Skip to main content
Log in

Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The wide range of operational conditions existing in foundry and casting processes generates as a direct consequence a diversity of solidification microstructures. Structural parameters such as grain size and interdendritic spacings are strongly influenced by the thermal behavior of the metal/mold system during solidification, imposing, as a consequence, a close correlation between this system and the resulting microstructure. Mechanical properties depend on the microstructural arrangement defined during solidification. Expressions correlating the mechanical behavior with microstructure parameters should be useful for future planning of solidification conditions in terms of a determined level of mechanical strength, which is intended to be attained. In the present work, analytical expressions have been developed describing thermal gradients and tip growth rate during one-dimensional unsteady-state solidification of alloys. Experimental results concerning the solidification of Al-4.5 wt pct Cu and Al-15 wt pct Cu alloys and dendritic growth models have permitted the establishment of general expressions correlating microstructure dendrite spacings with solidification processing variables. The correlation of these expressions with experimental equations relating mechanical properties and dendrite spacings provides an insight into the preprogramming of solidification in terms of casting mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Durman: Z. Metallkd, 1998, vol. 6, pp. 417–23.

    Google Scholar 

  2. K.H.W. Seah, J. Hemanth, and S.C. Sharma: J. Mater. Sci., 1998, vol. 33, pp. 23–28.

    Article  CAS  Google Scholar 

  3. M.A. Savans and S. Altintas: J. Mater. Sci., 1993, vol. 28, pp. 1775–82.

    Article  Google Scholar 

  4. E.O. Hall: Proc. Phys. Soc., 1951, vol. 71B, pp. 747–52.

    Google Scholar 

  5. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–31.

    CAS  Google Scholar 

  6. D. Bouchard and J.S. Kirkaldy: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 101–13.

    Article  CAS  Google Scholar 

  7. J.S. Kirkaldy and D. Venugopalan: Scripta Metall., 1989, vol. 23, pp. 1603–08.

    Article  CAS  Google Scholar 

  8. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  9. D. Bouchard and J.S. Kirkaldy: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 651–63.

    CAS  Google Scholar 

  10. J.D. Hunt and S.Z. Lu: Metall. Mater. Trans. A, 1996, vol. 27A, p. 611–23.

    CAS  Google Scholar 

  11. J. Feng, W.D. Huang, X. Lin, Q.Y. Pan, T. Li, and Y.H. Zhou: J. Cryst. Growth, 1999, vol. 197, pp. 393–95.

    Article  CAS  Google Scholar 

  12. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Article  Google Scholar 

  13. A. Garcia and M. Prates: Metall. Trans. B, 1978, vol. 9B, pp. 449–57.

    CAS  Google Scholar 

  14. A. Garcia, T.W. Clyne, and M. Prates: Metall. Trans. B, 1979, vol. 10B, pp. 85–92.

    CAS  Google Scholar 

  15. L.F. Mondolfo: Aluminum Alloy—Structure and Properties, 1st ed., Butterworth and Co., London, 1976.

    Google Scholar 

  16. R.D. Pehlke, A. Jeyarajan, and H. Wada: Summary of Thermal Properties for Casting Alloys and Mold Materials, The University of Michigan, Ann Arbor, MI, 1982.

    Google Scholar 

  17. J.T. Berry: AFS Trans., 1970, vol. 78, pp. 421–28.

    Google Scholar 

  18. M.A. Taha, N.A. El-Mahallawy, A.W.M. Assar, and R.M. Hammouda: J. Mater. Sci., 1992, vol. 27, pp. 3467–73.

    Article  CAS  Google Scholar 

  19. C.a. Santos, J.M.V. Quaresma, and A. Garcia: State University of Campinas, Campinas, Brazil, unpublished research, 2000.

  20. J.A. Spim and A. Garcia: Mater. Sci. Eng. A, 2000, vol. 277, pp. 198–05.

    Article  Google Scholar 

  21. ASTM E 8M—Standard Test Methods for Tension Testing of Metallic Materials, ASTM, Philadelphia, PA, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaresma, J.M.V., Santos, C.A. & Garcia, A. Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys. Metall Mater Trans A 31, 3167–3178 (2000). https://doi.org/10.1007/s11661-000-0096-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0096-0

Keywords

Navigation