. Fatih and S. Kurnaz:Mater. Des., 2005, vol. 25, pp. 479–85.

    Google Scholar 

  5. M. Durman:Z. Metallkd., 1998, vol. 89, pp. 417–23.

    CAS  Google Scholar 

  6. N.J. Petch:J. Iron Steel Inst., 1953, vol. 174, pp. 25–31.

    CAS  Google Scholar 

  7. A. Lasalmonie and J. Strudel:J. Mater. Sci., 1986, vol. 21, pp. 1837–52.

    Article  Google Scholar 

  8. K.J. Kurzydlowski, B. Ralph, J.J. Bucki, and A. Garbacz:Mater. Sci. Eng., A, 1996, vol. 205, pp. 127–32.

    Article  Google Scholar 

  9. D. Dubé, A. Couture, Y. Carbonneaut, M. Fiset, R. Angers, and R. Tremblay:Int. J. Cast Met. Res., 1998, vol. 11, pp. 139–44.

    Google Scholar 

  10. P. Donelan:Mater. Sci. Technol., 2000, vol. 16, pp. 261–69.

    CAS  Google Scholar 

  11. W.R. Osório and A. Garcia:Mater. Sci. Eng. A, 2002, vol. 325, pp. 103–11.

    Article  Google Scholar 

  12. W.R. Osório, C.A. Santos, J.M.V. Quaresma, and A. Garcia:J. Mater. Proc. Technol., 2003, vol. 143, pp. 703–09.

    Article  CAS  Google Scholar 

  13. J.M. Quaresma, C.A. Santos, and A. Garcia:Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3167–78.

    CAS  Google Scholar 

  14. W.R. Osório, C.M.A. Freire, and A. Garcia:J. Alloys Compounds, 2005, vol. 397, pp. 179–91.

    Article  CAS  Google Scholar 

  15. W.R. Osório, J.E. Spinelli, N. Cheung, and A. Garcia:Mater. Sci. Eng., A, 2006, vol. 420, pp. 179–86.

    Article  CAS  Google Scholar 

  16. W.R. Osório, C.M.A. Freire, and A. Garcia:J. Mater. Sci., 2005, vol. 40, pp. 4493–99.

    Article  CAS  Google Scholar 

  17. G. Song, A. Atrens, and M. Dareusch:Corr. Sci., 1999, vol. 41, pp. 249–73.

    Article  CAS  Google Scholar 

  18. G. Song, A.L. Bowles, and D.H.St. John:Mater. Sci. Eng., A, 2004, vol. 366, pp. 74–86.

    Article  CAS  Google Scholar 

  19. B. Yu and J. Uan:Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2245–52.

    CAS  Google Scholar 

  20. W.R. Osório, C.M.A. Freire, and A. Garcia:Mater. Sci. Eng., A, 2005, vol. 402, pp. 22–32.

    Article  CAS  Google Scholar 

  21. W.R. Osório, C.M.A. Freire, and A. Garcia:Mater. Sci. Eng., A, 2005, vol. Extr., pp. 176–80.

  22. C.A. Siqueira, N. Cheung, and A. Garcia:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2107–18.

    CAS  Google Scholar 

  23. O.L. Rocha, C.A. Siqueira, and A. Garcia:Metall. Mater. Trans. A, 2003, vol. 34A, pp. 995–1006.

    CAS  Google Scholar 

  24. A. Garcia, T.W. Clyne, and M. Prates:Metall. Trans. B, 1979, vol. 10B, pp. 85–9.

    CAS  Google Scholar 

  25. I.L. Ferreira, C.A. Santos, V.R. Voller, and A. Garcia:Metall. Mater. Trans. B, 2004, vol. 35B, pp. 285–97.

    CAS  Google Scholar 

  26. F. Sá, O.L. Rocha, C.A. Siqueira, and A. Garcia:Mater. Sci. Eng., A, 2004, vol. 373, pp. 131–38.

    Article  CAS  Google Scholar 

  27. M.D. Peres, C.A. Siqueira, and A. Garcia:J. Alloys Compounds, 2004, vol. 381, pp. 168–81.

    Article  CAS  Google Scholar 

  28. J.E. Spinelli, M.D. Peres, and A. Garcia:J. Alloys Compounds, 2005, vol. 403, pp. 228–38.

    Article  CAS  Google Scholar 

  29. N. Tunca and R.W. Smith:J. Mater. Sci., 1988, vol. 23, pp. 111–20.

    Article  CAS  Google Scholar 

  30. C.A. Gandin:Acta Mater., 2000, vol. 48, pp. 2483–501.

    Article  CAS  Google Scholar 

  31. C.A. Siqueira, N. Cheung, and A. Garcia:J. Alloys Compounds, 2003, vol. 351, pp. 126–34.

    Article  CAS  Google Scholar 

  32. Standard Recommended Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Tests, ASTM G3, ASTM, Philadelphia, PA, 1989.

  33. M.C. Flemings:Solidification Processing, McGraw Hill, Inc., New York, NY, 1974, pp. 148–50.

    Google Scholar 

  34. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications Ltd., Aedermannsdorf, Switzerland, 1986, pp. 73–77.

    Google Scholar 

  35. T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings:Trans. TMS-AIME, 1967, vol. 239, pp. 1504–11.

    CAS  Google Scholar 

  36. M. Chen and T.Z. Kattamis:Mater. Sci. Eng., A, 1998, vol. 247, pp. 239–47.

    Article  Google Scholar 

  37. D.H. Kirkwood:Mater. Sci. Eng., A, 1985, vol. 73, pp. L1-L4.

    Article  CAS  Google Scholar 

  38. A. Mortensen:Metall. Mater. Trans. B, 1996, vol. 27B, pp. 101–13.

    Google Scholar 

  39. D. Bouchard and J.S. Kirkaldy:Metall. Mater. Trans. B, 1997, vol. 28B, pp. 651–63.

    CAS  Google Scholar 

  40. J. Campbell:Castings, Butterworth-Heinemann, Oxford, United Kingdom, 1991, pp. 264–67.

    Google Scholar 

  41. M. Kliskic, J. Radosevic, S. Gudic, and M. Smith:Electrochem. Acta, 1998, vol. 43, pp. 3241–55.

    Article  CAS  Google Scholar 

  42. S. Gudic, J. Radosevic, and M. Kliskic:Electrochem. Acta, 2002, vol. 47, pp. 3009–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osorio, W.R., Goulart, P.R., Garcia, A. et al. Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys. Metall Mater Trans A 37, 2525–2538 (2006). https://doi.org/10.1007/BF02586225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586225

Keywords

Navigation