Skip to main content
Log in

Milk protein-based nanodelivery systems for the cancer treatment

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The numerous advantages that nanotechnology can bring to the design of pharmaceutical delivery systems are perhaps nowhere better illustrated than in the area of cancer treatment. These nanostructures not only can improve the anti-proliferative properties of the drugs but also ameliorate the side effects by providing site-specific drug delivery. Furthermore, food-based proteins, due to their biocompatibility and biodegradability, provide a ready-made ingredient as a carrier for various chemotherapeutic agents. The most popular proteins in this field are milk proteins including β-lactoglobulin (β-LG), lactoferrin (LF), and the caseins (CN), all of which have desirable properties to make them ideal for this purpose. Grafting these two approaches, different milk protein-based nanodrugs have been synthesized that show promising potential in providing more targeted delivery of drugs thereby reducing the cytotoxic effects of chemotherapy. In some cases, being encapsulated in these proteins (in nanoscale), the chemotherapeutic agents can be consumed orally while enhancing site-specific delivery. This article reviews various nanodrug delivery systems containing milk proteins, which are designed for cancer treatment. Moreover, their physical and their anti-proliferative characteristics are briefly described.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Livney, Y.D.: Milk proteins as vehicles for bioactives. Cur. Opin. Coll. Interface. Sci. 15(1), 73–83 (2010). https://doi.org/10.1016/j.cocis.2009.11.002

    Article  CAS  Google Scholar 

  2. Zimecki, M., Kruzel, M.L.: Milk-derived proteins and peptides of potential therapeutic and nutritive value. J. Exp. Ther. Oncol. 6(2), 89–106 (2007)

    CAS  PubMed  Google Scholar 

  3. Jenness, R.: Biosynthesis and composition of milk. J. Invest. Dermatol. 63(1), 109–118 (1974). https://doi.org/10.1111/1523-1747.ep12678111

    Article  CAS  PubMed  Google Scholar 

  4. Dalgleish, D.G., Corredig, M.: The structure of the casein micelle of milk and its changes during processing. Ann. Rev. Food. Sci. Technol. 3, 449–467 (2012). https://doi.org/10.1146/annurev-food-022811-101214

    Article  CAS  Google Scholar 

  5. Dickinson, E.: Surface and emulsifying properties of caseins. Res. J. Dairy Sci. 56(3), 471–477 (1989). https://doi.org/10.1017/S0022029900028958

    Article  Google Scholar 

  6. Miller, M.J., Witherly, S.A., Clark, D.A.: Casein: a milk protein with diverse biologic consequences. Proc. Soc. Exp. Biol. Med. 195(2), 143–159 (1990). https://doi.org/10.3181/00379727-195-43129

    Article  CAS  PubMed  Google Scholar 

  7. Glantz, M., Devold, T.G., Vegarud, G.E., Lindmark Månsson, H., Stålhammar, H., Paulsson, M.: Importance of casein micelle size and milk composition for milk gelation. Int. J. Dairy Sci. 93(4), 1444–1451 (2010). https://doi.org/10.3168/jds.2009-2856

    Article  CAS  Google Scholar 

  8. Vasbinder, A.J., Rollema, H.S., Bot, A., de Kruif, C.G.: Gelation mechanism of milk as influenced by temperature and pH; studied by the use of transglutaminase cross-linked casein micelles. Int. J. Dairy Sci. 86(5), 1556–1563 (2003). https://doi.org/10.3168/jds.S0022-0302(03)73741-2

    Article  CAS  Google Scholar 

  9. Hoffman, J.R., Falvo, M.J.: Protein—which is best? J. Sports Sci. Med. 3(3), 118–130 (2004)

    PubMed  PubMed Central  Google Scholar 

  10. Madureira, A.R., Pereira, C.I., Gomes, A.M.P., Pintado, M.E., Xavier Malcata, F.: Bovine whey proteins—overview on their main biological properties. Food. Res. Int. 40(10), 1197–1211 (2007). https://doi.org/10.1016/j.foodres.2007.07.005

    Article  CAS  PubMed Central  Google Scholar 

  11. Smithers, G.W.: Whey and whey proteins—from ‘gutter-to-gold.’ Int. Dairy J. 18(7), 695–704 (2008). https://doi.org/10.1016/j.idairyj.2008.03.008

    Article  CAS  Google Scholar 

  12. Davoodi, S.H., Shahbazi, R., Esmaeili, S., Sohrabvandi, S., Mortazavian, A., Jazayeri, S., Taslimi, A.: Health-related aspects of milk proteins. Iran. J. Pharm. Res. 15(3), 573–591 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, L.C., Schulman, B.A., Peng, Z.Y., Kim, P.S.: Disulfide determinants of calcium-induced packing in alpha-lactalbumin. Biochemistry 35(3), 859–863 (1996). https://doi.org/10.1021/bi951408p

    Article  CAS  PubMed  Google Scholar 

  14. Layman, D.K., Lonnerdal, B., Fernstrom, J.D.: Applications for alpha-lactalbumin in human nutrition. Nutr. Rev. 76(6), 444–460 (2018). https://doi.org/10.1093/nutrit/nuy004

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kamau, S.M., Cheison, S.C., Chen, W., Liu, X.-M., Lu, R.-R.: Alpha-lactalbumin: its production technologies and bioactive peptides. Compr. Rev. Food Sci. Food Saf. 9(2), 197–212 (2010). https://doi.org/10.1111/j.1541-4337.2009.00100.x

    Article  CAS  Google Scholar 

  16. Shafaei, Z., Ghalandari, B., Vaseghi, A., Divsalar, A., Haertle, T., Saboury, A.A., Sawyer, L.: beta-Lactoglobulin: an efficient nanocarrier for advanced delivery systems. Nanomedicine 13(5), 1685–1692 (2017). https://doi.org/10.1016/j.nano.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  17. Wu, S.Y., Perez, M.D., Puyol, P., Sawyer, L.: beta-Lactoglobulin binds palmitate within its central cavity. J. Biol. Chem. 274(1), 170–174 (1999). https://doi.org/10.1074/jbc.274.1.170

    Article  CAS  PubMed  Google Scholar 

  18. Zimet, P., Livney, Y.: Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food. Hydrocoll. 23, 1120–1126 (2009). https://doi.org/10.1016/j.foodhyd.2008.10.008

    Article  CAS  Google Scholar 

  19. Dodin, G., Andrieux, M., Kabbani, H.A.: Binding of ellipticine to β-lactoglobulin. Eur. J. Biochem. 193(3), 697–700 (1990). https://doi.org/10.1111/j.1432-1033.1990.tb19389.x

    Article  CAS  PubMed  Google Scholar 

  20. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  21. Loch, J., Polit, A., Gorecki, A., Bonarek, P., Kurpiewska, K., Dziedzicka-Wasylewska, M., Lewinski, K.: Two modes of fatty acid binding to bovine beta-lactoglobulin-crystallographic and spectroscopic studies. J. Mol. Recognit. 24(2), 341–349 (2011). https://doi.org/10.1002/jmr.1084

    Article  CAS  PubMed  Google Scholar 

  22. Valenti, P., Berlutti, F., Conte, M.P., Longhi, C., Seganti, L.: Lactoferrin functions: current status and perspectives. J. Clin. Gastroenterol. 38(6 Suppl), S127-129 (2004). https://doi.org/10.1097/01.mcg.0000128941.46881.33

    Article  CAS  PubMed  Google Scholar 

  23. Chierici, R.: Antimicrobial actions of lactoferrin. Adv. Food. Nutr. Res. 10, 247–269 (2001). https://doi.org/10.1007/978-1-4615-0661-4_12

    Article  CAS  Google Scholar 

  24. Zhang, Y., Lima, C.F., Rodrigues, L.R.: Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr. Rev. 72(12), 763–773 (2014). https://doi.org/10.1111/nure.12155

    Article  PubMed  Google Scholar 

  25. Brock, J.H.: The physiology of lactoferrin. Nanomed. NBM 80(1), 1–6 (2002). https://doi.org/10.1139/o01-212

    Article  CAS  Google Scholar 

  26. Lim, L.Y., Koh, P.Y., Somani, S., Al Robaian, M., Karim, R., Yean, Y.L., Mitchell, J., Tate, R.J., Edrada-Ebel, R., Blatchford, D.R., Mullin, M., Dufès, C.: Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes. Nanomed. NBM 11(6), 1445–1454 (2015). https://doi.org/10.1016/j.nano.2015.04.006

    Article  CAS  Google Scholar 

  27. Golla, K., Bhaskar, C., Ahmed, F., Kondapi, A.: A target-specific oral formulation of doxorubicin–protein nanoparticles: efficacy and safety in hepatocellular cancer. J. Cancer. 4, 644–652 (2013). https://doi.org/10.7150/jca.7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore, S.A., Anderson, B.F., Groom, C.R., Haridas, M., Baker, E.N.: Three-dimensional structure of diferric bovine lactoferrin at 2.8 A resolution. J. Mol. Biol. 274(2), 222–236 (1997). https://doi.org/10.1006/jmbi.1997.1386

    Article  CAS  PubMed  Google Scholar 

  29. Organization, W.H.: Cancer. (2019). https://www.who.int/cancer/resources/keyfacts/en/. Accessed 1 Dec 2019

  30. Arruebo, M., Vilaboa, N., Sáez-Gutierrez, B., Lambea, J., Tres, A., Valladares, M., González-Fernández, A.: Assessment of the evolution of cancer treatment therapies. Cancers 3(3), 3279–3330 (2011). https://doi.org/10.3390/cancers3033279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nurgali, K., Jagoe, R.T., Abalo, R.: Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 9, 245–245 (2018). https://doi.org/10.3389/fphar.2018.00245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chakraborty, S., Rahman, T.: The difficulties in cancer treatment. Ecancermedicalscience 6, ed16 (2012). https://doi.org/10.3332/ecancer.2012.ed16

    Article  PubMed  PubMed Central  Google Scholar 

  33. Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., Sarkar, S.: Drug resistance in cancer: an overview. Cancers 6(3), 1769–1792 (2014). https://doi.org/10.3390/cancers6031769

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elshimali, Y.I., Wu, Y., Khaddour, H., Wu, Y., Gradinaru, D., Sukhija, H., Chung, S.S., Vadgama, J.V.: Optimization of cancer treatment through overcoming drug resistance. J. Cancer. Res. Clin. Oncol. 1(2), 107 (2018). https://doi.org/10.31021/jcro.20181107

    Article  Google Scholar 

  35. Schirrmacher, V.: From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int. J. Oncol. 54(2), 407–419 (2019). https://doi.org/10.3892/ijo.2018.4661

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Q.-Y., Wang, F.-X., Jia, K.-K., Kong, L.-D.: Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol. 9, 1253–1253 (2018). https://doi.org/10.3389/fphar.2018.01253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jansman, F.G., Sleijfer, D.T., de Graaf, J.C., Coenen, J.L., Brouwers, J.R.: Management of chemotherapy-induced adverse effects in the treatment of colorectal cancer. Drug. Saf. 24(5), 353–367 (2001). https://doi.org/10.2165/00002018-200124050-00002

    Article  CAS  PubMed  Google Scholar 

  38. Wang, X., Zhang, H., Chen, X.: Drug resistance and combating drug resistance in cancer. Cancer. Drug. Res. (2019). https://doi.org/10.20517/cdr.2019.10

    Article  Google Scholar 

  39. Tran, S., DeGiovanni, P.-J., Piel, B., Rai, P.: Cancer nanomedicine: a review of recent success in drug delivery. CTM 6(1), 44–44 (2017). https://doi.org/10.1186/s40169-017-0175-0

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar, A., Kaur, H.: Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects. Int. J. Biol. Macromol. 145, 950–964 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.186

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, A., Behl, T., Chadha, S.: A rationalized and innovative perspective of nanotechnology and nanobiotechnology in chronic wound management. J. Drug. Del. Sci. Technol. 60, 101930 (2020). https://doi.org/10.1016/j.jddst.2020.101930

    Article  CAS  Google Scholar 

  42. Kumar, A., Sanjay, D., Jaiswal, M.: Enhanced intestinal permeability of Tinospora cordifolia extract through nanoemulsion formulation: in-vitro and ex-vivo studies. J. Nanopharm. Drug. Deliv. 2, 1–10 (2014)

    Article  Google Scholar 

  43. Chadha, S., Kumar, A., Srivastava, S.A., Behl, T., Ranjan, R.: Inulin as a delivery vehicle for targeting colon-specific cancer. Curr. Drug Deliv. 17(8), 651–674 (2020). https://doi.org/10.2174/1567201817666200527133719

    Article  CAS  PubMed  Google Scholar 

  44. Arun, K., Tapan, B., Toshi, U., Swati, C.: Synthesis of nanostructured lipid carriers loaded chitosan/carbopol hybrid nanocomposite gel for oral delivery of artemether and curcumin. Pharm. Nanotechnol. 8(5), 418–432 (2020). https://doi.org/10.2174/2211738508666200907110444

    Article  CAS  Google Scholar 

  45. Calzoni, E., Cesaretti, A., Polchi, A., Di Michele, A., Tancini, B., Emiliani, C.: Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater. 10(1), 4 (2019). https://doi.org/10.3390/jfb10010004

    Article  CAS  PubMed Central  Google Scholar 

  46. Jadia, R., Scandore, C., Rai, P.: Nanoparticles for effective combination therapy of cancer. Int. J. Nanotechnol. Nanomed. (2016). https://doi.org/10.33140/IJNN/01/01/00003

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elzoghby, A.O., Samy, W.M., Elgindy, N.A.: Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release 161(1), 38–49 (2012). https://doi.org/10.1016/j.jconrel.2012.04.036

    Article  CAS  PubMed  Google Scholar 

  48. Chen, L., Remondetto, G.E., Subirade, M.: Food protein-based materials as nutraceutical delivery systems. Trends. Food. Sci. Technol. 17(5), 272–283 (2006). https://doi.org/10.1016/j.tifs.2005.12.011

    Article  CAS  Google Scholar 

  49. Shapira, A., Assaraf, Y.G., Livney, Y.D.: Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomedicine 6(1), 119–126 (2010). https://doi.org/10.1016/j.nano.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  50. Bijari, N., Ghobadi, S., Derakhshandeh, K.: β-Lactoglobulin-irinotecan inclusion complex as a new targeted nanocarrier for colorectal cancer cells. Res. Pharm. Sci. 14(3), 216–227 (2019). https://doi.org/10.4103/1735-5362.258488

    Article  PubMed  PubMed Central  Google Scholar 

  51. Farokhzad, O.C., Langer, R.: Impact of nanotechnology on drug delivery. ACS Nano 3(1), 16–20 (2009). https://doi.org/10.1021/nn900002m

    Article  CAS  PubMed  Google Scholar 

  52. Burgess, P., Hutt, P.B., Farokhzad, O.C., Langer, R., Minick, S., Zale, S.: On firm ground: IP protection of therapeutic nanoparticles. Biotechnol. Tech. 28(12), 1267–1270 (2010). https://doi.org/10.1038/nbt.1725

    Article  CAS  Google Scholar 

  53. Choe, T.B., Park, I.C., Hong, S.I.: Enhancement of cationic liposome-mediated transfection by lactoferrin. Biotechnol. Tech. 12(7), 577–581 (1998). https://doi.org/10.1023/A:1008836110996

    Article  CAS  Google Scholar 

  54. Salatin, S., Barar, J., Barzegar-Jalali, M., Adibkia, K., Kiafar, F., Jelvehgari, M.: Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res. Pharm. Sci. 12(1), 1–14 (2017). https://doi.org/10.4103/1735-5362.199041

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yadav, K.S., Sawant, K.K.: Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS Pharm. Sci. Tech. 11(3), 1456–1465 (2010). https://doi.org/10.1208/s12249-010-9519-4

    Article  CAS  Google Scholar 

  56. Abdelmoneem, M.A., Mahmoud, M., Zaky, A., Helmy, M.W., Sallam, M., Fang, J.Y., Elkhodairy, K.A., Elzoghby, A.O.: Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine 13(19), 2377–2395 (2018). https://doi.org/10.2217/nnm-2018-0134

    Article  CAS  PubMed  Google Scholar 

  57. Kanwar, J., Samarasinghe, R., Shegal, R., Kanwar, R.: Nano-lactoferrin in diagnostic, imaging and targeted delivery for cancer and infectious diseases. J. Cancer. Sci. Ther. 4, 31–42 (2012). https://doi.org/10.4172/1948-5956.1000107

    Article  CAS  Google Scholar 

  58. Pang, Z., Feng, L., Hua, R., Chen, J., Gao, H., Pan, S., Jiang, X., Zhang, P.: Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol. Pharm. 7(6), 1995–2005 (2010). https://doi.org/10.1021/mp100277h

    Article  CAS  PubMed  Google Scholar 

  59. Chen, H., Tang, L., Qin, Y., Yin, Y., Tang, J., Tang, W., Sun, X., Zhang, Z., Liu, J., He, Q.: Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur. J. Pharm. Sci. 40(2), 94–102 (2010). https://doi.org/10.1016/j.ejps.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  60. Chen, H., Qin, Y., Zhang, Q., Jiang, W., Tang, L., Liu, J., He, Q.: Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur. J. Pharm. Sci. 44(1–2), 164–173 (2011). https://doi.org/10.1016/j.ejps.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  61. Kanwar, J.R., Mahidhara, G., Kanwar, R.K.: Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine 7(10), 1521–1550 (2012). https://doi.org/10.2217/nnm.12.29

    Article  CAS  PubMed  Google Scholar 

  62. Mahidhara, G., Kanwar, R.K., Roy, K., Kanwar, J.R.: Oral administration of iron-saturated bovine lactoferrin-loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism. Int. J. Nanomed. 10, 4081–4098 (2015). https://doi.org/10.2147/IJN.S75877

    Article  CAS  Google Scholar 

  63. Kanwar, J.R., Mahidhara, G., Roy, K., Sasidharan, S., Krishnakumar, S., Prasad, N., Sehgal, R., Kanwar, R.K.: Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine 10(1), 35–55 (2015). https://doi.org/10.2217/nnm.14.132

    Article  CAS  PubMed  Google Scholar 

  64. Abdelmoneem, M.A., Elnaggar, M.A., Hammady, R.S., Kamel, S.M., Helmy, M.W., Abdulkader, M.A., Zaky, A., Fang, J.Y., Elkhodairy, K.A., Elzoghby, A.O.: Dual-targeted lactoferrin shell-oily core nanocapsules for synergistic targeted/herbal therapy of hepatocellular carcinoma. ACS Appl. Mat. Interfaces 11(30), 26731–26744 (2019). https://doi.org/10.1021/acsami.9b10164

    Article  CAS  Google Scholar 

  65. Sabra, S.A., Elzoghby, A.O., Sheweita, S.A., Haroun, M., Helmy, M.W., Eldemellawy, M.A., Xia, Y., Goodale, D., Allan, A.L., Rohani, S.: Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm. 128, 156–169 (2018). https://doi.org/10.1016/j.ejpb.2018.04.023

    Article  CAS  PubMed  Google Scholar 

  66. Ko, S., Gunasekaran, S.: Preparation of sub-100-nm beta-lactoglobulin (BLG) nanoparticles. J. Microencapsul. 23(8), 887–898 (2006). https://doi.org/10.1080/02652040601035143

    Article  CAS  PubMed  Google Scholar 

  67. Sahoo, B.K., Ghosh, K.S., Dasgupta, S.: Investigating the binding of curcumin derivatives to bovine serum albumin. Biophys. Chem. 132(2), 81–88 (2008). https://doi.org/10.1016/j.bpc.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  68. Barik, A., Mishra, B., Kunwar, A., Indira Priyadarsini, K.: Interaction of curcumin with human serum albumin: thermodynamic properties, fluorescence energy transfer and denaturation effects. Chem. Phys. Lett. 436(1), 239–243 (2007). https://doi.org/10.1016/j.cplett.2007.01.006

    Article  CAS  Google Scholar 

  69. Mohammadi, F., Bordbar, A.K., Divsalar, A., Mohammadi, K., Saboury, A.A.: Interaction of curcumin and diacetylcurcumin with the lipocalin member beta-lactoglobulin. Protein J. 28(3–4), 117–123 (2009). https://doi.org/10.1007/s10930-009-9171-6

    Article  CAS  PubMed  Google Scholar 

  70. Divsalar, A., Zhila, I., Saboury, A.A., Nabiuni, M., Razmi, M., Mansuri-Torshizi, H.: Cytotoxic and spectroscopic studies on binding of a new synthesized bipyridine ethyl dithiocarbamate Pt(II) nitrate complex to the milk carrier protein of BLG. J. Iran. Chem. Soc. 10(5), 951–959 (2013). https://doi.org/10.1007/s13738-013-0232-6

    Article  CAS  Google Scholar 

  71. Sneharani, A.H., Karakkat, J.V., Singh, S.A., Rao, A.G.: Interaction of curcumin with beta-lactoglobulin-stability, spectroscopic analysis, and molecular modeling of the complex. J. Agric. Food Chem. 58(20), 11130–11139 (2010). https://doi.org/10.1021/jf102826q

    Article  CAS  PubMed  Google Scholar 

  72. Teng, Z., Li, Y., Wang, Q.: Insight into curcumin-loaded β-lactoglobulin nanoparticles: incorporation, particle disintegration, and releasing profiles. J. Agric. Food Chem. 62(35), 8837–8847 (2014). https://doi.org/10.1021/jf503199g

    Article  CAS  PubMed  Google Scholar 

  73. Li, M., Cui, J., Ngadi, M.O., Ma, Y.: Absorption mechanism of whey-protein-delivered curcumin using Caco-2 cell monolayers. Food Chem. 180, 48–54 (2015). https://doi.org/10.1016/j.foodchem.2015.01.132

    Article  CAS  PubMed  Google Scholar 

  74. Aditya, N.P., Yang, H., Kim, S., Ko, S.: Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Coll. Surf. B Biointerfaces 127, 114–121 (2015). https://doi.org/10.1016/j.colsurfb.2015.01.027

    Article  CAS  Google Scholar 

  75. Divsalar, A., Saboury, A., Mansouri-Torshizi, H., Moosavi-Movahedi, A.: Binding properties of a new anti-tumor component (2,2′-bipyridin octylglycinato Pd(II) nitrate) with bovine β-lactoglobulin-A and -B. J. Biomol. Struct. Dyn. 25, 173–182 (2007). https://doi.org/10.1080/07391102.2007.10507166

    Article  CAS  PubMed  Google Scholar 

  76. Abazari, O., Divsalar, A., Ghobadi, R.: Inhibitory effects of oxali-platin as a chemotherapeutic drug on the function and structure of bovine liver catalase. J. Biomol. Struct. Dyn. 38(2), 609–615 (2020). https://doi.org/10.1080/07391102.2019.1581088

    Article  CAS  PubMed  Google Scholar 

  77. Mohammadgholi, A., Leilabadi-Asl, A., Divsalar, A., Eslami-Moghadam, M.: Multi-spectroscopic studies of the interaction of new synthesized platin complex with human carrier protein of serum albumin. J. Biomol. Struct. Dyn. 39, 1–6 (2020). https://doi.org/10.1080/07391102.2020.1745690

    Article  CAS  Google Scholar 

  78. Divsalar, A., Saboury, A.A., Mansouri-Torshizi, H., Moghaddam, M.I., Ahmad, F., Hakimelahi, G.H.: Comparative studies on the interaction between bovine beta-lacto-globulin type A and B and a new designed Pd(II) complex with anti-tumor activity at different temperatures. J. Biomol. Struct. Dyn. 26(5), 587–597 (2009)

    Article  CAS  Google Scholar 

  79. Divsalar, A., Saboury, A.A., Yousefi, R., Moosavi-Movahedi, A.A., Mansoori-Torshizi, H.: Spectroscopic and cytotoxic studies of the novel designed palladium(II) complexes: β-lactoglobulin and K562 as the targets. Int. J. Biol. Macromol. 40(4), 381–386 (2007). https://doi.org/10.1016/j.ijbiomac.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  80. Divsalar, A., Saboury, A.A., Mansoori-Torshizi, H., Moosavi-Movahedi, A.A.: Binding properties of a new anti-tumor component (2,2’-bipyridin octylglycinato Pd(II) nitrate) with bovine beta-lactoglobulin-A and -B. J. Biomol. Struct. Dyn. 25(2), 173–182 (2007). https://doi.org/10.1080/07391102.2007.10507166

    Article  CAS  PubMed  Google Scholar 

  81. Divsalar, A., Saboury, A.A., Mansoori-Torshizi, H., Moghaddam, M.I., Ahmad, F., Hakimelahi, G.H.: Comparative studies on the interaction between bovine β-lacto-globulin type A and B and a new designed Pd(II) complex with anti-tumor activity at different temperatures. J. Biomol. Struct. Dyn. 26(5), 587–597 (2009). https://doi.org/10.1080/07391102.2009.10507274

    Article  CAS  PubMed  Google Scholar 

  82. Leilabadi-Asl, A., Divsalar, A., Saboury, A.A., Parivar, K.: Probing the interaction of two chemotherapeutic drugs of oxali-palladium and 5-fluorouracil simultaneously with milk carrier protein of β-lactoglobulin. J. Biomol. Struct. Dyn. 112, 422–432 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.067

    Article  CAS  Google Scholar 

  83. Ghalandari, B., Divsalar, A., Saboury, A.A., Haertlé, T., Parivar, K., Bazl, R., Eslami-Moghadam, M., Amanlou, M.: Spectroscopic and theoretical investigation of oxali–palladium interactions with β-lactoglobulin. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 118, 1038–1046 (2014). https://doi.org/10.1016/j.saa.2013.09.126

    Article  CAS  PubMed  Google Scholar 

  84. Ghalandari, B., Divsalar, A., Saboury, A.A., Parivar, K.: The new insight into oral drug delivery system based on metal drugs in colon cancer therapy through beta-lactoglobulin/oxali-palladium nanocapsules. J. Photochem. Photobiol. B. 140, 255–265 (2014). https://doi.org/10.1016/j.jphotobiol.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  85. Divsalar, A., Saboury, A.A., Mansoori-Torshizi, H., Ahmad, F.: Design, synthesis, and biological evaluation of a new palladium(II) complex: β-lactoglobulin and K562 as targets. J. Phys. Chem. B. 114(10), 3639–3647 (2010). https://doi.org/10.1021/jp909143b

    Article  CAS  PubMed  Google Scholar 

  86. Divsalar, A., Barzegar, L., Behbehani, G.R.: Thermal study of a newly synthesized Cu(II) complex binding to bovine. J. Chem. 2013, 453056 (2013). https://doi.org/10.1155/2013/453056

    Article  CAS  Google Scholar 

  87. Zheng, G., Liu, H., Zhu, Z., Zheng, J., Liu, A.: Selenium modification of beta-lactoglobulin (beta-Lg) and its biological activity. Food. Chem. 204, 246–251 (2016). https://doi.org/10.1016/j.foodchem.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  88. Zhao, Y., Liu, Y., Wang, W., Wu, D., Shi, J., Liu, A.: Apoptosis and autophagy induction of seleno-β-lactoglobulin (Se-β-Lg) on hepatocellular carcinoma cells lines. J. Funct. Foods. 49, 412–423 (2018). https://doi.org/10.1016/j.jff.2018.09.011

    Article  CAS  Google Scholar 

  89. Sun, S.-J., Feng, Y.-Y., Zhang, Y., Ji, H.-Y., Yu, J., Liu, A.-J.: Antitumor and immunoregulatory activities of seleno-β-lactoglobulin on S180 tumor-bearing mice. Molecules 23, 46 (2017). https://doi.org/10.3390/molecules23010046

    Article  CAS  PubMed Central  Google Scholar 

  90. Zheng, G.-Q., Ji, H.-Y., Zhang, S.-J., Yu, J., Liu, A.-J.: Selenious-β-lactoglobulin induces the apoptosis of human lung cancer A549 cells via an intrinsic mitochondrial pathway. Cytotechnology 70, 1551–1563 (2018). https://doi.org/10.1007/s10616-018-0248-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu, J., Dong, X., Wang, L., Ji, H., Liu, A.: Antitumor effects of seleno-beta-lactoglobulin (Se-beta-Lg) against human gastric cancer MGC-803 cells. Eur. J. Pharmacol. 833, 109–115 (2018). https://doi.org/10.1016/j.ejphar.2018.05.042

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, J., Teng, Z., Yuan, Y., Zeng, Q.Z., Lou, Z., Lee, S.H., Wang, Q.: Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin. Int. J. Biol. Macromol. 107(Pt B), 1406–1413 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.117

    Article  CAS  PubMed  Google Scholar 

  93. Brauckmann, C., Wehe, C.A., Kieshauer, M., Lanvers-Kaminsky, C., Sperling, M., Karst, U.: The interaction of platinum-based drugs with native biologically relevant proteins. Anal. Bioanal. Chem. 405(6), 1855–1864 (2013). https://doi.org/10.1007/s00216-012-6410-z

    Article  CAS  PubMed  Google Scholar 

  94. Ghalandari, B., Divsalar, A., Eslami-Moghadam, M., Saboury, A.A., Haertle, T., Amanlou, M., Parivar, K.: Probing of the interaction between beta-lactoglobulin and the anticancer drug oxaliplatin. Appl. Biochem. Biotechnol. 175(2), 974–987 (2015). https://doi.org/10.1007/s12010-014-1341-0

    Article  CAS  PubMed  Google Scholar 

  95. Brauckmann, C., Faber, H., Lanvers-Kaminsky, C., Sperling, M., Karst, U.: Influence of cimetidine and its metabolites on cisplatin—investigation of adduct formation by means of electrochemistry/liquid chromatography/electrospray mass spectrometry. J. Chromatogr. A 1279, 49–57 (2013). https://doi.org/10.1016/j.chroma.2012.12.069

    Article  CAS  PubMed  Google Scholar 

  96. Izadi, Z., Divsalar, A., Saboury, A.A., Sawyer, L.: beta-Lactoglobulin-pectin nanoparticle-based oral drug delivery system for potential treatment of colon cancer. Chem Biol Drug Des. 88(2), 209–216 (2016). https://doi.org/10.1111/cbdd.12748

    Article  CAS  PubMed  Google Scholar 

  97. Jones, O., Decker, E.A., McClements, D.J.: Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocoll. 24(2/3), 239–248 (2010). https://doi.org/10.1016/j.foodhyd.2009.10.001

    Article  CAS  Google Scholar 

  98. Bijari, N., Ghobadi, S., Derakhshandeh, K.: Irinotecan binds to the internal cavity of beta-lactoglobulin: a multi-spectroscopic and computational investigation. Pharm. Res. 139, 109–115 (2017). https://doi.org/10.1016/j.jpba.2017.02.050

    Article  CAS  Google Scholar 

  99. Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, H., Schubert, D.: Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257(1–2), 169–180 (2003). https://doi.org/10.1016/s0378-5173(03)00134-0

    Article  CAS  PubMed  Google Scholar 

  100. Jahanban-Esfahlan, A., Dastmalchi, S., Davaran, S.: A simple improved desolvation method for the rapid preparation of albumin nanoparticles. Int. J. Biol. Macromol. 91, 703–709 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  101. Rahimi Yazdi, S., Corredig, M.: Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study. Food. Chem. 132(3), 1143–1149 (2012). https://doi.org/10.1016/j.foodchem.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  102. Ghayour, N., Hosseini, S.M.H., Eskandari, M.H., Esteghlal, S., Nekoei, A.-R., Hashemi Gahruie, H., Tatar, M., Naghibalhossaini, F.: Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food. Hydrocol. 87, 394–403 (2019). https://doi.org/10.1016/j.foodhyd.2018.08.031

    Article  CAS  Google Scholar 

  103. Esmaili, M., Ghaffari, S.M., Moosavi-Movahedi, Z., Atri, M.S., Sharifizadeh, A., Farhadi, M., Yousefi, R., Chobert, J.-M., Haertlé, T., Moosavi-Movahedi, A.A.: Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT-Food Sci. Technol. 44(10), 2166–2172 (2011). https://doi.org/10.1016/j.lwt.2011.05.023

    Article  CAS  Google Scholar 

  104. Priya, P., Mohan Raj, R., Vasanthakumar, V., Raj, V.: Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arab. J. Chem. 13(1), 694–708 (2020). https://doi.org/10.1016/j.arabjc.2017.07.010

    Article  CAS  Google Scholar 

  105. Bachar, M., Mandelbaum, A., Portnaya, I., Perlstein, H., Even-Chen, S., Barenholz, Y., Danino, D.: Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled beta-casein micelles. J. Control. Release. 160(2), 164–171 (2012). https://doi.org/10.1016/j.jconrel.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  106. Knepp, W.A., Jayakrishnan, A., Quigg, J.M., Sitren, H.S., Bagnall, J.J., Goldberg, E.P.: Synthesis, properties, and intratumoral evaluation of mitoxantrone-loaded casein microspheres in Lewis lung carcinoma. J. Pharm. Pharmacol. 45(10), 887–891 (1993). https://doi.org/10.1111/j.2042-7158.1993.tb05614.x

    Article  CAS  PubMed  Google Scholar 

  107. Latha, M.S., Latha, P.G., Subramoniam, A., Jayakrishnan, A.: Anti-tumor effect of mitoxantrone-loaded bovine casein microspheres on Ehrlich ascites carcinoma in mice. Drug. Deliv. 3(2), 75–79 (1996). https://doi.org/10.3109/10717549609031176

    Article  CAS  Google Scholar 

  108. Shapira, A., Markman, G., Assaraf, Y.G., Livney, Y.D.: Beta-casein-based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity. Nanomedicine 6(4), 547–555 (2010). https://doi.org/10.1016/j.nano.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  109. Shapira, A., Assaraf, Y.G., Epstein, D., Livney, Y.D.: Beta-casein nanoparticles as an oral delivery system for chemotherapeutic drugs: impact of drug structure and properties on co-assembly. Pharm. Res. 27(10), 2175–2186 (2010). https://doi.org/10.1007/s11095-010-0222-7

    Article  CAS  PubMed  Google Scholar 

  110. Shapira, A., Davidson, I., Avni, N., Assaraf, Y.G., Livney, Y.D.: beta-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: stability, target-activated release and cytotoxicity. Eur. J. Pharm. Biopharm. 80(2), 298–305 (2012). https://doi.org/10.1016/j.ejpb.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  111. Narayanan, S., Mony, U., Vijaykumar, D.K., Koyakutty, M., Paul-Prasanth, B., Menon, D.: Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomed. NBM 11(6), 1399–1406 (2015). https://doi.org/10.1016/j.nano.2015.03.015

    Article  CAS  Google Scholar 

  112. Elzoghby, A.O., Helmy, M.W., Samy, W.M., Elgindy, N.A.: Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model. Pharm. Res. 30(10), 2654–2663 (2013). https://doi.org/10.1007/s11095-013-1091-7

    Article  CAS  PubMed  Google Scholar 

  113. Elzoghby, A.O., Saad, N.I., Helmy, M.W., Samy, W.M., Elgindy, N.A.: Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Eur. J. Pharm. Biopharm. 85(3 Pt A), 444–451 (2013). https://doi.org/10.1016/j.ejpb.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  114. Elzoghby, A.O., Helmy, M.W., Samy, W.M., Elgindy, N.A.: Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int. J. Nanomed. 8, 1721–1732 (2013). https://doi.org/10.2147/ijn.S40674

    Article  Google Scholar 

  115. Elgindy, N.A., Samy, W.A., Elzoghby, A.O.: Casein-based micelles: a novel vector for delivery of the poorly soluble anticancer drug, flutamide? Ther. Deliv. 5(1), 7–9 (2014). https://doi.org/10.4155/tde.13.122

    Article  CAS  PubMed  Google Scholar 

  116. Elzoghby, A.O., Helmy, M.W., Samy, W.M., Elgindy, N.A.: Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur. J. Pharm. Biopharm. 84(3), 487–496 (2013). https://doi.org/10.1016/j.ejpb.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  117. Gandhi, S., Roy, I.: Doxorubicin-loaded casein nanoparticles for drug delivery: preparation, characterization and in vitro evaluation. Int. J. Biol. Macromol. 121, 6–12 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  118. Huang, J., Shu, Q., Wang, L., Wu, H., Wang, A.Y., Mao, H.: Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39, 105–113 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.059

    Article  CAS  PubMed  Google Scholar 

  119. Wang, D., Ma, B., Wang, Z., Zhao, Y., Sun, Y., Luan, Y., Wang, J.: Preparation and characterization of β-casein stabilized lipopeptide lyotropic liquid crystal nanoparticles for delivery of doxorubicin. Soft Matter 15(44), 9011–9017 (2019). https://doi.org/10.1039/C9SM01931F

    Article  CAS  PubMed  Google Scholar 

  120. Zhen, X., Wang, X., Xie, C., Wu, W., Jiang, X.: Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials 34(4), 1372–1382 (2013). https://doi.org/10.1016/j.biomaterials.2012.10.061

    Article  CAS  PubMed  Google Scholar 

  121. Huang, J., Qian, W., Wang, L., Wu, H., Zhou, H., Wang, A.Y., Chen, H., Yang, L., Mao, H.: Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int. J. Nanomed. 11, 3087–3099 (2016). https://doi.org/10.2147/ijn.S92722

    Article  CAS  Google Scholar 

  122. Divsalar, A., Razmi, M., Saboury, A.A., Mansouri-Torshizi, H., Ahmad, F.: Biological evaluation of a new synthesized Pt(II) complex by cytotoxic and spectroscopic studies. Cell Biochem. Biophys. 71(3), 1415–1424 (2015). https://doi.org/10.1007/s12013-014-0364-z

    Article  CAS  PubMed  Google Scholar 

  123. Razmi, M., Divsalar, A.: The effect of Β-casein nanoparticles on bioavailability and cellular uptake of platinum complex as a cancer drug. Armaghane-danesh 18(9), 711–722 (2013)

    Google Scholar 

  124. Razmi, M., Divsalar, A., Saboury, A.A., Izadi, Z., Haertlé, T., Mansuri-Torshizi, H.: Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Coll. Surf. B Biointerfaces 112, 362–367 (2013). https://doi.org/10.1016/j.colsurfb.2013.08.022

    Article  CAS  Google Scholar 

  125. Divsalar, A., Razmi, M., Saboury, A.A., Seyedarabi, A.: The design and characterization of a novel beta-casein nano-vehicle loaded with platinum anticancer drug for drug delivery. Anticancer Agents Med. Chem. 14(6), 892–900 (2014). https://doi.org/10.2174/1871520614666140207123147

    Article  CAS  PubMed  Google Scholar 

  126. Liang, J., Gao, C., Zhu, Y., Ling, C., Wang, Q., Huang, Y., Qin, J., Wang, J., Lu, W., Wang, J.: Natural brain penetration enhancer-modified albumin nanoparticles for glioma targeting delivery. ACS Appl. Mater. Interfaces 10(36), 30201–30213 (2018). https://doi.org/10.1021/acsami.8b11782

    Article  CAS  PubMed  Google Scholar 

  127. Gao, C., Liang, J., Zhu, Y., Ling, C., Cheng, Z., Li, R., Qin, J., Lu, W., Wang, J.: Menthol-modified casein nanoparticles loading 10-hydroxycamptothecin for glioma targeting therapy. Acta. Pharm. Sin. B 9(4), 843–857 (2019). https://doi.org/10.1016/j.apsb.2019.01.006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the respectful Research Council of Kharazmi University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeleh Divsalar.

Ethics declarations

Conflict of interest

The authors state that the content of this paper has strictly no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, N., Divsalar, A., Haertlé, T. et al. Milk protein-based nanodelivery systems for the cancer treatment. J Nanostruct Chem 11, 483–500 (2021). https://doi.org/10.1007/s40097-021-00399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00399-5

Keywords

Navigation