Skip to main content
Log in

β-Lactoglobulin nanoparticle as a chemotherapy agent carrier for oral drug delivery system

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Today, fabrication of new materials in nano scale based on protein-polysaccharide for targeted drug delivery by oral way is unresolved question for researchers in drug delivery system field. In this work, nanoparticles were made by β-lactoglobulin (β-LG), as a globular milk whey protein, complex with low methoxyl pectin (LMP) for chemotherapy agent (oxali-palladium) delivery. Affinity of β-LG to chemotherapy agent was investigated based on the intrinsic fluorescence intensity at 25 °C, so that β-LG binds to chemotherapy agent with molar ratio of 1:1. Hence, the nanoparticles were synthesized at various pH at ambient temperature. The results indicated that the nanoparticles were fabricated smaller than 200 nm at optimal pH approximately close to isoelectric point of β-LG with stability and solubility properties at ambient temperature. Also, scanning electron microscopy results demonstrated that nanoparticles were formed spherical so that were homogeneously distributed. Moreover, the results of dissolution profiles of drug release from β-LG nanoparticle-LMP complex at 37 °C show that in acidic conditions, nanoparticles are stable and there is no significant drug release but in alkaline conditions drug is released from nanoparticles. Therefore, we suggest β-LG nanoparticles-LMP complex are biodegradable and biocompatible and might be useful as targeted oral drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

β-LG:

Β-Lactoglobulin

LMP:

Low methoxyl pectin

DLS:

Dynamic light scattering

SEM:

Scanning electron microscopy

References

  1. R. Santipanichwong, M. Suphantharika, J. Weiss, D.J. Mcclements, Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured β-lactoglobulin aggregates. J. Food Sci. 73, 23 (2008)

    Article  Google Scholar 

  2. W. Chanasattru, O.G. Jones, E.A. Decker, D.J. McClements, Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocoll. 23, 2450 (2009)

    Article  CAS  Google Scholar 

  3. Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104 (2013)

    Article  CAS  Google Scholar 

  4. A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Coll. Surf. B 75, 1 (2010)

    Article  CAS  Google Scholar 

  5. J. Essemine, I. Hasni, R. Carpentier, T.J. Thomas, H.A. Tajmir-Riahi, Binding of biogenic and synthetic polyamines to β-lactoglobulin. Int. J. Biol. Macromol. 49, 201 (2011)

    Article  CAS  Google Scholar 

  6. L. Liang, V. Tremblay-Hébert, M. Subirade, Characterisation of the β-lactoglobulin/α-tocopherol complex and its impact on α-tocopherol stability. Food Chem. 126, 821 (2011)

    Article  CAS  Google Scholar 

  7. A. Taheri-Kafrani, E. Asgari-Mobarakeh, Abdol-Khalegh Bordbar, T. Haertlé, Structure-function relationship of β-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Coll. Surf. B 75, 268 (2010)

    Article  CAS  Google Scholar 

  8. A. Divsalar, A.A. Saboury, H. Mansoori-Torshizi, A.A. Moosavi-Movahedi, Binding properties of a new anti-TUMOR component (2,2′-bipyridin octylglycinato Pd(II) nitrate) with bovine β-lactoglobulin-A and -B. J. Biomol. Struct. Dyn. 25, 173 (2007)

    Article  CAS  Google Scholar 

  9. A. Divsalar, A.A. Saboury, A.A. Moosavi-Movahedi, H. Mansoori-Torshizi, Comparative studies on the interaction between bovine b-lacto globulin type A and B and a new designed Pd(II) complex with anti-tumor activity at different temperatures by spectrophotometric methods. J. Biomol. Struct. Dyn. 26, 586 (2009)

    Article  Google Scholar 

  10. A. Divsalar, A.A. Saboury, R. Yousefi, A.A. Moosavi-Movahedi, H. Mansoori-Torshizi, Spectroscopic and cytotoxic studies of the novel designed palladium (II) complexes: β-Lactoglobulin and K562 as the targets. Int. J. Biol. Macromol. 40, 381 (2007)

    Article  CAS  Google Scholar 

  11. A. Divsalar, A.A. Saboury, H. Mansoori-Torshizi, B. Hemmatinejad, Comparative and structural analysis of the interaction between β-lactoglobulin type A and B with a new anticancer component (2,2′-Bipyridin n-hexyl dithiocarbamato Pd(II) nitrate). Bull. Kor. Chem. Soc. 27, 1801 (2006)

    Article  CAS  Google Scholar 

  12. E. Gao, C. Liu, M. Zhu, H. Lin, Q. Wu, L. Liu, Current development of Pd(II) complexes as potential antitumor agents. Anti Cancer Agents Med. Chem. 9, 356 (2009)

    Article  CAS  Google Scholar 

  13. L. van den Berg, Y. Rosenberg, M.A.J.S. van Boekel, M. Rosenberg, F. van de Velde, Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales. Food Hydrocoll. 23, 1288 (2009)

    Article  Google Scholar 

  14. O.G. Jones, E.A. Decker, D.J. McClements, Formation of biopolymer particles by thermal treatment of β-lactoglobulin-pectin complexes. Food Hydrocoll. 23, 1312–1321 (2009)

    Article  CAS  Google Scholar 

  15. O.G. Jones, E.A. Decker, D.J. McClements, Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocoll. 24, 239 (2010)

    Article  CAS  Google Scholar 

  16. O.G. Jones, U. Lesmes, P. Dubin, D.J. McClements, Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocoll. 24, 374 (2010)

    Article  CAS  Google Scholar 

  17. S.M.H. Hosseini, Z. Emam-Djomeh, S.H. Razavi, A.A. Moosavi-Movahedi, A.A. Saboury, M.A. Mohammadifar, A. Farahnaky, M.S. Atri, P.V. Meeren, Complex coacervation of β-lactoglobulin–κ-Carrageenan aqueous mixtures as affected by polysaccharide sonication. Food Chem. 141, 215 (2013)

    Article  CAS  Google Scholar 

  18. B. Ghalandari, A. Divsalar, A.A. Saboury, T. Haertlé, K. Parivar, R. Bazl, M. Eslami-Moghadam, M. Amanlou, Spectroscopic and theoretical investigation of oxali–palladium interactions with β-lactoglobulin. Spectrochim. Acta. 118, 1038 (2014)

    Article  CAS  Google Scholar 

  19. J.C. Souder, W.C. Ellenbogen, Control of d-amphetamine sulphate sustained release capsule. Drug Stand. 26, 77 (1995)

    Google Scholar 

  20. L. Stryer, Intramolecular resonance transfer of energy in proteins. Biochim. Biophys. Acta. 35, 242 (1959)

    Article  CAS  Google Scholar 

  21. J. Chakraborty, N. Das, U.C. Halder, Unfolding diminishes fluorescence resonance energy transfer (FRET) of lysine modified b-lactoglobulin: relevance towards anti-HIV binding. J. Photochem. Photobiol. B Biol. 102, 1 (2011)

    Article  CAS  Google Scholar 

  22. Y. Sun, S. Wei, C. Yin, L. Liu, C. Hu, Y. Zhao, Y. Ye, X. Hu, J. Fan, Synthesis and spectroscopic characterization of 4-butoxyethoxy-N-octadecyl-1,8-naphthalimide as a new fluorescent probe for the determination of proteins. Bioorg. Med. Chem. Lett. 21, 3798 (2011)

    Article  CAS  Google Scholar 

  23. J. Ding, L. Yuan, L. Gao, J. Chen, Fluorescence quenching of a rhodamine derivative: selectively sensing Cu2+ in acidic aqueous media. J. Lumin. 132, 1987 (2012)

    Article  CAS  Google Scholar 

  24. M.F. Zhang, Z.Q. Xu, Y.S. Ge, F.L. Jiang, Y. Liu, Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach. J. Photochem. Photobiol. B Biol. 108, 34 (2012)

    Article  CAS  Google Scholar 

  25. S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand, Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): spectroscopic and molecular docking investigations. J. Photochem. Photobiol. B Biol. 114, 132 (2012)

    Article  CAS  Google Scholar 

  26. J. Moue´coucou, C. Villaume, C. Sanchez, L. Me´jean, β-Lactoglobulin/polysaccharide interactions during in vitro gastric and pancreatic hydrolysis assessed in dialysis bags of different molecular weight cut-offs. Biochim. Biophys. Acta. 1670, 105 (2004)

    Article  Google Scholar 

  27. C.M.G.C. Renard, J.F. Thibault, Degradation of pectins in alkaline conditions: kinetics of demethylation. Carbohyd. Res. 286, 139 (1996)

    Article  CAS  Google Scholar 

  28. J. Chamani, A.A. Moosavi-Movahedi, O. Rajabi, M. Gharanfoli, M. Momen-Heravi, G.H. Hakimelahi, A. Neamati-Baghsiah, A.R. Varasteh, Cooperative α-helix formation of β-lactoglobulin induced by sodium n-alkyl sulfates. J. Coll. Inter. Sci. 293, 52 (2006)

    Article  CAS  Google Scholar 

  29. N. Taulier, T.V. Chalikian, Characterization of pH-induced transitions of β-Lactoglobulin: ultrasonic, densimetric, and spectroscopic studies. J. Mol. Biol. 314, 873 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeleh Divsalar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalandari, B., Divsalar, A., Saboury, A.A. et al. β-Lactoglobulin nanoparticle as a chemotherapy agent carrier for oral drug delivery system. J IRAN CHEM SOC 12, 613–619 (2015). https://doi.org/10.1007/s13738-014-0519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0519-2

Keywords

Navigation